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The information flow with time lag is investigated to fulfill the efficient
functioning of communication in networks. As one crucial factor to deter-
mine the processing ability of nodes, the information flow with potential
time lag is modeled by co-processing diffusion which couples the continu-
ous time processing and the discrete diffusing dynamics. Exact results on
master equation and stationary state are achieved to disclose the forma-
tion and control of congestion which results from the time lag. Besides,
some statistical properties are obtained to provide well understanding on
the co-processing diffusion, e.g., memorylessness of the information flow.
Moreover, numerical simulations suggest that many scale-free network sys-
tems undergo a special convention from free diffusion state to congestion
due to the variety of processing ability.

PACS numbers: 89.75.Hc, 87.23.Ge, 05.60.Cd

1. Introduction

As statistical mechanics widens into the technological, biological and
social realms, various topological and dynamical properties of networks re-
sulting from real systems have attracted many researchers in diverse fields
[1–5]. Most attention have been paid to complex diffusion process. The
epidemic spreading in networks has been deeply discussed and widely ap-
plied to control the disease diffusion in social networks [6–8]. The oscillator
theory [9,10] and chaotic dynamics [11,12] have been made best use of to
propose the synchronization in networks [13–15]. Besides, researchers have
gone deep into many other diffusion processes, e.g., information transmission
on Internet [16,17], efficient routing for transportation [17] and navigability
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of complex networks [19,20]. The inherent complexity of networks results
in rich behaviors in the diffusion processing of the complex systems, which
depends on the topological structure of networks.

As a basic model of the diffusion process, random walk [21–23], especially
biased random walk [24] has been deeply investigated to understand the
essential dynamical properties of physical systems on networks [25–27] and
also has many practical applications to real networks, such as information
searching in the Internet [28–31] and local navigation in networks. However,
congestion often occurs in diffusion processing, which is mainly determined
by two factors, capability of nodes and time lag on nodes. Zero-range process
(ZRP), as a powerful technique to control the congestion by modulating
the capability of nodes, has been investigated deeply. While in the traffic
flow [32–35], the car may be jammed at a crossing for a long time before
it travels to another crossing. For the information flow in the networks,
the information packet may mass at one processor so that it cannot be
transferred to the destination in time. If the information packet is delivered
following the discrete transition rule, it will be processed without hindrance
and the congestion can not be formed. The traffic flow or the information
packet is jammed at nodes only when there is time consumed on nodes.
Thus, the continuous stochastic process with time consumed on nodes is
much more corresponding to the practical situation in our usual life.

Examples with time lag on nodes can be found in many domains [36–39].
In the queueing theory [40–42], there is time consumed for every customer
in the queue, and the waiting time follows the exponential distribution. In
information security [43,44], we can take full advantage of the time lag on
nodes to defend the hackers capturing our secret information when they sur-
vey the structure of network. Time consumed on nodes has a determinant
role in the transport properties of complex systems. Thus, all these situ-
ations make it of great importance to investigate the time lag information
flow in networks.

In this paper, a co-processing model is proposed to investigate the infor-
mation flow with time lag in communication networks. The master equation
of this diffusion process is derived, which can reflect the relationship between
the transition rate matrix and the transition probability matrix. Based on
the master equation, the stationary distribution and the mean first passage
time between any two nodes are obtained, which can measure the centrality
of the nodes in the process. When the ability of nodes is not powerful enough
to deal with the arrived packets in this diffusion process, the congestion oc-
curs so that the information packet cannot be transferred to its destination
efficiently. At the end, simulations on the co-processing model are carried
out on scale-free networks, which suggest that congestion takes place facilely
in the classical diffusion process and can be avoided by adjusting the system
locally in our model for scale-free networks.
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2. Co-processing model in communication networks

Regarding the information packet as a particle, we consider a co-
processing model in a connected network with the nodes S = {1, 2, · · · , N}:
after staying at the initial state i0 for time t0, the particle hops to a neigh-
bor node i1 at time t0 with probability ti0i1 ; it will hops to node i2 with
probability ti1i2 at time t1, with the sojourn time t1 − t0 at node i1, and so
on.

