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This paper analyzes the pitchfork and Hopf bifurcations of a new 3-D
four-wing quadratic autonomous system proposed by Qi et al. The cen-
ter manifold technique is used to reduce the dimensions of this system.
The pitchfork and Hopf bifurcations of the system are theoretically ana-
lyzed. The influence of system parameters on other bifurcations are also
investigated. The theoretical analysis and simulations demonstrate the rich
dynamics of the system.

PACS numbers: 05.45.–a

1. Introduction

Research on bifurcations can benefit many fields such as electricity, com-
munication, information science, medical science, etc. Up to now, many
positive research results have been achieved [1–5]. Chaotic systems, with
complex topological structures and their applications have been studied with
increasing interest in recent years. Generalizing Chua’s circuit [6] having
multi-scroll attractors and generalizing the Lorenz system [7] having double-
wing attractors are two examples for this research.
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The generation and analysis of four-wing chaotic attractors have been
attracting more and more attention. Qi et al. found that by adding a
quadratic term to a 4-dimensional (4-D) system, the number of equilibrium
classification can be increased from 3 to 5, and four-wing attractors can be
generated [8–10]. More recently, Qi et al. proposed a new 3-D quadratic
autonomous system [11], generating a four-wing chaotic attractor with very
complicated topological structures over a large range of parameters. The
disordered dynamics has been demonstrated by the large positive Lyapunov
exponent and the extremely broad frequency bandwidth. However, there
is no theoretical analysis about the route to chaos through period-doubling
bifurcations, such as the pitchfork and Hopf bifurcations.

The bifurcation analyze for the generalized Lorenz systems with double
wings and the generalized Chua systems have been extensively investigated
[12]. It is very significant to study pitchfork and Hopf bifurcations of this
new 3-D four-wing chaotic attractor to investigate more complex properties.
In this paper we discuss the local bifurcations for the Qi 3-D four-wing
system. The conditions under which pitchfork and Hopf bifurcations exist
are developed in detail by using the center manifold theorem and bifurcation
theory. Numerical simulations and mathematical analysis exhibit the rich
dynamical characteristics of the system.

2. Pitchfork bifurcation at the origin

The Qi 3-D four-wing system [11] is described as

ẋ = a(y − x) + eyz ,

ẏ = cx+ +dy − xz ,
ż = −bz + xy , (1)

where a, b, d are all real positive constant parameters and c, e are real
constant parameters.

The Jacobian matrix system (1), evaluated at (x∗, y∗, z∗) is

J =

 −a a+ ez∗ ey∗

c− z∗ d − x∗
y∗ x∗ − b

 . (2)

When c > −d, the system has five equilibria, when c < −d, the system
has three equilibria. The equilibrium S0 = [0, 0, 0] of system (1) undergoes
a pitchfork bifurcation on the hyper-plane where parameters c = −d. The
characteristic equation at S0 is

f(λ) = (λ+ b)
(
λ2 + (a− d)λ− (ad+ ac)

)
. (3)

It is obvious that −b is one of the roots of (3), and the other two roots do not
always have negative real parts according to the Routh–Hurwitz condition.
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2.1. Analysis on the pitchfork bifurcations

From Eq. (3) with c = −d and d < a, we have λ1 = 0, λ2 = d − a < 0,
λ2 = −b < 0 and the corresponding eigenvectors

v1 = [1 1 0]T , v2 = [a d 0]T , v3 = [0 0 1]T . (4)

According to the center manifold theorem [13], let parameter c be the lo-
cal bifurcation parameter at −d, the system (1) could generate pitchfork
bifurcation when λ1 = 0 and λ2, λ3 < 0. In the following its existence and
condition are investigated.

