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The appearance of the Big Bounce (BB) in the evolution of the Universe
is analyzed in the setting of loop quantum cosmology (LQC). Making use
of an idea of a minimum length turns classical Big Bang into BB. We
argue why the spectrum of the kinematical area operator of loop quantum
gravity cannot be used for the determination of this length. We find that
the fundamental length, at the present stage of development of LQC, is a
free parameter of this model.
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1. Introduction

Observational cosmology strongly suggests that our Universe emerged
from a state with extremely high energy densities of physical fields, called
the initial Big Bang singularity. Most of all models of the Universe obtained
within the general relativity (GR) also predict the initial singularity [1–4].
It is commonly believed that the singularity may be understood in a theory
which unifies gravity and quantum physics. Recent analyses done within the
loop quantum cosmology (LQC) concerning homogeneous isotropic universes
of the Friedmann–Robertson–Walker (FRW) type, strongly suggest that the
evolution of these universes does not suffer from the classical singularity: the
Big Bang is replaced by Big Bounce (with finite energy density of matter)
owing to strong quantum effects at the Planck scale [5–9].

The goal of this paper is the revision of the foundation of LQC concern-
ing the minimum length, µo, which is responsible for the resolution of the
cosmological singularity. We would like to attract an attention of the LQC
community to the problem of the determination of µo. It has basic meaning
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since its numerical value specifies the energy scale of the Big Bounce tran-
sition. At the present stage of development of LQC the minimum length is
a free parameter.

For simplicity of exposition we restrict ourselves to the quantization
problem of the flat FRW model with massless scalar field. This model of the
Universe unavoidably includes the initial cosmological singularity and has
been intensively studied recently within LQC.

2. Hamiltonian

The gravitational part of the classical Hamiltonian, Hg, of GR is a linear
combination of the first-class constraints, and reads [10–12]

Hg :=
∫
Σ

d3x
(
N iCi +NaCa +NC

)
, (1)

where Σ is the space-like part of space-time R × Σ , (N i, Na, N) denote
Lagrange multipliers, (Ci, Ca, C) are the Gauss, diffeomorphism and scalar
constraint functions. In our notation (a, b = 1, 2, 3) are spatial and (i, j, k =
1, 2, 3) internal SU(2) indices. The constraint functions must satisfy a spe-
cific algebra. It is known that this algebra (for constraints smeared with
test functions) is not a Lie algebra, but a Poisson algebra because it in-
cludes structure functions instead of structure constants (see, e.g. [10]).

In the case of flat FRW type universe with massless scalar field, and with
fixed local gauge and diffeomorphism freedom, the classical Hamiltonian
reduces to the scalar constraint and can be shown (see, e.g. [6]) to be

Hg = −γ−2

∫
V

d3x e−1εijkE
ajEbkF iab , (2)

where γ is the Barbero–Immirzi parameter, V ⊂ Σ is an elementary cell1,
e :=

√
|detE|, εijk is the alternating tensor, Eai is a densitised vector field,

and where F iab is the curvature of an SU(2) connection Aia.
The resolution of the singularity, obtained within LQC, is based on

rewriting the curvature F kab in terms of holonomies around loops. The cur-
vature F kab can be determined [6] by making use of the formula

F kab = −2 lim
Ar 2ij→ 0

Tr

(
h

(λ)
2ij − 1

λ2V
2/3
o

)
τk oωia

oωja , (3)

1 In the case Σ is a non-compact manifold one introduces compact submanifold V to
give precise mathematical meaning of the integrals.
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where
h

(λ)
2ij = h

(λ)
i h

(λ)
j (h(λ)

i )−1(h(λ)
j )−1 (4)

is the holonomy of the gravitational connection around the square loop 2ij

whose edges are parallel to the i- and j-directions and of coordinate length
λV

1/3
o with respect to the flat fiducial metric oqab := δij

oωia
oωja; fiducial

triad oeak and co-triad oωka satisfy oωia
oeaj = δij ; spatial part of FRW metric

is qab = a2(t) oqab; Ar 2ij denotes the area of the square; Vo =
∫
V
√
oqd3x is

the fiducial volume of V; in what follows we set Vo = 1 as its value is not
essential for our analysis.

The holonomy along straight edge of length λ in the k-direction (in the
j = 1/2 representation of SU(2)) may be found [6] to be

h
(λ)
k (c) = cos(λc/2) I + 2 sin(λc/2) τk , (5)

where τk = −iσk/2 (σk are the Pauli spin matrices). It is clear that matrix
elements of (5) can be rewritten in terms of exp(iλc/2) which we denote by
Nλ(c).

In what follows we apply the ‘old’ quantization scheme [6], despite the
fact that the ‘improved’ scheme [7] is commonly used by LQC community.
The reason is that mathematics underlying the old scheme has been pre-
sented clearly in a comprehensive paper [5]. However, our results concern
both methods.

