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We present in details a numerical approach for solving supersymmetric
quantum mechanical systems with a gauge symmetry valid in all fermionic
sectors. The method uses a recursive algorithm to calculate matrix el-
ements of any gauge invariant operator in the Fock basis, in particular
of the Hamiltonian operator, and can be used for any gauge group. We
describe its application to a supersymmetric anharmonic oscillator model
with discrete spectrum.
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1. Motivations

For several years a revival of interest in Supersymmetric Yang–Mills
Quantum Mechanics (SYMQM) can be observed. These supersymmetric
quantum mechanical systems can be obtained, most commonly, by a dimen-
sional reduction of supersymmetric, D = d + 1 dimensional, N = 1 Yang–
Mills quantum field theories to one point in space. Such procedure reduces
the local gauge symmetry of the initial field theory to a global symmetry
of the reduced quantum mechanical system. The physical Hilbert space of
SYMQM is composed of states invariant under this global symmetry. As
well all pertinent operators must be symmetry singlets. These constraints,
being the remnants of the Gauss law, make the analytic construction of
solutions nontrivial.

The growing interest in these systems have several sources. On one hand,
it is due to their conjectured relation with a particular limit of M-theory [1],
on the other hand, to the regularized dynamics of relativistic quantum mem-
branes and supermembranes which they describe [2]. Moreover, their bosonic
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sector can be investigated as a zero-volume limit of D = 4, Yang–Mills quan-
tum field theory [3–5], providing results which can be compared with lattice
calculations. Besides all this, the physically interesting features of SYMQM
can be studied on their own. For these reasons much effort has been devoted
to the evaluation of spectra of SYMQM.

Among the variety of approaches, many numerical methods have been
adapted to investigate supersymmetric Yang–Mills quantum mechanics and
recently provided new results. Some of them use path integral picture of
quantum mechanics and Monte Carlo integration [6, 7], other the Hamilto-
nian formulation of quantum mechanics and the Fock space methods [8–10].
Particularly, basics of the algorithm presented in this paper were already
described in [11,12]. Our approach exploits the Fock space formulation, and
therefore provides a nonperturbative way to calculate the eigenenergies and
eigenstates. It was already applied to many systems uncovering interest-
ing physics [13]. Although early attempts based on this principle proved
to be very helpful in obtaining qualitative results, their potential was lim-
ited due to the rapid growth of the Fock basis. Comparing to them, the
recursive algorithm which we present in this article, not only enables one to
obtain numerical results up to very high precision, and thus, permits more
quantitative considerations, but also makes the calculations in fermionic sec-
tors possible. The main motivation for it comes from the study of D = 2,
SYMQM. However, the method is much more general and provides a tool for
evaluation of matrix elements of any invariant operator for any gauge group
and in any dimension. Due to these multiple possibilities of extensions, this
paper is the first of a series of articles presenting the results of studies of the
SYMQM systems obtained with our numerical approach. Being the intro-
ductory paper, it contains, apart of the detailed discussion of the recursive
algorithm itself, the summary of the whole framework which will be needed
for the future work. Hence, in the following section we start with an intro-
duction of the basic notions of SYMQM. Next, we construct the Fock space,
which is necessary for the numerical calculations, and discuss some of its
properties. The main part of the paper, the description of the algorithm, is
divided into several sections. First of all, the calculation of the matrix of the
scalar products is presented. Then, the orthonormalization procedure and
the automatic evaluation of commutators and anticommutators is described.
Only at that point the formula used for calculation of matrix elements of
any operator can be clearly introduced. Eventually, the full recursive rela-
tions will be discussed. We finish by presenting a simple application of our
method to a supersymmetric model with discrete spectrum. Conclusions and
an outlook of future research directions will be provided in the last section.
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2. The framework

In this section we describe several basic concepts constituting our frame-
work. We start by introducing quantum mechanics in the cut Fock basis.
Then, we define the supersymmetric Yang–Mills quantum mechanics and
derive a particular Hamiltonian which is studied numerically as an illustra-
tion of the approach at the end of this article. In the remaining subsections
we discuss the construction of the basis of SYMQM and its properties.