In the domain of c = −d, and d < a, let c = −d + ξ, with ξ sufficiently
small. Using the Taylor expansion, we then have

λ1 =
d− a

2
+

1
2

√
a2 + 2ad+ d2 + 4a(−d+ ξ) =

aξ

(a− d)
+ o

(
ξ2
)
. (5)

By utilizing the eigenvectors in Eq. (4) as the basis of new coordinates
(u, v, w)T , system (1) becomes u̇

v̇
ẇ

 =

 0 0 0
0 (d− a) 0

0 0 − b

 u
v
w

+

 g1
g2
g3

 , (6)

where

g1 =
1

d− a
(
(de+ a)uw +

(
d2e+ a2

)
vw
)
,

g2 = − 1
d− a

((1 + e)uw + (a+ ed)vw) ,

g3 = u2 + (a+ d)uv + adv2 .

Because λ1 = 0, λ2, λ3 < 0, there exists a center manifold which is tangent
to the u axis. The center manifold is expressed as

W c(S0) =
{

(u, v, w) ∈ R3|v = h1(u) , w = h2(u) ,

|u| < δ, hi(0) = 0 , Dhi(0) = 0 , i = 1, 2
}
. (7)

For δ sufficiently small, the center manifold W c(S0) can be found. Since
hi(0) = 0, Dhi(0) = 0, i = 1, 2, h1(u) and h2(u) can be expressed in these
forms

v = h1(u) = a1u
2 + b1u

3 + c1u
4 + · · · ,

w = h2(u) = a2u
2 + b2u

3 + c2u
4 + · · · . (8)
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Substituting (8) into (6) and comparing the coefficients of u2, u3, u4, we
have

a1 = 0 , b1 =
2

(d− a)2b
, c1 = 0 ,

a2 =
1
b
, b2 = 0 , c2 =

2
(
a2 + ade− d2e

)
+ ab− ad

(d− a)2e3
. (9)

Thus the following center manifold equations are obtained

v = h1(u) =
2

(d− a)2b
u3 + o

(
u5
)
,

w = h2(u) =
1
b
u2 +

2
(
a2 + ade− d2e

)
+ ab− ad

(d− a)2b3
u4 + o

(
u5
)
. (10)

Finally, substituting (10) into (6), an 1-dimensional (1-D) reduced vector
field

u̇ = λ1u+
1− a

(a+ 1)b
u3 + o

(
u5
)

=
aξ

a− d
u+

de+ a

(d− a)b
u3 + o

(
u5
)
,

ξ̇ = 0 , (11)

is obtained. Eq. (11) can be used to investigate the bifurcation of system (1).
By letting u̇ = f(u, ξ) = 0, and ignoring the term o(u5) in Eq. (11), we

have

∂f

∂ξ
(0, 0) = 0 ,

∂2f

∂u2
(0, 0) = 0 ,

∂2f

∂u∂ξ
(0, 0) =

a

a− d
6= 0 ,

∂3f

∂u3
(0, 0) =

6(de+ a)
(d− a)b

6= 0 . (12)

According to the theorem [13], the equilibrium point (u, ξ) = (0, 0) under-
goes a pitchfork bifurcation at u = 0. Furthermore, let

aξ

a− d
u+

de+ a

(d− a)b
u3 = 0 , (13)

leading to u1 = 0, u2,3 = ±
√

abξ
de+a .

Hence, about the equilibria of Eq. (11), we have

(1) when ξ < 0, i.e. c < −d, the reduced 1-D system Eq. (11) has only
one equilibrium at origin u1 = 0 because u2,3 are a pair of imaginary
numbers;
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(2) when ξ > 0, i.e. c > −d it has three equilibria at u1 = 0, u2,3 =

±
√

abξ
de+a , respectively. Furthermore, we have

∂f(ξ, u)
∂u

|u=u1 =
aξ

a− d

{
> 0 , ξ > 0 ;
< 0 , ξ < 0 . (14)

∂f(ξ, u)
∂u

|u=u2,3 =
−2aξ
a− d

< 0 , ξ > 0 . (15)

Therefore, when ξ < 0, the only equilibrium u1 of system (11) is a sink. At
ξ = 0, i.e. c = −d, system (11) generates a pitchfork bifurcation and the
equilibria to increase to three. When ξ > 0, the equilibrium u1 becomes
a source, and another two equilibria u2,3 are sinks. From Eq. (11), it is
seen that the range of ξ changes in accordance with a change in system
parameters.