One can show [6] that Hg may be rewritten as

Hg = lim
λ→ 0

H(λ)
g , (6)

where

H(λ)
g = − sgn(p)

2πGγ3λ3

∑
ijk

εijkTr
(
h

(λ)
i h

(λ)
j

(
h

(λ)
i

)−1(
h

(λ)
j

)−1
h

(λ)
k

{
(h(λ)
k )−1,V

})
,

(7)
and where V = |p|3/2 is the volume of the elementary cell V. The conjugate
variables c and p satisfy {c, p} = 8πGγ/3. They determine connections
Aka and density weighted triads Eak due to the relations Aka = oωka c and
Eak = oeak

√
qo p. However, c and p are not elementary variables in (7). The

elementary functions (variables) are chosen to be holonomies (described in
terms of Nµ) and fluxes (proportional to p).

The classical total Hamiltonian for FRW universe with a massless scalar
field, φ, reads

H = Hg +Hφ = 0 , (8)
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where Hg is defined by (6). The Hamiltonian of the scalar field is known
to be: Hφ = p2

φ|p|−3/2, where φ and pφ are the elementary variables satis-
fying {φ, pφ} = 1. The relation H = 0 defines the physical phase space of
considered gravitational system with constraints.

3. Quantization

In the Dirac quantization [13,14] we find a kernel of the quantum operator
Ĥ corresponding to H, i.e.

ĤΨ = 0 , (9)

(since the classical Hamiltonian is a constraint of the system), and try to
define a scalar product on the space of solutions to (9). This gives a starting
point for the determination of the physical Hilbert space Hphys.

3.1. Kinematics

The classical elementary functions satisfy the relation

{p,Nλ} = −i4πGγ
3

λNλ , (10)

where G is the Newton constant. Quantization of the algebra (10) is done
by making use of the prescription

{·, ·} −→ 1
i~

[·, ·] . (11)

The basis of the representation space is chosen to be the set of eigenvectors
of the momentum operator [5] and is defined by

p̂ |µ〉 =
4πγl2p

3
µ |µ〉 , µ ∈ R , (12)

where l2p = G~. The operator corresponding to Nλ acts as follows

N̂λ |µ〉 = |µ+ λ〉 . (13)

The quantum algebra corresponding to (10) reads

1
i~

[p̂, N̂λ] |µ〉 = −i4πGγ
3

λ N̂λ |µ〉 . (14)
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The carrier space, Fg, of the representation (14) is the space spanned by
{|µ〉, µ ∈ R} with the scalar product defined as

〈µ|µ′〉 := δµ,µ′ , (15)

where δµ,µ′ denotes the Kronecker delta.
The completion of Fg in the norm induced by (15) defines the Hilbert

space Hgkin = L2(RBohr, dµBohr), where RBohr is the Bohr compactification
of the real line and dµBohr denotes the Haar measure on it [5]. Hgkin is the
kinematical space of the gravitational degrees of freedom. The kinematical
Hilbert space of the scalar field is Hφkin = L2(R, dφ), and the operators
corresponding to the elementary variables are

(φ̂ψ)(φ) = φψ(φ) , p̂φψ = −i~ d

dφ
ψ . (16)

The kinematical Hilbert space of the gravitational field coupled to the scalar
field is defined to be Hkin = Hgkin ⊗H

φ
kin.

3.2. Dynamics

The resolution of the singularity [5–9] is mainly due to the peculiar way
of defining the quantum operator corresponding to Hg. Let us consider this
issue in more details.

Using the prescription {·, ·} → 1
i~ [·, ·] and specific factor ordering of op-

erators, one obtains from (7) a quantum operator corresponding to H(λ)
g in

the form [5]

Ĥ(λ)
g =

isgn(p)
2πl2pγ3λ3

∑
ijk

εijkTr
(
ĥ

(λ)
i ĥ

(λ)
j

(
ĥ

(λ)
i

)−1(
ĥ

(λ)
j

)−1
ĥ

(λ)
k

{
(ĥ(λ)
k )−1,V̂

})
.

(17)
One can show [5] that (17) can be rewritten as

Ĥ(λ)
g |µ〉 =

3
8πγ3λ3l2p

(
Vµ+λ − Vµ−λ

)
(|µ+ 4λ〉 − 2|µ〉+ |µ− 4λ〉) , (18)

where |µ〉 is an eigenstate of p̂ defined by (12), and where Vµ is an eigenvalue
of the volume operator corresponding to V = |p|3/2 which reads

V̂ |µ〉 =
(4πγ|µ|

3

)3/2
l3p |µ〉 =: Vµ |µ〉 . (19)

The quantum operator corresponding to Hg is defined to be [5, 6]

Ĥg := Ĥ(λ)
g |λ=µo , where 0 < µo ∈ R . (20)
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Comparing (20) with (6), and taking into account (3) we can see that the
area of the square 2ij is not shrunk to zero, as required in the definition of
the classical curvature (3), but determined at the finite value of the area.