2.1. Quantum mechanics in a cut Fock basis

Quantum systems, which are described by a Hamiltonian operator ex-
pressed in terms of position and momentum operators, can be analyzed
numerically in an eigenbasis of occupation number operators — a Fock ba-
sis [8]. Any occupation number operator can be written as a†a, where a†
and a are bosonic creation and annihilation operators respectively, fulfilling
the well-known commutation relations

[ap, aq] =
[
a†p, a

†
q

]
= 0 ,

[
ap, a

†
q

]
= δpq . (1)

p and q in (1) are indices which label the bosonic degrees of freedom. In the
case of supersymmetric system we introduce fermionic creation and annihi-
lation operators, f and f † respecting the anticommutation relations

{fp, fq} =
{
f †p , f

†
q

}
= 0 ,

{
fp, f

†
q

}
= δpq , (2)

where again p and q are indices which describe the fermionic degrees of
freedom. Obviously, we also have

[fp, aq] =
[
f †p , aq

]
= 0 ,

[
fp, a

†
q

]
=
[
f †p , a

†
q

]
= 0 . (3)

The momentum and position operators are expressed by creation and anni-
hilation operators in the usual way

xq =
1√
2

(
aq + a†q

)
, pq =

1
i
√

2

(
aq − a†q

)
, (4)

enabling to express the Hamiltonian operator in terms of bosonic and fer-
mionic creation and annihilation operators only.

The construction of the basis starts with the definition of the Fock
vacuum |0〉, as the state fulfilling the conditions

aq|0〉 = 0 , fq|0〉 = 0 , ∀q . (5)

Any other basis state can be obtained from |0〉 by a successful action of
creation operators.
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Eventually, the action of the Hamiltonian operator, which is now an
operator function of (1) and (2), is straightforward in such basis. There
is no conceptual difficulties in evaluation of its matrix elements, however
such calculations may turn to be computationally demanding. The recursive
algorithm described in this paper may be a solution to this problem. Once
the Hamiltonian matrix is obtained, its eigenvalues correspond simply to the
eigenenergies of the quantum system, and its eigenvectors to the eigenstates.

The numerical analysis requires one last step, namely an introduction
of a cut-off Ncut on the countably infinite Fock basis, since it is impossible
to deal with infinite matrices on a computer. There are many ways to
introduce such a cut-off depending on the symmetries of the system being
investigated. Finally, we have to perform calculations with several increasing
Ncut and extract the physical results from the limit of infinite cut-off. The
properties of such a procedure were analyzed in [8, 14–16].

2.2. Supersymmetric Yang–Mills quantum mechanics

The recursive algorithm will be described in the context of a relatively
simple, D = d+ 1 = 2 supersymmetric Yang–Mills quantum mechanics. In
this way we will be able to focus our attention directly on the main fea-
tures of the algorithm. However, it can be used for many different systems
and it is conceptually straightforward to generalize it to the physically more
interesting systems like D = 4 quantum mechanics [9, 12]. In order to ob-
tain the particular Hamiltonian which will be studied in the last section of
this article, we will now derive the general Hamiltonian of D = 2, SYMQM.
To this end we extend the construction of supersymmetric quantum mechan-
ics [17] via the generalized creation and annihilation operators. We define
the latter as

A = 1/
√

2
(
− ip+W

)
, (6)

A† = 1/
√

2
(
ip+W

)
, (7)

where the superpotentialW = W (x) is a function of the position operator x.
The supercharges are obtained from A and A† as Q = Af and Q† = A†f †.
With the idea of SYMQM in mind, a simple generalization is to include a
global SU(N) symmetry. Therefore, we postulate the supercharges to be
given by1

Q =
1√
2

N2−1∑
a=1

(
− ipa +Wa

)
fa , (8)

1 Private communication by J. Wosiek.
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Q† =
1√
2

N2−1∑
a=1

(
ipa +Wa

)
f †a , (9)

where a is a color index of the adjoint representation of the SU(N) group,
a = 1, . . . , N2 − 1, fa, f