The following theorem for the original system (1) is therefore obtained:
Theorem 1: Under condition d < a and ξ sufficiently small, on the

hyper-plane c = −d, system (1) undergoes a pitchfork bifurcation at origin
S0 = [0, 0, 0]. For c = −d+ ξ and ξ < 0, there are three equilibria and S0 is
a sink. For c = −d+ ξ and ξ > 0, two new equilibria emerge and are sinks
while S0 becomes a source.

2.2. Verification of pitchfork bifurcations

In this section, we present some numerical simulations to verify the math-
ematical analysis. The stability of equilibrium points are studied near the
pitchfork bifurcation point.

Let a = 16, b = 43, d = 10, e = 4, the equilibria and stabilities of
(11) are shown in Fig. 1 (a), where the arrows represent the flow direction.
When ξ < 0, the reduced system only has one sink u1. At ξ = 0, the system
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Fig. 1. Pitchfork bifurcation diagram (a) near ξ = 0 of system (11); (b) near
c = −d = −10 of system (1).
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undergoes a pitchfork bifurcation and the equilibria increase from one to
three. When ξ > 0, the equilibrium u1 becomes a source, and another
two equilibria u2,3 are sinks. The relationship between system (1) and its
reduced center manifold system (11) can be demonstrated in Fig. 1 (a) and
Fig. 1 (b). In Fig. 1 (b), parameter d = 10 is fixed, and c = −d+ ξ changes
with ξ increasing. As c < −10, there is only one sink at the origin. As
c > −10, S0 becomes a source equilibrium, and another new two equilibria
S3, S4 are sinks. To demonstrate the bifurcation evolution more clearly,
three equilibria in 3-D are shown in Fig. 2 where equilibria S1 and S2 are
omitted. The dotted parabola is composed of the new two stable equilibria
S3, S4. The equilibria change with an increasing ξ as shown by the arrows.
When ξ ≤ 0, the origin is a sink which can be seen from the system orbit
convergence. In the range ξ ∈ (0, 2], the origin repels the orbits starting
around it, so the orbits move away from the origin but are attracted into
the upper sink S3 or lower sink S4 in terms of initial domains as shown in
Fig. 2 where the two orbits converge to the two equilibria of the dotted
parabola. The simulation verified Theorem 1.
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Fig. 2. Pitchfork bifurcation diagram of system (11).

When d is fixed, we analyzed the pitchfork bifurcation above. In fact,
the 3-D four-wing system has more complex pitchfork bifurcation on the
hyper-plane of c = −d. Taking d ∈ [0, 10], the 3-D pitchfork bifurcation
surface generated from Eq. (13), is shown in Fig. 3, which includes the
special case at d = 10 in Fig. 1 (a). The number of surfaces change from
one for c < −d to three for c > −d. The blue surfaces are all sinks and
the red one all sources. It can be seen that the pitchfork bifurcation is not
parabola, but a saddle surface. The bifurcation line is determined by c = −d
and u = 0.
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Fig. 3. Pitchfork bifurcation diagram of system (11).

3. Hopf bifurcation of S0

3.1. Analysis of Hopf bifurcation

In this section, we deal with another kind of bifurcation at the origin
S0 = [0, 0, 0] of system (1) using an analytical method. From Eq. (3), we
have the three eigenvalues

λ1,2 =
(d− a±

√
a2 + 2ad+ d2 + 4ac)

2
, λ3 = −d , (16)

at the origin. The existence of Hopf bifurcation at a equilibrium is subject
to the three following conditions [13]:

(1) There is a pair of imaginary eigenvalues with the rest located on the
left half part of s-plane.

(2) Index number Λ 6= 0.

(3) ρ1 = dα(d)
dd |d=a 6= 0, where α(d) denotes the real part of λ1,2, d is

bifurcation parameter, which means the root loci λ1,2 must be across
the imaginary axis.

