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Two new luminosity functions of galaxies can be built starting from
three and four parameter generalized gamma distributions. In the astro-
physical conversion, the number of parameters increases by one, due to the
addition of the overall density of galaxies. A third new galaxy luminosity
function is built starting from a three parameter generalized gamma distri-
bution for the mass of galaxies once a simple nonlinear relationship between
mass and luminosity is assumed; in this case the number of parameters is
five because the overall density of galaxies and a parameter that regulates
mass and luminosity are added. The three new galaxy luminosity functions
were tested on the Sloan Digital Sky Survey (SDSS) in five different bands;
the results always produce a “better fit” than the Schechter function. The
formalism that has been developed allows to analyze the Schechter function
with a transformation of location. A test between theoretical and observed
number of galaxies as a function of redshift was done on data extracted
from a two-degree field galaxy redshift survey.

PACS numbers: 02.50.Cw, 98.62.Ve

1. Introduction

The luminosity function of galaxies Φ(L)dL (LF) is the number of galax-
ies per unit volume, Mpc3, whose luminosity is comprised between L and
L + dl, see Section 3.7 in [1] or Section 1.12 in [2]. The luminosity, L, has
physical units of Watt Hz−1 and therefore the band being considered should
always be specified. In our case, we selected the data of the Sloan Digital
Sky Survey (SDSS) which has five bands u∗ (λ = 3550 Å), g∗ (λ = 4770 Å),
r∗ (λ = 6230 Å), i∗ (λ = 7620 Å) and z∗ (λ = 9130 Å) with λ denoting the
wavelength of the CCD camera, see [3].
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The Schechter LF of galaxies, see [4], is the more widely used function

Φ(L)dL =
(
Φ∗

L∗

)(
L

L∗

)α
exp

(
− L

L∗

)
dL , (1)

where α sets the slope for low values of L, L∗ is the characteristic luminosity
and Φ∗ is the normalization. In the formula above, L∗ characterizes the break
of the LF. As an example, L ≥ 0.1L∗ defines a giant galaxy, see the text
after formula (1.18) in [5]. An astronomical form of Eq. (1) can be deduced
by introducing the distribution in absolute magnitude

Φ(M)dM = (0.4 ln 10)Φ∗100.4(α+1)(M∗−M)

× exp
(
−100.4(M∗−M)

)
dM , (2)

where M∗ is the characteristic magnitude as derived from the data.
This function has three parameters that can be found by fitting the data.

Over the years, many modifications have been made to the Schechter LF in
order to improve its fit: we report two of them. When the fit of the rich
clusters LF is not satisfactory a two-component Schechter-like function is
introduced, see [6]

Lmax > L > LDwarf : Φ(L)dL =
(
Φ∗

L∗

)(
L

L∗

)α
exp

(
− L

L∗

)
dL ,

LDwarf > L > Lmin : Φ(L)dL =
(
ΦDwarf

L∗

)(
L

LDwarf

)αDwarf

dL , (3)

where

ΦDwarf = Φ∗
(
LDwarf

L∗

)α
exp

(
−LDwarf

L∗

)
.

This two-component function defined between the maximum luminosity,
Lmax, and the minimum luminosity, Lmin, has five parameters because two
additional parameters have been added: LDwarf which represents the mag-
nitude where dwarfs first dominate over giants and αDwarf which regulates
the faint slope parameter for the dwarf population.

Another LF introduced in order to fit the case of extremely low luminos-
ity galaxies is the double Schechter function with five parameters, see [7]:

Φ(L)dL =
dL

L∗
exp(−L/L∗)

[
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(
L

L∗

)α1

+ φ∗,2

(
L
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)α2
]
, (4)
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where the parameters Φ∗ and α which characterize the Schechter function
have been doubled in φ∗,1 and φ∗,2. The strong dependence of LF on dif-
ferent environments such as voids, superclusters and supercluster cores was
analyzed by [8] with