†
a are fermionic operators. Our system contains

now N2− 1 bosonic degrees of freedom, described by xa and pa, and N2− 1
fermionic degrees of freedom, described by f †a and fa. The reduced Gauss law
restricts the physical Hilbert space to only those states which are invariant
under the SU(N) group. In order to facilitate the construction of such
singlets it is useful to introduce a matrix notation. Thanks to the latter all
singlets can be written in terms of traces [19]. Therefore, we define

xi,j =
N2−1∑
a=1

xaT
a
i,j , pi,j =

N2−1∑
a=1

paT
a
i,j ,

f †i,j =
N2−1∑
a=1

f †aT
a
i,j , fi,j =

N2−1∑
a=1

faT
a
i,j ,

where T ai,j are the generators of the SU(N) group in the fundamental rep-
resentation, i, j = 1, . . . , N . Hence, all operators become operator valued
matrices. We also introduce a simplified notation for a trace of any matrix,
namely, Tr(O) ≡ (O). However, we will use this notation only when many
traces occur and no confusion is induced.

The Hamiltonian of such a system is given by the anticommutator of the
supercharges, Eqs. (8) and (9), and its general form reads2

H =
{
Q†, Q

}
=

1
2

(papa +WaWa) +
1
4
(
∂aWb + ∂bWa

) [
f †a , fb

]
. (10)

In the simplest case, we choose Wa = xa and obtain a set of N2 − 1 super-
symmetric harmonic oscillators. For a slightly more complicated case, let us
consider

Wa =
g

2
dabcxbxc , (11)

where g is the coupling constant and dabc is the totally symmetric tensor of
the SU(N) group. The Hamiltonian Eq. (10) reduces to,

H =
1
2

(
papa +

g2

4
dabedecdxaxbxcxd

)
+
g

2
dabcxa

[
f †b , fc

]
. (12)

2 We adopt the notation when a repeated index is assumed to be summed over.
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One of the interesting features of this model is a nontrivial bosonic potential
of fourth order which for the SU(3) group is simply

dabedecdxaxbxcxd =
1
3

(
8∑

a=1

(xa)2
)2

. (13)

Therefore the system of Eq. (12) is expected to have a discrete spectrum of
bound states. In order to rewrite this Hamiltonian in terms of traces we use
the following identities valid for any SU(N) group,

1
2 papa = Tr p2 ,

1
8 xaxbxcxd dabedecd = Tr x4 − 1

N

(
Tr x2

)2
,

1
2 xaf

†
b fc dabc = Tr

(
xf †f

)
− Tr

(
xff †

)
,

and eventually obtain

H = Tr p2 + g2
(
Tr x4 − 1

N

(
Tr x2

)2 )+ 2gTr
(
x
[
f †, f

])
. (14)

We suspend the detailed discussion of this Hamiltonian to Section 4 where
the numerical results obtained with the recursive algorithm will be presented
together with some analytic calculations. In the following subsection we will
describe the construction of the Fock basis for SYMQM and some of its
properties.

2.3. Elementary bricks and Fock basis of the SU(N) SYMQM

The Fock states are eigenstates of some occupation number operators. In
the case of SYMQM models we consider gauge-invariant occupation number
operators,

Tr a†a =
N2−1∑
q=1

a†qaq , (15)

Tr f †f =
N2−1∑
q=1

f †q fq . (16)

Most of the Hamiltonians that we have considered so far conserve the fermio-
nic occupation number. Therefore, it is physically motivated to construct
the Fock basis independently in each subspace of the physical Hilbert space
with a definite fermionic occupation number. Moreover, states containing
different total number of quanta are orthogonal, so we can further divide
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the fermionic sectors into subspaces with given number of bosonic quanta.
However, usually the Hamiltonian does not conserve the bosonic occupation
number and thus mixes different bosonic subspaces. We start the construc-
tion of the Fock basis in the purely bosonic situation, and then turn to the
fermionic sectors.