Suppose the characteristic equation (3) has pure imaginary roots λ1,2 =
±iω (ω > 0). It is easy to show that when d = d0 = a the Jacobian
matrix of system (1) has a pair of imaginary eigenvalues and one negative
real eigenvalue, i.e.

λ1,2 = ±iω0 ,
(
ω0 = ω(d0) =

√
− (a2 + ac) , (a2 + ac) < 0

)
, λ3 = −b ,

(17)
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with the corresponding eigenvectors

v1 =
[
−(−wi+ a)

c
, 1, 0

]T
,

v2 =
[
−(wi+ a)

c
, 1, 0

]T
,

v3 = [0, 0, 1] . (18)

By utilizing the real generalized eigenvectors as the basis of new coordinates,
system (1) becomes ẋ1

ẏ1

ż1

 =

 0 − ω 0
ω 0 0

0 0 − b

 x1

y1

z1

+

 f1

f2

f3

 , (19)

where

f1 =
1
c
(wy1 + dx1)z1 ,

f2 = −c
2e+ d2

cw
x1z1 −

d

c
y1z1 ,

f3 = −cdw2x2
1 − cw3x1y1 .

According to the center manifold theorem, there exists a center manifold for
Eq. (19), which could be represented locally by

W c(S1) = (x1, y1, z1) ∈ R3|z1 = h(x1, y1) ,
|x1, y1| < δ , h(0, 0) = 0 , Dh(0, 0) = 0 , (20)

where δ is sufficiently small. We assume that

z1 =h(x1, y1)=d1x
2
1 + d2x1y1 + d3y

2
1 + d4x

3
1 + d5x

2
1y1 + d6x1y

2
1 + d7y

3
1 + · · · .

(21)
The center manifold can be approximately computed by substituting (21)
into (19). Comparing the coefficients of the first equation and second equa-
tion of (19), we obtain

d1 =
(bc− 2cd)ω4 − cdb2ω2

b (b2 + 4w2)
, d2 =

−(bc+ 2cd)w3

b2 + 4w2
,

d3 =
−(bc+ 2cd)w4

b (b2 + 4w2)
, d4 = d5 = d6 = d7 = 0 . (22)
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Therefore, the 3-D vector field is reduced to the following 2-dimensional
(2-D) center manifold[

ẋ1

ẏ1

]
=
[

0 − ω0

ω0 0

] [
x1

y1

]
+
[
f1(x1, y1)
f2(x1, y1)

]
, (23)

where

f1(x1, y1) = f1(x1, y1, h(x1, y1)) ,
f2(x1, y1) = f2(x1, y1, h(x1, y1)) . (24)

Now we calculate index number Λ by the following formula:

Λ1 =
1
16

[
f1
x1x1x1

+ f1
x1y1y1 + f2

x1x1y1 + f2
y1y1y1

]
+

1
16ω0

[
f1
x1y1

(
f1
x1x1

+ f1
y1y1

)
−f2

x1y1

(
f2
x1x1

+ f2
y1y1

)
− f1

x1x1
f2
x1x1

+ f1
y1y1f

2
y1y1

]
=

1
16

(
ω2 − c2e− d2

cω

)
d2 . (25)

To meet the condition of index number Λ 6= 0, we have

ω2 − c2e− d2 6= 0 . (26)

From Eqs. (17) and (26), we obtain the conditions for the Hopf bifurcation
as follows:

d = a, a < −c, ω2 − c2e− d2 6= 0 . (27)

From Eq. (16), we have

ρ1 =
dα(d)
dd
|d=a =

1
2
. (28)

So under condition (27), a Hopf bifurcation exists at the origin.
Theorem 2: If the parameters of system (1) meet condition (27), system

(1) undergoes a Poincare–Anddronov–Hopf bifurcation (Hopf bifurcation) at
the origin S0 = [0, 0, 0]. A transition from sink to periodic motion occurs.
Moreover, since ρ1 = 1