Denote P (t) = (pij(t))N×N as the probability transition matrix for this
time lag process {X(t) ∈ S, t ≥ 0}, where pij(t) is the probability that the
particle reaches node j at time t starting from node i. We consider that
pij(t) only relies on the time interval t, but not the initial time. Neglecting
the time lag at every node, the jumps can be recorded by a random walk
with discrete probability transition matrix T = (tij)N×N , where tij is the
probability of the jump from node i to node j, then this random walk is the
discrete representation of this process and T is the represent matrix.

By the knowledge of stochastic process, the transition matrix P (t) =
(pij(t))N×N of {X(t)} must satisfy the following properties,

(1) 0 ≤ pij(t) ≤ 1 , pij(0) = δij ,

(2) pij(t+ s) =
∑

k pik(t)pkj(s) ,
(3) limt→0+ pij(t) = pij(0) = δij .

For the properties above, we can derive that

lim
t→0+

pij(t)− δij
t

= rij ,

in which the limit rij does exist and rij <∞ for all i, j ∈ S.
For ∑

i 6=j

pij(t)
t

=
1− pii(t)

t
,

then ∑
i 6=j

rij = −rii
.= ri .

{rij , i 6= j} reflects the rate of the transition probability from node i to j,
and R = (rij)N×N is the transition rate matrix of the process {X(t)}.

By property (2)

pij(t+4t) =
∑
k∈S

pik(t)pkj(4t) ,
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the master equation for this time lag process {X(t)} can be derived

p′ij(t) =
∑
k∈S

pik(t) rkj . (1)

In practice, it is difficult to determine the transition matrix P (t) =
(pij(t))N×N . However, the rate matrix R = (rij)N×N for this process con-
sists of the differential coefficient of {pij(t)} at t = 0, and it is easy to
measure {pij(t)} nearby t = 0. Usually, we get R = (rij)N×N at first, and
then deduce the probability transition matrixP (t) according to equation (1).

In the following, an interpretation of ri will be given to have a good
understanding of the transition rate matrix R. Denote τ as the time the
particle firstly departs from the initial node i, then

P{τ > t|X(0) = i} = P{X(u) = i, 0 < u < t|X(0) = i}
= lim

n→∞
P{X(kt/2n) = i, k = 1, 2, · · · , 2n|X(0) = i}

= lim
n→∞

[pii(t/2n)]2
n

= lim
n→∞

exp
(

ln pii(t/2n)
t/2n

t

2n
2n
)

= exp(−rit) .

This formula illustrates that the sojourn time at node i follows the ex-
ponential distribution with parameter ri and ri, which is determined by
the handling ability of node i, also determines the transition rate that the
particle departs from node i.

Supposing that j and k are neighbors of node i, the relation between tij
and tik is

tij
tik

= lim
t→0+

pij(t)
pik(t)

=
rij
rik

and ri = −rii =
∑

i 6=j rij , then

tij =
rij
ri
.

At every jump, the particle hops to node j from node i with probability
tij = rij/ri.

Therefore, this process X(t) is that the particle hops to node j from
node i with probability tij = rij/ri in discrete time series, and the time
it stays at the node i before hopping to node j follows the exponential
distribution with parameter ri.
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2.1. The stationary distribution and mean first passage time in the process

As the probability in the stationary state reflects the centrality for nodes,
the stationary distribution is explored in the following. For the connected
network, the stationary distribution {µj = limt→∞ pij(t), ∀ j ∈ S} uniquely
exists (not relying on the initial state i [21]) and satisfies

(1) µP = µ, ∀ t ≥ 0 ,

(2)
∑
i

µi = 1 . (2)

For
lim
t→0+

pij(t)− δij
t

= rij ,

µ satisfies
µR = 0 ,

with the transition rate matrix R, and the stationary probability can be
derived.

For the probability in the stationary distribution is the probability that
we can find the particle in the steady state regime, it equals the number
of times that the particle passes the node multiplies the mean sojourn time
at the node. Then, the relation of the stationary distribution between the
process {µi}Ni=1 and the represent random walk with transition matrix T of
this process {P∞i }Ni=1 [21] is

µi ∝ P∞i ×
1
ri

=
P∞i
ri

, (3)

which reflects that the probability in the stationary state relies on not only
the times that the particle arrives at the node, but also the sojourn time
the particle stays at this node. This can be used against the attack of
the hacker, that is, we could just adjust the sojourn time at some node
to modify the stationary distribution to against the hacker capturing the
secrete information.

To reveal the impact of the time lag on the transition efficiency of the
process, we investigate the relationship between the mean first passage time
and the stationary distribution.