2.3.1. Bosonic elementary bricks

A general eigenstate of the occupation number operator, having nB
quanta, can be written as [18]

|nB〉 =
∑

i1,...,inB

Ti1,i2,...,inB
a†i1a

†
i2
. . . a†inB

|0〉 , (17)

where T is a group invariant tensor. It can be shown [19] that any such
invariant tensor can be expressed as linear combination of products of trace
tensors. The latter are just traces of products of T ai,j matrices, of which the
simplest ones are Tr T aT b = 1

2δab and Tr T aT bT c = 1
4dabc+

i
4fabc. Therefore,

in matrix notation a state |nB〉 can be rewritten as

|nB〉 =
∑{PN

j=2 jkj=nB

} γk2,...,knB
(a†2)k2(a†3)k3 . . . (a†nB )knB |0〉 , (18)

where γk2, ... , knB
are arbitrary coefficients and the sum is over all such com-

binations of exponents kj that,
∑nB

j=2 jkj = nB, so that the state |nB〉 is
composed of nB quanta. Notice that even though a single quantum cre-
ated by a†i,j is gauge dependent, total numbers of quanta, nB, being the
eigenvalues of the operators Eqs. (15) and (16), are gauge independent.

Subsequently, |nB〉 can be significantly simplified with the use of the
Cayley–Hamilton theorem. It states, that any matrix, A, satisfies its own
characteristic equation. Therefore, we have for the SU(2), SU(3) and SU(4)
groups

SU(2) : A2− 1
2

(
A2
)
I = 0 ,

SU(3) : A3− 1
2

(
A2
)
A− 1

3

(
A3
)
I = 0 ,

SU(4) : A4− 1
2

(
A2
)
A2− 1

3

(
A3
)
A+ 1

8

(
A2
)2 I− 1

4

(
A4
)
I = 0 . (19)

One can use these equalities to reduce traces containing more than N oper-
ators of the same kind to simpler ones. We demonstrate this on an example
with A = a† and some arbitrary operator B, which can be any operator
involving bosonic or fermionic creation and annihilation operators. Particu-
larly, B can be again a single bosonic creation operator. Thus, multiplying
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Eqs. (19) by B from the right-hand side and taking the trace, we obtain
a set of relations, such as

SU(2)(a†a†B) = 1
2(a†a†)(B) ,

SU(3)(a†a†a†B) = 1
2(a†a†)(a†B) + 1

3(a†a†a†)(B) ,

SU(4)(a†a†a†a†B) = 1
2(a†a†)(a†a†B) + 1

3(a†a†a†)(a†B)

−1
8(a†a†)2(B) + 1

4(a†a†a†a†)(B) .

Hence, a general state with nB quanta for some given N , simplifies to

|nB〉N =
∑{PN

j=2 jkj=nB

} γk2,...,kN
(a†2)k2(a†3)k3 . . . (a†N )kN |0〉 , (20)

where the traces with more than N creation operators were reduced and the
highest trace is now (a†N ).

We are now in position to define the set of bosonic elementary bricks,
which is the set of N − 1 linearly independent single traces of creation op-
erators, which cannot be further reduced by the Cayley–Hamilton theorem.
Table I contains examples of such sets for N = 2, N = 3 and N = 4.
Products of powers of elementary bosonic bricks acting on the Fock vacuum
compose the set of states{

(a†2)k2(a†3)k3 . . . (a†N )kN |0〉
}PN

j=2 jkj=nB

≡
∣∣{nB}〉 , (21)

which spans the subspace of the Hilbert space with nB bosonic quanta. We
adopted a generalized notation in which |{nB}〉 is a vector of all states with
nB quanta. The set of states Eq. (21) is excessively called the Fock basis,
though in general it is not orthonormal. Only after the application of an
orthonormalization procedure it will be transformed into a basis. By acting
on it with additional elementary bricks and orthonormalizing, one can obtain
the basis in sectors with yet higher number of bosonic quanta. In this way,
starting with the Fock vacuum |0〉, one can recursively generate the basis
for any nB.

TABLE I

Elementary bosonic bricks for SU(2), SU(3) and SU(4).

SU(2) SU(3) SU(4)

(a†a†) (a†a†) (a†a†)
(a†a†a†) (a†a†a†)

(a†a†a†a†)
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2.3.2. Fermionic bricks

The definition of fermionic bricks is a bit more complicated. Besides
the fermionic bricks which are single-trace operators, as, for example, all
fermionic operators in the case of the SU(2) symmetry group (see Table II),
we must also take into account bricks which are multiple-trace operators.