F (L)dL ∝
(
L

L∗

)α(
1 +

(
L

L∗

)γ)(δ−α)/γ

d

(
L

L∗

)
, (5)

where α is the exponent at low luminosities (L/L∗)� 1, δ is the exponent
at high luminosities (L/L∗)� 1, γ is a parameter of transition between the
two power laws, and L∗ is the characteristic luminosity. The previous LFs
leave a series of questions unanswered or partially answered:

• What is the function of introducing a transformation of location in the
LF?
• Is it possible to model the data with just a single LF?
• Is it possible to deduce a LF for galaxies starting from the mass dis-

tribution of galaxies?
• Is it possible to improve the Schechter function by introducing a trans-

formation of location?
• Does the new LF match the observed behavior of the number of galax-

ies for a given solid angle and flux as a function of the redshift?

In Section 2, this paper explores how a generalized gamma distribution can
model two galaxy LFs. The method which allows the LF to be deduced for
galaxies starting from a mass distribution as given by a generalized gamma is
presented in Section 3. Section 4 reports the analytical and numerical results
on the Schechter function with transformation of location. In Section 5, the
redshift dependence of the Schechter function and one of the four new LFs
are compared with data from the two-degree Field Galaxy Redshift Survey
in the 2dFGRS catalogue.

2. The generalized gamma distribution

The generalized gamma distribution can be represented with three pa-
rameters, see [9,10] or four parameters, see [11]. We will explore both cases
in the following. In order to make a comparison between our LF and the
Schechter LF, we first down-loaded the data of the LF of galaxies in the five
bands of SDSS adopted in [12]; they are available at: http://cosmo.nyu.edu/
blanton/lf.html. In the previous paper, [12], the basic assumption was
to consider a Friedmann–Robertson–Walker cosmological world model with
matter density Ω0 = 0.3, vacuum pressure ΩΛ = 0.7 and Hubble constant
H0 = 100h km s−1 Mpc−1 with h = 1. The data contain the absolute
magnitude, the value of the LF for that magnitude and the error of the LF.
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The LF of galaxies as obtained from astronomical observations ranges
in magnitude from a minimum value, Mmin, to a maximum value, Mmax;
details can be found in [13] and [14]. A nonlinear fit through the Levenberg–
Marquardt method (subroutine MRQMIN in [15]) allows the determination
of the parameters, but the first derivative of the LF with respect to the
unknown parameters should be provided. The merit function χ2 can be
computed as

χ2 =
n∑
j=1

(
LFtheo − LFastr

σLFastr

)2

, (6)

where n is number of data and the two indices ‘theo’ and ‘astr’ stand for
theoretical and astronomical, respectively.

Particular attention should be paid to the number of unknown parame-
ters in the LF: three for the Schechter function (formula (2)), four for for-
mula (21), four for the Schechter function with transformation of location
(formula (30)), five as represented by formula (28) and five for formula (16).
A reduced merit function χ2

red can be computed as

χ2
red =

χ2

NF
, (7)

where NF = n−k, n is the number of data and k is the number of parameters.
The Akaike information criterion (AIC), see [16], is defined as

AIC = 2k − 2 ln(L) , (8)

where L is the likelihood function and k the number of free parameters in the
model. We assume a Gaussian distribution for the errors and the likelihood
function can be derived from the χ2 statistic L ∝ exp(−χ2

2 ) where χ2 has
been computed by Eq. (6), see [17, 18]. Now AIC becomes

AIC = 2k + χ2 . (9)

The Bayesian information criterion (BIC), see [19], is

BIC = k ln(n)− 2 ln(L) , (10)

where L is the likelihood function, k the number of free parameters in the
model and n the number of observations. The phrase “better fit” used in the
following means that the three statistical indicators : χ2, AIC and BIC are
smaller for the considered LF than for the Schechter function.
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2.1. The generalized gamma distribution with five parameters

The starting point is the probability density function (in the following
PDF) named generalized gamma that we report exactly as in [11]:

G(x; a, b, c, k) =
k
(
x−a
b

)ck−1
e−(x−a

b )k

bΓ (c)
, (11)

where Γ is the gamma function, a is the location parameter, b is the scale
parameter, c and k are two shape parameters. The number of parameters is
four and the astrophysical version of the previous PDF can be obtained by
inserting a = La, x = L and b = L∗:

Ψ(L;L∗, c, k, Ψ∗) = Ψ∗
k
(
L−La
L∗

)ck−1
e−(L−La

L∗ )k

L∗Γ (c)
, (12)

where Ψ∗ is a normalization factor which defines the overall density of galax-
ies, expressed as a number per cubic Mpc. The mathematical range of exis-
tence is La ≤ L < ∞ and the number of parameters is five because Ψ∗ has
been added. The averaged luminosity, 〈L〉, is:

〈L〉 =
L∗ Γ

(
1+ck
k

)
+ La Γ (c)

Γ (c)
, (13)

and the mode is at

L =
(
ck − 1
k

) 1
k

L∗ + La . (14)

The relationships connecting the absolute magnitude M , M∗ and Ma of a
galaxy to its luminosity are:

L

L∗�
= 100.4(M∗�−M) ,

L∗

L∗�
= 100.4(M∗�−M∗) ,

La
L∗�

= 100.4(M∗�−Ma) ,

(15)
where M∗� is the absolute magnitude of the sun in the considered band.
As an example, the SDSS bands have M∗�= 4.48 in z∗ and M∗�= 6.32
in u∗, see [20]. A more convenient form of the LF in terms of the absolute
magnitude M is:

Ψ(M)dM = Ψ∗
0.4 k ln (10)

(
100.4M ∗−0.4M − 100.4M ∗−0.4Ma

)ck−1

Γ (c)

× e−
“
100.4 M∗−0.4 M−100.4 M∗−0.4 Ma

”k

100.4M ∗−0.4M dM . (16)
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The mode when expressed in magnitude is at

M = −1.085 ln

((
ck − 1
k

) 1
k

e−0.921M ∗ + e−0.921Ma

)
. (17)

This data-oriented function contains the five parameters c, k, M∗, Ma

and Ψ∗ which can be derived from the operation of fitting observational data.
The results are reported in Table I together with the number of elements N
belonging to the sample, Mmin and Mmax of the sample, the merit function
χ2 and χ2

red, the χ
2 and χ2

red of the Schechter function as computed by us
and the χ2 of the Schechter function as computed by [12].

TABLE I

Parameters of fits to LF in SDSS Galaxies of five parameter function represented
by formula (16).

Parameter u∗ g∗ r∗ i∗ z∗

Ma −14.25 −15.55 −15.77 −16.52 −17.39
M∗ − 5 log10 h −17.22 −18.29 −20 −20.01 −20.25
Ψ∗ [h3 Mpc−3] 0.078 0.077 0.11 0.05 0.055
c 0.61 0.30 0.19 0.47 0.49
k 0.82 0.92 0.87 0.78 0.76
N 483 599 674 709 740
Mmin −20.65 −22.09 −22.94 −23.42 −23.73
Mmax −15.78 −16.32 −16.30 −17.21 −17.48
χ2 282 736 1766 1726 2136
χ2

red 0.59 1.24 2.64 2.45 2.90
AIC k = 5 292 746 1776 1736 2146
BIC k = 5 313 768 1799 1759 2169
χ2 — Schechter 330 753 2260 2282 3245
χ2

red — Schechter 0.689 1.263 3.368 3.232 4.403
χ2 — Blanton 2003 341 756 2276 2283 3262
AIC k = 3 — Schechter 336 759 2266 2288 3253
BIC k = 3 — Schechter 349 772 2279 2302 3265

The Schechter function, the new five parameter function represented by
formula (16) and the data are reported in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5,
Fig. 6, Fig. 7, Fig. 8, Fig. 9, and Fig. 10 where bands u∗, g∗, r∗, i∗ and z∗
are considered.



The Luminosity Function of Galaxies as Modeled by the Generalized . . . 735

Fig. 1. The luminosity function data of SDSS(u∗) are represented with error bars.
The continuous line fit represents our LF (16) and the dotted line represents the
Schechter function.