The mathematical justification proposed in [5,6] for such regularization is
that one cannot define the local operator corresponding to the curvature F kab
because the 1-parameter group N̂λ is not weakly continuous at λ = 0 in Fg
(dense subspace of Hgkin). Thus, the limit λ → 0 of Ĥ(λ)

g does not exist. To
determine µo one proposes in [5–7] the procedure which is equivalent to the
following: We find that the area of the face of the cell V orthogonal to specific
direction is Ar = |p|. Thus the eigenvalue problem for the corresponding
kinematical operator of an area Âr := |p̂|, due to (12), reads

Âr |µ〉 =
4πγl2p

3
|µ| |µ〉 =: ar(µ) |µ〉 , µ ∈ R , (21)

where ar(µ) denotes the eigenvalue of Âr corresponding to the eigenstate |µ〉.
On the other hand, it is known that in LQG the kinematical area operator has
discrete eigenvalues [15,16] and the smallest nonzero one, called an area gap
∆, is given by ∆ = 2

√
3πγl2p. To identify µo one postulates in [6] that µo is

such that ar(µo) = ∆, which leads to µo = 3
√

3/2. It is argued [5–8] that one
cannot squeeze a surface to the zero value due to the existence in the Universe
of the minimum quantum of area. This completes the justification for the
choice of the expression defining the quantum Hamiltonian (20) offered by
LQC.

It is interesting to notice that for the model considered here (defined on
one-dimensional constant lattice) the existence of the minimum area leads
to the reduction of the non-separable space Fg to its separable subspace. It
is so because due to (13) we have

N̂µo |µ〉 = |µ+ µo〉 , (22)

which means that the action of this operator does not lead outside of the
space spanned by {|µ+ k µo〉, k ∈ Z}, where µ ∈ R is fixed.

Finally, one can show (see, e.g. [5, 6]) that the equation for quantum
dynamics, corresponding to (9), reads

B(µ)∂2
φψ(µ, φ) − C+(µ)ψ(µ+ 4µo, φ)− C−(µ)ψ(µ− 4µo, φ)

− C0(µ)ψ(µ, φ) = 0 , (23)
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where

B(µ) :=
(

2
3µo

)6 [
|µ+µo|3/4−|µ−µo|3/4

]6
, C0(µ) :=−C+(µ)−C−(µ) ,

(24)

C+(µ) :=
πG

9|µo|3
∣∣∣ |µ+3µo|3/2−|µ+µo|3/2

∣∣∣ , C−(µ) := C+(µ−4µo) . (25)

Equation (23) has been derived formally by making use of states which
belong to F := Fg ⊗ Fφ, where Fg and Fφ are dense subspaces of the
kinematical Hilbert spacesHgkin andHφkin, respectively. The space F provides
an arena for the derivation of quantum dynamics. However, the physical
states are expected to be in F?, the algebraic dual of F (see, e.g. [5, 6] and
references therein). It is known that F ⊂ Hkin ⊂ F?. Physical states are
expected to have the form 〈Ψ | :=

∑
µ ψ(µ, φ)〈µ|, where 〈µ| is the eigenbras

of p̂. One may give the structure of the Hilbert space to some subspace of F?
(constructed from solutions to (23)) by making use of the group averaging
method [17,18] and obtain this way the physical Hilbert space Hphys.

The singularity resolution refers, first of all, to the behavior of the ex-
pectation value of the matter density operator. Numerical calculations have
shown [7] that the mean value of this operator is bounded from above on
the states (vectors of the physical Hilbert space) which are semi-classical
asymptotically. It is suggested in [8] that the bounce may occur for the states
which are more general than semi-classical at late times, which demonstrates
robustness of LQC results. Quantum evolution, described by (23), is deter-
ministic across the bounce region. The Universe undergoes a bounce during
the evolution from pre-Big Bang epoch to post-Big Bang epoch. These are
main highlights of LQC (see, e.g. [19] for a complete list).

The argument φ in ψ(µ, φ) is interpreted as an evolution parameter,
µ is regarded as the physical degree of freedom. Let us examine the role
of the parameter µo in (23). First of all, its presence causes that (23) is
a difference-differential equation so its solution should be examined on a
lattice. It is clear that some special role must be played by µo = 0 as the
coefficient functions of the equation, defined by (24) and (25), are singular
there. One can verify [6] that as µo → 0 the equation (23) turns into the
Wheeler–DeWitt equation

B(µ)
∂2

∂φ2
ψ(µ, φ)−16πG

3
∂

∂µ

√
µ
∂

∂µ
ψ(µ, φ)=0 , with B(µ) :=

∣∣∣∣4πγG~
3

µ

∣∣∣∣−3/2

.