TABLE II

SU(2) fermionic bricks.

nF = 1 nF = 2 nF = 3

(f†a†) (f†f†a†) (f†f†f†)

They appear in higher fermionic sectors in the case of symmetry groups
with N > 2 (see Tables III and IV). In order to make this distinction clear
we will now introduce some definitions and appropriate notation.

TABLE III

SU(3) fermionic bricks.

nF = 1 nF = 2 nF = 3 nF = 4

(f†a†) (f†f†a†) (f†f†f†) (f†f†f†f†a†)
(f†a†a†) (f†f†a†a†) (f†f†f†a†) (f†a†)(f†f†f†)

(f†a†a†f†a†) (f†f†f†a†a†) (f†f†f†f†a†a†)
(f†a†)(f†a†a†) (f†a†)(f†f†a†) (f†a†a†)(f†f†f†)

(f†a†f†f†a†a†) (f†a†)(a†f†f†f†)
(f†a†)(f†f†a†a†) (f†f†a†)(f†f†a†)
(f†a†a†)(f†f†a†) (f†a†a†)(f†f†f†a†)

(f†a†a†)(f†f†a†a†) (f†f†a†)(f†f†a†a†)
(f†a†)(f†a†a†)(f†f†a†)
(f†f†a†)(f†a†f†a†a†)

In analogy to the set of elementary bosonic bricks, we define the set of
elementary fermionic bricks. The latter will contain all single traces with
nF fermionic creation operators, which cannot be further reduced by the
Cayley–Hamilton theorem3. An algorithmic way to obtain it, is to start with
the set of bosonic elementary bricks for a given N . Then, for each trace,
one should perform nF times either one of the following operations: replace
one bosonic creation operator by a fermionic one or insert one fermionic

3 There is no simple counterpart of the Cayley–Hamilton theorem for anticommuting
matrices. However, an appropriate choice of the B operator in (20) will produce
identities which can be used to simplify or exclude, due to linear dependence, some
of the possible composite fermionic bricks [18].



804 P. Korcyl

TABLE IV

SU(4) fermionic bricks.

nF = 1 nF = 2

(f†a†) (f†f†a†)
(f†a†a†) (f†f†a†a†)

(f†a†a†a†) (f†f†a†a†a†)
(f†a†f†a†a†)

(f†a†)(f†a†a†)
(f†a†f†a†a†a†)

(f†a†)(f†a†a†a†)
(f†a†a†f†a†a†a†)

(f†a†a†)(f†a†a†a†)

creation operators into the trace. In order to obtain a complete basis, the
set of elementary bricks must be enlarged by operators, which are products
of fermionic elementary bricks with smaller number of fermionic quanta and
contain nF fermionic creation operators in total. In this way we ensure
that all possible invariant contractions of nF fermionic creation operators
with a number of bosonic creation operators are considered. However, the
problem of linear dependence appears and one has to pick out only the
linearly independent operators. The linear independence can be checked
by an explicit calculation of the determinant of the Gram matrix of states
constructed with those bricks. Fortunately, there exists also an independent,
and more direct way of computing the number of Fock basis states which
will be described in Subsection 2.4.

The enlarged set of all linearly independent fermionic bricks will be re-
ferred to as the set of composite fermionic bricks. Its elements will be la-
beled by an index α, and denoted by C†(nB, nF , α), where nB and nF are
the number of bosonic and fermionic creation operators, respectively. Such
notation is used in order to treat all bosonic and fermionic bricks in the same
way. The additional index α distinguishes the operators with the same nF
and nB.

Moreover, we will denote:

• the number of composite bricks with nF fermionic and nB bosonic
quanta by d(nF , nB),

• the total number of composite bricks with nF fermions by d(nF ).

Obviously,
d(nF ) =

∑
nB

d(nF , nB) .
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We extend our notation to the set of bosonic elementary bricks

(a†nB ) ≡ C†(nB, 0) .

As an example, Tables II, III and IV contain the sets of composite bricks
for N = 2, N = 3 and N = 4 for some fermionic sectors. Let us briefly
comment on Table II. In this simple case, there is exactly one fermionic
operator in each fermionic sector (see Section 2.4) and they are just ele-
mentary fermionic bricks. One can prove, by simple arguments, that other
operators are not possible. For example, an operator of the form (f †a†a†)
vanishes identically, since it must involve the totaly antisymmetric tensor
εijk summed with a symmetric combination of bosonic operators a†ja†k. In
analogy, the possible operator (f †a†)2 also vanishes, since it is a square of an
anticommuting operator. Such reasonings facilitate the explicit construction
of the set of composite fermionic bricks for gauge groups with N > 2.