Fig. 2. The luminosity function data of SDSS(u∗) in the low luminosity region are
represented by the error bar. The continuous line fit represents our LF (16), the
dotted line represents the Schechter function as given by our data and the dashed
line represents the Schechter function as given by [12].
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Fig. 3. The luminosity function data of SDSS(g∗) are represented with error bars.
The continuous line fit represents our LF (16) and the dotted line represents the
Schechter function.

Fig. 4. The luminosity function data of SDSS(g∗) in the low luminosity region are
represented by the error bar. The continuous line fit represents our LF (16), the
dotted line represents the Schechter function as given by our data and the dashed
line represents the Schechter function as given by [12].
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Fig. 5. The luminosity function data of SDSS(r∗) are represented with error bars.
The continuous line fit represents our LF (16) and the dotted line represents the
Schechter function.

Fig. 6. The luminosity function data of SDSS(r∗) in the low luminosity region are
represented with error bars. The continuous line fit represents our LF (16), the
dotted line represents the Schechter function as given by our data and the dashed
line represents the Schechter function as given by [12].
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Fig. 7. The luminosity function data of SDSS(i∗) are represented with error bars.
The continuous line fit represents our LF (16) and the dotted line represents the
Schechter function.

Fig. 8. The luminosity function data of SDSS(i∗) in the low luminosity region are
represented with error bars. The continuous line fit represents our LF (16), the
dotted line represents the Schechter function as given by our data and the dashed
line represents the Schechter function as given by [12].
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Fig. 9. The luminosity function data of SDSS(z∗) are represented with error bars.
The continuous line fit represents our LF (16) and the dotted line represents the
Schechter function.

The flexibility of the generalized gamma with five parameters to fit a
sudden increase in the low luminosity region is clearly visible in Fig. 10.

Fig. 10. The luminosity function data of SDSS(z∗) in the low luminosity region are
represented with error bars. The continuous line fit represents our LF (16), the
dotted line represents the Schechter function as given by our data and the dashed
line represents the Schechter function as given by [12].
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2.2. The generalized gamma distribution with four parameters

We can start from Eq. (11), inserting a = 0, x = L and b = L∗:

Ψ(L;L∗, c, k, Ψ∗) = Ψ∗
k
(
L
L∗

)ck−1
e−( L

L∗ )
k

L∗Γ (c)
. (18)

The mathematical range of existence is 0 ≤ L < ∞ and the number of
parameters is four because a = 0 and Ψ∗ have been added. The averaged
luminosity is

〈L〉 =
L∗ Γ

(
1+ck
k

)
Γ (c)

, (19)

and the mode is at

L =
(
ck − 1
k

) 1
k

L∗ . (20)

The magnitude version of the LF is

Ψ(M)dM =
Ψ∗ 0.4 ln (10) k10−0.4 ck(M−M∗)e− 10−0.4 (M−M∗)k

Γ (c)
dM . (21)

The mode when expressed in magnitude is at

M = −
1.0857 ln

(
ck−1

k

)
k

+ M ∗ . (22)

This function contains the four parameters c, kk, M∗ and Ψ∗ and the
numerical values obtained are reported in Table II.

TABLE II

Parameters for fits to LF in SDSS Galaxies with the four parameter function rep-
resented by formula (21).

Parameter u∗ g∗ r∗ i∗ z∗

M∗ − 5 log10 h −17.34 −19.43 −20.25 −20.29 −20.76
Ψ∗[h3 Mpc−3] 0.101 0.231 0.65 0.097 0.2
c 0.47 0.08 0.02 0.247 0.10
k 0.842 1.019 0.93 0.839 0.864
χ2 283 747 2188 1866 2915
χ2

red 0.591 1.256 3.266 2.648 3.991
AIC k = 4 291 755 2196 1874 2921
BIC k = 4 307 773 2214 1893 2921
χ2 — Schechter 330 753 2260 2282 3245
χ2

red — Schechter 0.689 1.263 3.368 3.232 4.403
χ2 — Blanton 2003 341 756 2276 2283 3262
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3. The generalized gamma distribution for mass

We assume that the masses of galaxies, M, are distributed as a gener-
alized gamma. We can start from Eq. (11) inserting a = 0, x = M and
b =M∗