Denote σij as the first passage time from node i to node j and Eσij as
the mean first passage time (MFPT) from node i to node j.

For i = j, 1/Eσii is the mean times of the particle returning to node i
itself in unit time. For each arrival, the average time lag at node i is 1/ri,
thus there exists

µi =
1

riEσii
,
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that is,

E σii =
1
riµi

.

For i 6= j, the MFPT from i to j is the sum of the mean time lag at node i
and the mean MFPT from the neighbors of i to j, so

E σij =
1
ri

+
∑

k 6=i,k 6=j
tikEσkj , i 6= j . (4)

With the expression of Eσii, for each pair (i, j), Eσij can be calculated
accurately.

As an application in information security, to protect the information
against the hacker, an information process with time lag can be introduced
as follows: the particle at node i hops to its neighbors with equal probability
1/ki and the time it stays at node i follows the exponential distribution
with parameter kαi , in which ki is the degree of node i and α is a parameter
reflecting the handling ability of the nodes. The discrete representation
corresponds to the classical unbiased random walk [21] and the transition
rate matrix of this time lag process is

R =


−kα1 A12k

α−1
1 · · · A1Nk

α−1
1

A21k
α−1
2 −kα2 · · · A2Nk

α−1
2

· · · · · · · · · · · ·
AN1k

α−1
N AN2k

α−1
N · · · −kαN

 .

The stationary distribution µ and the MFPT from node i to itself Eσii are
separately

µ =

(
k1−α

1∑
i k

1−α
i

,
k1−α

2∑
i k

1−α
i

, · · · ,
k1−α
N∑
i k

1−α
i

)
,

Eσii =
1
µiri

=
∑

l k
1−α
l

ki
. (5)

For i 6= j, by equation (3)

Eσij =
1
kαi

+
∑

k 6=i,k 6=j

Aik
ki

Eσkj .

For α > 1, nodes with larger degree have weaker centrality, and vice
versa, which is reflected by the stationary distribution. To act against the
attack of hacker, we can adjust the handling ability of the node locally to
strengthen the robustness and optimize the function of the network.
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2.2. Congestion in the co-processing model

Congestion [45,46] is of utmost importance on the communication in
networks. In this section, we will discuss how the time lag determine the
emergence of congestion in the co-processing model.

Consider m particles in the co-processing model without interaction be-
tween each other and the tolerance time of each particle for node i is li. If
the waiting time of a new particle arrived at node i exceeds the tolerance
time li, the transmission of this particle is noneffective, and then many parti-
cles mass together at node i, what results in the jam at node i. Furthermore,
congestion will occur in this system when lots of nodes are in the state of
jamming.

If there is no congestion in the network, the mean occupation number of
particles at node i is mµi in the stationary state. Then the jam happens at
node i when

mµi ×
1
ri
> li , (6)

and W =
∑

iΘ(mµi − rili) is the number of jammed nodes, where

Θ(x) =
{

1 , x > 0 ,
0 , otherwise .

In the application above,

W =
∑
i

Θ

(
mk(i)1−α∑
i k(i)1−α

− kαi li
)
.

For simplicity, we take li = C for every node. When α > 1, the mean
occupation number of particles at nodes with smaller degree is larger and
the handling ability of such node is weaker, thus the jam can easily occur at
such smaller degree nodes; while for α < 0, the mean occupation number of
particles at nodes with larger degree is larger and the handling ability of such
node is weaker, thus the jam can easily occur at such larger degree nodes.
By the calculation of W , the congestion takes place when W is proportional
to the network scale N . Thus, adjusting the handling ability α of nodes can
avoid the congestion phenomenon in communication networks. Numerical
simulations in specific cases are given in the next section.