Once the set of composite fermionic bricks is constructed, it is easy to
write down a general state with nB bosonic and nF fermionic quanta for
a given gauge group SU(N). One has to take a linear combination of states
obtained by applying one of the composite fermionic bricks with nF fermionic
quanta to a general bosonic Fock state Eq. (20). Hence,

|nB, nF 〉N =
d(nF )∑
α=1

C†(n, nF , α)

×
∑

{
PN

j=2 jkj=nB−n}

γk2,...,kN
(α)C†(2, 0)k2C†(3, 0)k3 . . . C†(N, 0)kN |0〉 , (22)

where the coefficients γk2,...,kN
(α) can depend now on α. In order to ensure

that the total number of bosonic quanta is nB, we have apply the operator
C†(n, nF , α) containing n bosonic creation operators, to a purely bosonic
state with nB −n quanta. In analogy to the bosonic case, we can define the
set of states,{

C†(n, nF , α)C†(2, 0)k2C†(3, 0)k3 . . . C†(N, 0)kN |0〉
}PN

j=2 jkj+n=nB

≡ |{nB, nF }〉 (23)

which after orthonormalization will give the basis in the subspace of Hilbert
space with nB and nF bosonic and fermionic quanta, respectively. The lin-
ear independence and completeness of the set of composite fermionic bricks
ensures that Eq. (23) form indeed a complete set of states in the fermionic
sectors.
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2.4. Counting the number of SU(N) SYMQM Fock basis states

In the preceding section we have shown, that the Fock basis in any
sector is given by Eq. (21) or Eq. (23). As an example, Table V contains
few simplest states of the Fock basis with the SU(2) symmetry.

TABLE V

Construction of the basis for the SU(2) gauge group.

nB nF = 0 nF = 1 nF = 2 nF = 3

0 |0〉 — — (f†f†f†)|0〉
1 — (f†a†)|0〉 (f†f†a†)|0〉 —
2 |2〉 ≡ (a†a†)|0〉 — — (f†f†f†)|2〉
3 — (f†a†)|2〉 (f†f†a†)|2〉
...
2n |2n〉 ≡ (a†a†)n|0〉 — — (f†f†f†)|2n〉

2n+1 — (f†a†)|2n〉 (f†f†a†)|2n〉 —
...

The linear independence of a set of states such as the one in Table V can
be checked by explicit calculations of the determinant of the Gram matrix
however such computations become cumbersome for larger number of states.
Fortunately there exist an alternative, group-theoretical way of calculating
the total number of linearly independent gauge-invariant Fock states. It was
suggested by Janik and elaborated by Trzetrzelewski [18, 20]. Instead of an
explicit construction of basis states, this approach exploits the orthogonality
of the characters. Such an alternative method is of great practical value since
it may serve as a crosscheck to our recursive algorithm.

2.4.1. Character method

Let D(nB, nF ) be the number of gauge-invariant, linearly independent
states with nB bosonic and nF fermionic quanta. D(nB, nF ) can be obtained
from the orthogonality relation of the characters of the SU(N) group.

Each bosonic and fermionic creation operator transforms according to the
adjoint representation of the SU(N) group. Hence, the products of creation
operators, which are needed for the construction of basis states, transform
as products of the adjoint representations. From the representation theory
it is known, that the square of any irreducible representation is reducible
and can be expressed as a sum of a symmetric and antisymmetric parts.
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This statement written in terms of characters reads,

χ(R)× χ(R) = [χ(R)× χ(R)] + {χ(R)× χ(R)}
= 1

2

(
χ2(R) + χ

(
R2
) )

+ 1
2

(
χ2(R)− χ

(
R2
))
, (24)

where the symbols [. . . ] and {. . . } denote the symmetric and antisymmetric
part, respectively, and χ(R2) is the trace of the matrix of the representation
R squared. A generalization of the Eq. (24) is known as the Fröbenius
theorem [21], and has a practical meaning, since the characters of powers
of R are often explicitly given. It gives the expressions for the symmetrized
and antisymmetrized characters of a product of p representations R,

[
×pk=1χ(R)

]
=

∑
Pp

k=2 kik=p

p∏
k=1

1
ik!