Ψ(M;M∗, c, k, Ψ∗) = Ψ∗
k
( M
M∗
)ck−1

e−( MM∗ )
k

M∗Γ (c)
. (23)

This is a generalized gamma distribution with a scale parameterM∗, c and k
are shape parameters. The mathematical range of existence is 0 ≤M <∞
and the number of parameters is four because Ψ∗ has been added. The
average value is

〈M〉 = Ψ∗M∗
Γ
(

1+ck
k

)
Γ (c)

. (24)

We now follow the pattern fixed in [21] where the PDF representing the
mass of galaxies was assumed to be a Kiang function, see [22]. The mass-
luminosity relationship is assumed to follow a power law having the form

M
M∗

=
(
L

L∗

) 1
d

, (25)

where 1/d is an exponent which connects the mass to luminosity. The PDF
(23 ) is therefore transformed into the following form:

Ψ(L)dL = Ψ∗
k
(
L
L∗

) ck−1
d e−( L

L∗ )
k
d ( L

L∗

) 1
d

dΓ (c)L
, (26)

The mathematical range of existence is 0 ≤ L < ∞ and the averaged
luminosity, 〈L〉, is

〈L〉 = Ψ∗
L∗ Γ

(
d+ck
k

)
Γ (c)

. (27)

The magnitude version of the previous LF is:

Ψ(M)dM = Ψ∗
0.4 ak 10−0.4

cak (−M∗+M)
d e−10−0.4

(−M∗+M)ak
d ln (10)

Γ (c) d
. (28)

The mode expressed in magnitude is at

M = M∗ − 1.0857
ln (c) d

k
. (29)

This function contains the five parameters c, k, d, M∗ and Ψ∗ and the
numerical values obtained are reported in Table III.
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TABLE III

Parameters of fits to LF in SDSS Galaxies of the five parameter function represented
by formula (28) deduced from the mass-luminosity relationship.

Parameter u∗ g∗ r∗ i∗ z∗

M∗ − 5 log10 h −17.34 −19.39 −20.18 −20.43 −20.53
Ψ∗[h3 Mpc−3] 0.101 0.19 0.33 0.12 0.11
c 0.47 0.1 0.05 0.17 0.22
k 0.855 1.029 0.93 0.88 0.824
d 1.015 1.024 1.023 1.018 1.017
χ2 283 751 2217 1896 3009
χ2

red 0.592 1.265 3.313 2.693 3.313
AIC k = 3 289 757 2223 1902 3015
BIC k = 3 314 783 2249 1929 3042
χ2 — Schechter 330 753 2260 2282 3245
χ2

red — Schechter 0.689 1.263 3.368 3.232 4.403
χ2 — Blanton 2003 341 756 2276 2283 3262

From a careful analysis of Table III, it is possible to conclude that
1.015 < d < 1.024. Because we have assumed that L ∝ Md, the non-
linear relationship between mass and luminosity is a weak effect. A weak
dependence of the parameter that regulates mass and luminosity has also
been found in [23] when the PDF which represents the mass of galaxies is
the product of two gamma variates with argument 2.

4. The Schechter function with transformation of location

The Schechter LF of galaxies once the location La is introduced is:

Φ(L)dL =
(
Φ∗

L∗

)(
(L− La)

L∗

)α
exp

(
−(L− La)

L∗

)
dL , (30)

and is characterized by four parameters.
The average luminosity, 〈L〉, is

〈L〉 = Φ∗(L∗ Γ (2 + α) + La Γ (α+ 1)) , (31)

and the mode is at
L = αL∗ + La , (32)

or
M = −1.085 ln

(
α e−0.921M ∗ + e−0.921Ma

)
. (33)
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The magnitude version of this LF is

Φ(M)dM = 0.4Φ∗
(

100.4M∗−0.4M − 100.4M∗−0.4Ma

)α
×e− 100.4 M∗−0.4 M+100.4 M∗−0.4 Ma 100.4M∗−0.4M ln (10) . (34)

This function contains the four parameters α, Ma, M∗ and Φ∗ and the
numerical values obtained are reported in Table IV.