(26)
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Equation (23) is not specially sensitive to any other value of µo. Thus,
the determination of the numerical value of this parameter by making use
of the mathematical structure of (23) seems to be impossible.

4. Minimum length problem

The singularity resolution offered by LQC, in the context of flat FRW
universe, is a striking result. Let us look at the key ingredients of the
construction of LQC which are responsible for this long awaited result:

Discussing the mathematical structure of the constraint equation we have
found that µo must be a non-zero if we wish to deal with the regular (23)
instead of the singular (26). However, the numerical value of µo cannot be
determined from equation (23). It plays the role of a free parameter if it is
not specified.

The parameter µo enters the formalism due to the representation of the
curvature of the connection F kab via the holonomy around a loop (3). The
smaller the loop the better approximation we have. The size of the loop,
µo, determines the quantum operator corresponding to the modified gravi-
tational part of the Hamiltonian (20). One may determine µo by making use
of an area of the loop (used in fact as a technical tool). Thus, the spectrum
of the quantum operator corresponding to an area operator, Âr, seems to
be a suitable source of information on the possible values of µo. Section 3
shows explicitly that the construction of the quantum level is heavily based
on the kinematical ingredients of the formalism. Thus, it is natural to ex-
plore the kinematical Âr of LQC. However, its spectrum (21) is continuous
so it is useless for the determination of µo. On the other hand, the spectrum
of kinematical Âr of LQG is discrete [15, 16]. Thus, it was tempting to use
such a spectrum to fix µo postulating that the minimum quantum of area
defines the minimum area of the loop defining (20). This way µo has been
fixed.

The physical justification, however, for such procedure is doubtful be-
cause LQC is not the cosmological sector of LQG. The relationship between
LQG and LQC, at the formalisms level, has been examined recently [20]:
LQC is a quantization method inspired by LQG (a field theory with in-
finitely many degrees of freedom) used to the quantization of the simplest
models of the Universe (with finitely many degrees of freedom) with high
symmetries.

The inspiration consists mainly in applying the two ingredients of LQG:
(i) modification of F kab by loop geometry, and (ii) making use of the holono-
my-flux algebra. In other words, LQC has not been derived from LQG. The
construction of LQC has been carried out by mimicry of the construction of
LQG, but nothing more. LQG and LQC are two different quantum models
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of two different systems. Therefore, Eq. (20) includes an insertion by hand
of specific properties of the spectrum of Âr from LQG into LQC [23]. After
all, the area gap of the spectrum of Âr of LQG is not a fundamental constant
(like the speed of light, Planck’s constant, Newton’s constant) so its use in
the context of LQC has poor physical justification.

The singularity problems should be analyzed in terms of the Dirac ob-
servables and physical states [20]. In our recent papers we solve the con-
straints already at the classical level, make the identification of the Dirac
observables and find the physical phase space before the quantization pro-
cess. Our non-standard LQC is complementary to the Dirac quantization
method which underlies standard LQC. We have found that the energy den-
sity operator has a continuous bounded spectrum [21]. The volume operator
has a discrete spectrum bounded from below [22]. A quantum of the volume
is parameterized by the minimum length.

5. Conclusions

It is claimed (see, e.g. [6–8]) that the introduction of the quantum of
area at the kinematical level of LQC has sound theoretical justification. We
believe we have shown that it is an ad hoc assumption without physical
justification (see [23] for another criticism of this assumption). Thus, the
energy scale characteristic to the Big Bounce is unknown. Claiming that
the Planck scale appears naturally in LQC is still illusive, in spite of the
enthusiasm invoked by the LQC results.

An identification of the energy scale specific to the Big Bounce transition
is a fundamental problem since it is supposed to be the energy scale for the
unification of gravity with quantum physics.

The LQC calculations, done for flat FRW model with massless scalar
field, have shown that making an assumption on the existence of a mini-
mum fundamental length in quantum geometry one can impose quantum
rules onto the expression for the classical constraint (Hamiltonian) in such a
way that some solutions to the equation describing the evolution of the Uni-
verse lead to finite expectation value for the matter density at any value of
the evolution parameter. It is an interesting result which demonstrates the
powerfulness of LQC. However, further investigations are needed for finding
solution to the minimum length problem. We suggest that the solution may
come from observational cosmology. For instance, an identification of the
microscale specific to a foamy structure of space would be helpful.

We are grateful to Tomasz Pawłowski and Łukasz Szulc for helpful dis-
cussions.
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