χik(Rk)
kik

, (25)

{
×pk=1χ(R)

}
=

∑
Pp

k=2 kik=p

(−1)
Pp

k=2 ik

p∏
k=1

1
ik!

χik(Rk)
kik

, (26)

where the sum is over all partitions of the number p into numbers 2, . . . , p, ij
being the multiplicity of the j number in a given partition. Thus, the most
general product of nB bosonic and nF fermionic creation operators will be
in the representation, which character is equal to [×nB

k=1χ(R)]{×nF
k=1χ(R)},

where R denotes now the adjoint representation of the SU(N) group. From
the orthogonality property of the characters we have

D(nB, nF ) =
∫
dµSU(N)

1
[
×nB
k=1χ(R)

] {
×nF
k=1χ(R)

}
, (27)

where 1 stands for the character of the trivial representation and dµSU(N) is
the group invariant measure on SU(N).

A convenient parametrization of the group manifold is by N2 − 1 Euler
angles αi, all defined on [0, 2π]. For example the group elements of SU(3)
read [22]

U = eiλ3α1eiλ2α2eiλ3α3eiλ5α4eiλ3α5eiλ2α6eiλ3α7eiλ8α8 (28)

and the generalization of the above equation to SU(N) can be found in [23].
The last element needed to calculate D(nB, nF ) are the characters χ(Rk).
They are given by the Weyl formula [24]

χ(R) =
N∑

i,j=1

ei(αi−αj) − 1 , χ(Rk) =
N∑

i,j=1

eik(αi−αj) − 1 . (29)
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The invariant measure reads [18],

dµSU(N)
=

1
N !

N∏
i=1

dαi
2π

∣∣∏
i<j

(eiαi − eiαj )
∣∣2δP( N∑

i=1

αi

)
, (30)

where δP(x) is a periodic delta-function given by

δP

(
N∑
i=1

αi

)
=

∞∑
k=−∞

δ

(
N∑
i=1

αi − 2πk

)
, (31)

with k integer.

2.4.2. Generating functions for D(nB, nF )

Eq. (27) is difficult to evaluate for any N , however it was calculated for
few simplest groups [18]. In these cases, the numbers D(nB, nF ) can be
encoded in a generating function with two parameters t and s, G(t, s),

G(t, s) =
∑
nB ,nF

D(nB, nF )tnB (−s)nF , (32)

which is very useful in practical applications. For N = 3, G(t, s) can be
expressed in terms of simple polynomials in t [18], namely

G(t, s) =

(
N∏
k=2

1
1− tk

)
N2−1∑
i=0

(−1)isici(t) , (33)

and the polynomials ci(t) read

c0(t) = 1 ,
c1(t) = t+ t2 ,

c2(t) = t+ t2 + 2t3 ,
c3(t) = 1 + t+ 2t2 + 3t3 + t4 ,

c4(t) = 2t+ 4t2 + 2t3 + 2t4 ,
c8−i(t) = ci(t) . (34)

In this form some information contained in G(t, s) become evident. The
term proportional to s0 is equal to the generating function for the num-
ber of partitions into numbers

{
N,N − 1, . . . , 2

}
. Obviously, there are as

many states with nB quanta as there are ways of obtaining nB from multi-
ples of the numbers of quanta contained in the elementary bosonic bricks.
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TABLE VI

Multiplicity of Fock basis states with given number of bosonic and fermionic quanta
for the SU(3) gauge group. These numbers can be obtained from the generating
function Eq. (34) and from the orthonormalization procedure of the algorithm
independently.