TABLE IV

Parameters of fits to LF in SDSS Galaxies of the four parameter Schechter function
with location as represented by formula (34).

Parameter u∗ g∗ r∗ i∗ z∗

M∗ − 5 log10 h −17.92 −19.37 −20.41 −20.83 −21.15
Φ∗[h3 Mpc−3] 0.03 0.021 0.015 0.014 0.013
α −0.9 −0.84 −0.99 −1.02 −1.01
Ma [mags] −12.1 −14.87 −15.14 −12.72 −16.39
χ2 333 723 2108 2453 3133
χ2

red 0.69 1.21 3.14 3.47 4.25
AIC k = 4 341 731 2116 2451 3141
BIC k = 4 358 748 2134 2479 3159
χ2 — Schechter 330 753 2260 2282 3245
χ2

red — Schechter 0.689 1.263 3.368 3.232 4.403
χ2 — Blanton 2003 341 756 2276 2283 3262

From a careful analysis of Table IV, it is possible to conclude that in
three cases out of five analyzed, the Schechter LF with transformation of
location produces a “better fit” than the standard version.

5. The radial distribution of galaxies

Some useful formulae connected with the Schechter LF, see formula (1),
in a Euclidean, non-relativistic and homogeneous universe are reviewed; by
analogy, new formulae for the generalized gamma distribution with four
parameters, see formula (18), are derived.

5.1. Dependence of the LF on z

The radiation flux, f, is introduced

f =
L

4πr2
, (35)
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where r represents the distance of the galaxy. The joint distribution in
redshift, z, and f adopting the Schechter LF, see formula (1.104) in [24] or
formula (1.117) in [2], is:

dN

dΩdzdf
= 4π

(
cL
H0

)5

z4Φ

(
z2

z2
crit

)
, (36)

where dΩ, dz and df represent the differential of the solid angle, the redshift
and the flux, respectively. The critical value of z, zcrit, is

z2
crit =

H2
0L
∗

4πfc2L
, (37)

where cL is the velocity of light and H0 is the Hubble constant.
The number of galaxies, NS(z, fmin, fmax) comprised between a minimum

value of flux, fmin, and maximum value of flux fmax, for the Schechter LF
can be computed through the following integral:

NS(z) =

fmax∫
fmin

4π
(
cL
H0

)5

z4Φ

(
z2

z2
crit

)
df . (38)

This integral does not have an analytical solution and we must perform a
numerical integration.

The number of galaxies for the Schechter LF in z and f as given by
formula (36) has a maximum at z = zpos−max, where

zpos−max = zcrit
√
α+ 2 (39)

which can be re-expressed as

zpos−max =
√

2 + α
√

100.4M∗�−0.4M ∗H0

2
√
π
√
fcL

, (40)

where M∗� is the reference magnitude of the sun in the bandpass under
consideration. For the sake of clarity, we report the generalized gamma LF
of galaxies with four parameters (Eq. (18)), in the following LF4

Ψ(L;L∗, c, k, Ψ∗) = Ψ∗
k
(
L
L∗

)ck−1
e−( L

L∗ )
k

L∗Γ (c)
. (41)

The joint distribution in z and f of the generalized gamma LF4 of galaxies is

dN

dΩdzdf
= 4π

(
cL
H0

)5

z4Ψ

(
z2

z2
crit

)
. (42)
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The number of galaxies, NLF4(z, fmin, fmax) of the LF4 comprised between
fmin and fmax, can be computed through the following integral:

NLF4(z) =

fmax∫
fmin

4π
(
cL
H0

)5

z4Ψ

(
z2

z2
crit

)
df , (43)

and in this case again a numerical integration must be performed.
The number of galaxies of the LF4 as given by formula (42) has a max-

imum at zpos−max where

zpos−max = e1/2
ln(1+ck)−ln(k)

k zcrit , (44)

which can be re-expressed as

zpos−max =
e1/2

ln(1+c k)−ln(k)
k

√
100.4M∗�−0.4M ∗H0 k

2
√
π
√
fcL

. (45)