3. Numerical simulations on scale-free networks

We generate scale-free networks with N = 1 000 nodes and degree dis-
tribution p(k) ∼ k−γ , the rule of which is preferential attachment: at each
time step, a new node is added creating 3 links with other nodes which are
selected with probability proportional to their degree [47].
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3.1. Numerical simulations on stationary distribution
and mean first passage time

Consider the complete unbiased time lag process in this network, and
every node has the same handling ability. That is, the particle at node i
hops to its neighbors with equal probability 1/ki, and the time it stays at
node i follows the exponential distribution with parameter 1, which is just
the case α = 0 of the process in Sec. 2.1. Thus the transition rate matrix of
this process is

R =


−1 A12

k1
· · · A1N

k1
A21
k2

−1 · · · A2N
k2

· · · · · · · · · · · ·
AN1
kN

AN2
kN

· · · −1

 ,

and the stationary distribution and the MFPT are separately

µi =
ki∑
ki
, Eσii =

∑
i ki
ki

,

which are the same as that of the unbiased random walk on the network [21].
Therefore, the sojourn time of random walk on this network is defaulted as
unit time for every node. For i 6= j, {Eσij} satisfies

Eσij = 1 +
∑

k 6=i,k 6=j

Aik
ki
Eσkj .

0 20 40 60 80 100
0

500

1000

1500

2000

2500

the degree k of node i

th
e
 M

F
P

T
 f

ro
m

 o
n

e
 n

o
d

e
 t

o
 i
ts

e
lf

 E
σ

ii

 

 

0 20 40 60 80 100
0

0.005

0.01

0.015

the dgree k of node i

th
e
 s

ta
ti

o
n

a
ry

 d
it

ri
b

u
ti

o
n

 

 

γ=3

α=0
µ

i
∝ P

i

∞
/r

i

µ
i

Fig. 1. MFPT from node i to itself, Eσii as a function of degree ki is shown in the
main graph, and the subgraph is the theoretical result for µi which is shown in the
red line, and the regularity result for P∞i /ri is shown in the (blue) dot, changing
with the degree ki in the case of α = 0.



Information Flow with Time Lag in Communication Networks 709

The MFPT Eσii from node i to itself and the stationary distribution
µi as functions of the degree of node i are shown in Fig. 1. Then, it is ver-
ified that the proportional relationship in Eq. (2) is correct in this model.
Although every node has the same handling ability and the particle hops
to its neighbors with equal probability, the nodes with larger degree possess
higher centrality and shorter MFPT for their better connectivity, and vice
versa.

The average MFPT from other nodes to node i

〈E σji〉i =

∑
j Eσji

N

and from node i to other nodes

〈Eσij〉i =

∑
j Eσij

N

as functions of ki are shown in Fig. 2. For the better connectivity of nodes
with larger degree, the average MFPT from other nodes to these nodes is
shorter than those with smaller degree. However, it is worth noting that
the MFPT Eσji does not just rely on the degree [21] and nodes with the
same degree can have different average MFPT 〈Eσji〉i. As every node has
the same handling ability and the particle hops to every neighbor with the
same probability, the average MFPT 〈E σij〉i from one node to its neighbors
is in disorder with the degree.

As another case, the unbiased time lag process with different handling
ability for different nodes is studied in the following. That is, the particle
at node i hops to its neighbors with equal probability 1/ki and the time
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Fig. 2. The main graph is the average mean first passage time from other nodes to
node i 〈Eσji〉i and the subgraph is the average mean first passage time from node i
to other nodes 〈Eσij〉i, both changing with the degree ki in the case of α = 0.
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it stays at node i follows the exponential distribution with parameter ki,
which is just the case α = 1 of the process in Sec. 2.1. This is exactly the
situation that the large degree node has strong handling ability, which can
avoid congestion in this process. Then

R =


−k1 A12 · · · A1N

A21 −k2 · · · A2N

· · · · · · · · · · · ·
AN1 AN2 · · · −kN

 .

The stationary distribution and MFPT are

µi =
1
N
, Eσii =

N

ki
.

For i 6= j, {Eσij} satisfies

Eσij =
1
ki

+
∑

k 6=i,k 6=j

Aik
ki
Eσkj .

The MFPT Eσii from node i to itself and the stationary distribution µi as
functions of ki are shown in Fig. 3. For the handling ability is proportional to
the degree of the nodes, although particle passes through large degree nodes
with high probability for their better connectivity, the time the particle
staying at the node is inverse to the degree which counteracts the attraction
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Fig. 3. MFPT from node i to itself Eσii as a function of degree ki is shown in the
main graph, and the subgraph is the theoretical result for µi which is shown in the
continuous (red) line, and the regularity result for P∞i /ri shown in the (blue) dot,
changing with the degree ki in the case of α = 1.
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of the large degree. By the above calculation of the stationary distribution,
it is obtained that the probability to find the particle in the stationary state
is equal for every node.