2 > 0, the periodic solution emerging after d > a, is
stable if Λ < 0, and is unstable if Λ > 0.
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3.2. Simulation of Hopf bifurcation

When a = 16, b = 43, d = 16, e = −1, c = −18, we have Λ = −7.5873
from Eq. (25). According to Theorem 2, a stable periodic orbit emerges from
zero equilibrium with d > a in the neighborhood d = a. Taking [0.5, 0.5, 0.5]
around S0 as an initial point, when d = 15.9 < a, S0 is sink, as shown in
Fig. 4 (a). But when d = 16.1 > a, S0 becomes a stable periodic orbit,
as shown in Fig. 4 (b). In the meantime, the zero equilibrium is a source.
So we can easily see the transition from the stationary state to the periodic
state at the equilibrium point with d changing.
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Fig. 4. Hopf bifurcation of system (1) according to theorem 2 (a) d = 15.9 < a,
the zero equilibrium is a sink, (b) d = 16.1 > a, the system orbit is attracted to a
stable period orbit in the mean time, the zero equilibrium is a source.

4. Bifurcation analysis related to changes in system parameters

In this section, we investigate how the dynamics of the origin changes
with a change of the system parameters. From the characteristic polynomial
(3), the polynomial can be written as

λ3 + (a+ b− d)λ2 + (ab− ad− ac− bd)λ− b(ad+ ac) = 0 . (29)

To get the marginal stability, the Routh–Hurwits criterion is used, we have∣∣∣∣ ab− ad− ac− bd − b(ad+ ac)
1 a+ b− d

∣∣∣∣ = 0 . (30)

With condition (29), the Hopf number on the bifurcation line [12] is given by

θ =
c0
c2

=
b(ad+ ac)
a+ b− d

. (31)

If θ is given, we can distinguish among the following four different situations:
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(1) if θ is real and < 0, the Hopf bifurcation will occur,

(2) if θ is real and > 0, the real Hopf bifurcation will occur,

(3) if θ is undetermined, there is more complex situations (e.g. double
Hopf),

(4) if θ = 0 the Takens–Boganov point exists.

When a−d = 0 is satisfied and θ < 0, the trial steady state undergoes a Hopf
bifurcation. For example, when a = 16, b = 43, d = 16, e = −1, c = −18,
we have a− d = 0 and θ = −32, which verifies the existence of Hopf bifur-
cation in Sec. 4. If a− d 6= 0 is not satisfied, let ac+ ad− ab+ bd− b2 = 0
in (30). By submitting this condition into (31) and hence θ = b2, so
ca+da−ab+ bd− b2 = 0 and θ < 0 cannot be satisfied simultaneously. The
Hopf bifurcation can therefore occur only under the condition a−d = 0 and
θ < 0.

When a = 16, b = 43, c = −16, d = 16, e = 4, then θ = 0 and λ1,2 = 0,
the trial steady state is a Takens–Boganov (TB) point which is a special of
pitchfork bifurcation case. The TB bifurcation indicates the presence of a
branch of homoclinic bifurcation.

From (31), when c > −d and a + b > d, then θ > 0 and real. The
origin undergoes a real Hopf bifurcation, a situation in which two purely
real, symmetric eigenvalues are present. The real Hopf situation surface of
ac+ad−ab+bd−b2 = 0 plays an important role in formation of the chaotic
region and the system in which homoclinic bifurcation exists.

5. Conclusion

In this paper, the pitchfork and Hopf bifurcations of the Qi 3-D four-wing
system have been investigated. We have analyzed some basic properties of
the system. The stability of fixed points when pitchfork bifurcations oc-
cur have been rigorously analyzed from a theoretical point of view. The
bifurcation of the period cycle emerging from the zero equilibrium as can
be seen from the Hopf bifurcation analysis. Finally, the influence of system
parameters on other bifurcations have also been investigated. Using numer-
ical mathematical analysis and simulations, we detected the coexistence of
a stable limit cycle and a chaotic attractor which verified rich dynamics of
the Qi 3-D four-wing system.
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