The formulae previously derived are now tested on the 2dFGRS catalogue
available at the web site: http://msowww.anu.edu.au/2dFGRS/. The 2dF-
GRS catalogue contains redshifts for 221,414 galaxies brighter than a mag-
nitude limit of bJmag = 19.45. The galaxies cover an area of approximately
1500 square degrees and more details can be found in [25]. In particular
we added together the file parent.ngp.txt which contains 145,652 entries for
NGP strip sources and the file parent.sgp.txt which contains 204,490 entries
for SGP strip sources. Once the heliocentric redshift had been selected, we
processed 219,107 galaxies with 0.001 ≤ z ≤ 0.3. The parameters of the
Schechter function for 2dFGRS are reported in Table V, see first line of
Table 3 in [26].

TABLE V

Parameters of the Schechter function for 2dFGRS.

Parameter 2dFGRS

M∗ − 5 log10 h [mags] (−19.79± 0.04) + 5 log h
α −1.19± 0.01
Φ∗ h3 [Mpc−3] ((1.59± 0.1)10−2)× h3

It is interesting to point out that other values for h different from 1 shift
all the absolute magnitudes by 5 log10 h and change the number densities by
a factor h3.

Figure 11 and Fig. 12 report the number of observed galaxies in the
2dFGRS catalogue for two different apparent magnitudes and the theoretical
curves as represented by formula (36) and formula (42).
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Fig. 11. The galaxies of the 2dFGRS database with 16.77 ≤ bJmag ≤ 18.40 or
4677 L∗�

Mpc2 ≤ f ≤ 21087 L∗�
Mpc2 (with bJmag representing the relative magnitude used

in object selection), are isolated in order to represent a chosen value of m and then
organized as frequency versus heliocentric redshift, (empty circles); the error bar is
given by the square root of the frequency. The maximum in the frequencies of ob-
served galaxies is at z = 0.085 whenM∗� = 5.33 and h = 1. The theoretical curve
generated by the Schechter function of luminosity (formula (36) and parameters as
in column 2dFGRS of Table V) is drawn (full line). The theoretical curve generated
by LF4, formula (42), and parameters as in column 2dFGRS of Table VI) is drawn
(dashed line); χ2= 8078 for the Schechter function and χ2= 6654 for LF4.

TABLE VI

Parameters of LF4, formula (42), based on the 2dFGRS data (triplets generated
by the author).

2dFGRS
c 0.016± 0.01
M∗ − 5 log10 h [mags] −19.15± 0.029
Ψ∗[h3 Mpc−3] 2.24± 1.42
k 0.82± 0.06

Due to the importance of the maximum as a function of z in the number
of galaxies, Fig. 13 reports the observed histograms in the 2dFGRS database
and the theoretical curves as a function of magnitude.
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Fig. 12. Galaxies in the 2dFGRS with 14.79 ≤ bJmag ≤ 15.02 or 105142 L∗�
Mpc2

≤
f ≤ 129757 L∗�

Mpc2
. The maximum in the frequencies of observed galaxies is at

z = 0.02,M∗� = 5.33, χ2 = 348 for the Schechter function (full line) and χ2 = 243
for LF4 (dashed line).

Fig. 13. Value of z at which the number of galaxies in the 2dFGRS database is
maximum as a function of the apparent magnitude bJmag (stars), theoretical curve
of the maximum for the Schechter function as represented by formula (40) (full
line) and theoretical curve of the maximum for LF4 as represented by formula (45)
(dashed line) when M∗� = 5.33 and h = 1. The dash-dot-dash horizontal line
represents the upper limit of the complete sample.
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The total number of galaxies in the 2dFGRS database is reported in
Fig. 14 as well as the theoretical curves as represented by the numerical
integration of formula (36) and formula (42).

Fig. 14. The galaxies in the 2dFGRS database with 13.44 ≤ bJmag ≤ 16.94 or
17950 L∗�

Mpc2
≤ f ≤ 493844 L∗�

Mpc2
, are organized as frequency versus heliocentric

redshift, (empty stars). The theoretical curves generated by the integral of the
Schechter function in flux (formula (38) with parameters as in Table V) (full line)
and by the integral of LF4 as represented by formula (43) with parameters as in
column 2dFGRS of Table VI) (dashed line) are drawn whenM∗� = 5.33 and h = 1.
The numerical analysis gives χ2 = 3314 for the Schechter function (full line) and
χ2 = 2246 for LF4 (dashed line).