The average MFPT from other nodes to node i 〈Eσji〉i and from node i
to other nodes 〈Eσij〉i as functions of the degree of node i are shown in
Fig. 4. The 〈Eσji〉i has the same regularity as that in Fig. 2, which is
shown in the main graph of Fig. 4. As the handling ability of the nodes
with larger degree is stronger and the rate that the particle departs from
them is larger, the average MFPT 〈Eσij〉i from these nodes to other nodes
are shorter than those of smaller nodes, which is shown in the subgraph of
Fig. 4. Furthermore, the average MFPT 〈Eσji〉i from other nodes to one
node in this case is shorter than those in the complete unbiased information
process with time lag in Fig. 2, for both the transition rate and the handling
ability in this case are stronger than the unbiased one.
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Fig. 4. The main graph is the average mean first passage time from other nodes to
node i 〈Eσji〉i and the subgraph is the average mean first passage time from node i
to other nodes 〈Eσij〉i , both changing with the degree ki in the case of α = 1.

3.2. Simulation results of congestion in communication networks

Consider the time lag process in this generated scale-free networks. For
the mean degree of this network is 〈k〉 ≈ 6, and the network can deal with
about N〈k〉α particles at the same time, we can takem ∈ [1, 4×104] particles
without interactions among each other in this process. The tolerance time
for every node is taken as li = C = 1 for simplicity. Take z = 107 times
of jumps for every particle, and then record the number of particles n(i) at
node i in the stationary state. According to equation (4), if n(i) > k(i)α,
the jam happens at node i.
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The number of jammed nodes as a function of the number of particles
with different parameters α = −1, 0, 1, 2, 3 is shown in Fig. 5. For every α,
this system undergoes a sharp convention from free diffusion state to conges-
tion with the increase number of particles. For α > 0, the handling ability
for every node increases along with α increasing, then the congestion occurs
only when the particle number is sufficiently large. While for α < 0, al-
most all the particles concentrate at nodes with larger degree which occupy
a smaller proportion in scale-free network, and then the congestion takes
place requiring more particles than the case α = 0. Anyway, with the par-
ticle number increasing in the system, the congestion takes place firstly in
the complete unbiased time lag process with α = 0.
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Fig. 5. The number of jammed nodes as a function of the number of particles in
this time lag information process.

The number of jammed nodes as a function of the parameter α with
different particle numbers m = 103, 104, 105, 106 is shown in Fig. 6. It is
suggested that the most easy-congestion case in this process is at α = 0,
that is every node has the same handling ability. For α < 0, more particles
concentrate on nodes with larger degree in the stationary state, while the
handling ability for these nodes is worse, then congestion takes place at
such nodes. However, nodes with larger degree occupy a smaller proportion
in scale-free network, then the number of jammed nodes decreases along
with the decreasing of α for α < 0. It can be used to control the disease
diffusion, that is, we can weaken the communication (handling ability) for
active persons (with more neighbors) so that the congestion only occurs on
the active persons and the disease cannot diffuse widely. While for α > 0,
especially for α > 1, the handling ability for every node is stronger with
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Fig. 6. The number of jammed nodes as a function of the parameter of the handling
ability.

the increase of α, and particles stay at nodes with smaller degree. However,
such nodes are in majority in scale-free networks and they can share the
handling of the particles, so the number of jammed nodes decreases along
with the increasing of α for α > 0. In summary, the most easy-congestion
case in this process for scale-free network is the case α = 0, which is just
the classical diffusion process, so we would be better to design protocols for
information transmission with α 6= 0.

By adjusting the parameter α and according to the actual demand, we
can formulate the optimal time lag process to optimize the transmission
function of the network at the lease cost.

4. Conclusion

In summary, we study the information flow with time lag in commu-
nication network, which is a dynamical process with continuous time and
discrete states. In this process, the particle hops on the nodes in discrete
time series, and it stays at the current node for some time before it hops to
the next one. In this diffusion process, the master function of this process,
stationary distribution and the mean first passage time are derived. Then,
the congestion is well studied to optimize the transmission function of the
network at the least cost by adjusting the handling ability of the nodes. In
this paper, we just consider the handling ability relying on the degree of
the nodes. In practice, the handling ability is not always a constant, and
determined by actual requirement, such as the clustering coefficient [47] and
the betweenness centrality [48], which will be proceeded in our future work.
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