Particular attention should be paid to the concept of limiting magnitude
and to the corresponding completeness in absolute magnitude of the consid-
ered catalogue as a function of redshift. The observable absolute magnitude
as a function of the limiting apparent magnitude, mL, is

ML = mL − 5 log10

(
cL z

H0

)
− 25 . (46)

The interval covered by the LF of galaxies, ∆M , is defined as

∆M = Mmax −Mmin , (47)

whereMmax andMmin are the maximum and minimum absolute magnitudes
of the LF for the considered catalogue. The real observable interval in
absolute magnitude, ∆ML, is
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∆ML = ML −Mmin . (48)

We can therefore introduce the range of observable absolute maximum mag-
nitude expressed in percent, ε(z), as

ε(z) =
∆ML

∆M
× 100 . (49)

This is a number that represents the completeness of the sample and can
be considered to be a version in percentage terms of the Malmquist bias for
the apparent magnitude of a limited number of samples, see [27, 28]. Fig-
ure 15 shows the behavior of the range in absolute magnitude in percent as
a function of z when the limiting magnitude of 2dFGRS is mL=19.61. From
the previous figure, it is possible to conclude that the 2dFGRS catalogue is
complete for z ≤ 0.0442.

Fig. 15. Range in percent of the observable absolute magnitude as a function of
the redshift when Mmax = −16, Mmin = −22, mL = 19.61 and h = 1.

In this section we have adopted the absolute magnitude of the sun in the
bj filterM∗� = 5.33, see [8, 29].

6. Summary

We have presented three new LFs of galaxies based on two different ver-
sions of the generalized gamma distribution. Before continuing, we should
spend some time discussing the high values of χ2 obtained in Tables I, II, III
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and IV. We quote the following phrase from web site http://cosmo.nyu.edu/
blanton/lf.html: “Thus, when comparing to theory it would be totally in-
appropriate to rely on χ2 from these errors. Such a χ2 will always be very
high even for very successful theories.” From the previous statement we can
deduce that the high values of χ2 are part of expected results. The reduced
values of χ2

red conversely give acceptable results.
From our numerical analysis we draw the following conclusions:

• The generalized gamma galaxy LF with five parameters, formula (16),
produces a “better fit” than the Schechter LF in all five bands consid-
ered, see Table I. As an example, in the u∗ band, χ2 and χ2

red are 282
and 0.59 against 330 and 0.68 for the Schechter LF.
• The generalized gamma galaxy LF with four parameters, formula (21),

produces a “better fit” than the Schechter LF in all five bands consid-
ered, see Table II. As an example, in the g∗ band, χ2 and χ2

red are
747 and 1.263 against 753 and 1.263 for the Schechter LF. Because
the number of parameters is less, χ2, AIC and BIC are higher than
in the case of the generalized gamma galaxy LF with five parameters,
see Table I.
• The LF of galaxies obtained from the generalized gamma PDF for the

mass of galaxies assuming L ∝Md, formula (28), produces values of d
that are slightly greater than one and a “better fit” than the Schechter
LF in all five bands considered, see Table III. As an example, in the
r∗ band, χ2 and χ2

red are 2217 and 3.31 against 2260 and 3.36 for the
Schechter LF.

The Schechter LF of galaxies can also be improved by incorporating a
transformation of location, formula (30), and the numerical analysis pro-
duces a “better fit” than the standard Schechter LF in three out of the five
bands analyzed, see Table IV. As an example, in the z∗ band, χ2 and χ2

red
are 3133 and 4.25 against 3245 and 4.4 for the Schechter LF.

One of the four new LFs, more precisely the generalized gamma with four
parameters, (Eq. (18)), was tested on the 2dFGRS database and the analysis
of χ2 on the histogram of observed frequencies versus redshift produces χ2 =
6654 for the new LF against χ2 = 8078 for the Schechter function.
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