nB 0 1 2 3 4 5 6 7 8
0 1 — — 1 — 1 — — 1
1 — 1 1 1 2 1 1 1 —
2 1 1 1 3 4 3 1 1 1
3 1 1 3 5 4 5 3 1 1
4 1 2 2 5 8 5 2 2 1
5 1 2 4 7 8 7 4 2 1
6 2 2 4 9 10 9 4 2 2
7 1 3 5 9 12 9 5 3 1
8 2 3 5 11 14 11 5 3 2
9 2 3 7 13 14 13 7 3 2
10 2 4 6 13 18 13 6 4 2
11 2 4 8 15 18 15 8 4 2
12 3 4 8 17 20 17 8 4 3
13 2 5 9 17 22 17 9 5 2
14 3 5 9 19 24 19 9 5 3
15 3 5 11 21 24 21 11 5 3
16 3 6 10 21 28 21 10 6 3
17 3 6 12 23 28 23 12 6 3
18 4 6 12 25 30 25 12 6 4
19 3 7 13 25 32 25 13 7 3
20 4 7 13 27 34 27 13 7 4
21 4 7 15 29 34 29 15 7 4
22 4 8 14 29 38 29 14 8 4
23 4 8 16 31 38 31 16 8 4
24 5 8 16 33 40 33 16 8 5
25 4 9 17 33 42 33 17 9 4
26 5 9 17 35 44 35 17 9 5
27 5 9 19 37 44 37 19 9 5
28 5 10 18 37 48 37 18 10 5
29 5 10 20 39 48 39 20 10 5
30 6 10 20 41 50 41 20 10 6

Furthermore, from the polynomials ci(t) the combinatorial interpretation of
the multiplicities of states in the fermionic sectors can be read off. Particu-
larly, the number d(nF , nB) of composite fermionic bricks with nB bosonic
quanta in a given fermionic sector is simply given by

d(nF , nB) =
1
nB!

dnB

dtnB
cnF (t)

∣∣∣∣∣
t=0

. (35)
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As an example, let us take the polynomial c1(t) for the SU(3) group. We
have one brick with a single bosonic quantum — the (a†f †) brick, and one
brick with two bosonic quanta — the (a†a†f †) brick. A less trivial example
is given by the c2(t) polynomial. Apart of the two operators with a single
and double bosonic quanta, (a†f †f †) and (a†a†f †f †), respectively, we now
have two operators with three bosonic quanta, namely, (f †a†a†f †a†) and
(f †a†)(f †a†a†).

Thus, we can crosscheck the number of basis states obtained by direct
construction and elimination of linearly dependent states with the one com-
puted using the above group-theoretical predictions. Table VI presents the
multiplicity of basis states with given nB and nF quanta for N = 3 up to
nB = 30, calculated with both methods. We simply give a single set of
numbers since the results agree exactly.

2.5. Symmetries of the SU(N) SYMQM Fock basis

The Fock basis of SYMQM, constructed in the way described above, has
several nontrivial symmetries which can be interpreted as announcements of
dynamical symmetries of the Hamiltonians of SYMQM. The most important
of them are the supersymmetry and particle–hole symmetry. The former
can be observed as a matching of eigenenergies from neighboring fermionic
sectors, while the latter is defined as a matching of spectra from the sector
with p fermions and the sector with N2 − 1 − p fermions with 0 ≤ p ≤
N2 − 1. Let us now describe three observations [18] of nontrivial relations
among the multiplicities D(nB, nF ) and their interpretations in terms of
these symmetries.

Supersymmetry

• For each nB there are as many bosonic basis states (states with nF
even) as fermionic basis states (states with nF odd).

∀nB

∑
nF –even

D(nB, nF ) =
∑

nF –odd

D(nB, nF ) .

Its validity can be checked explicitly for SU(3) case, either in Table VI
by summing the numbers of states with nF even and odd in each row
separately, or in Eqs. (34) by summing appropriate polynomials. This
relation can be also exactly proved for any N using the general form
of the generating function [18].

• Summing the number of states along diagonal lines with nB + nF or
nB − nF fixed, for nF even and nF odd separately yields the same
results,
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∀nB > 0
∑

nF –even

D(nB ± nF , nF ) =
∑

nF –odd

D(nB ± nF , nF ) ,

Such diagonal lines correspond to the action of the supersymmetric
gauged harmonic oscillator supercharges, Q = (fa), and Q† = (f †a†).
They are of special interest since introducing the cut-offs in the consec-
utive fermionic sectors according to one of these lines allows to obtain
an exact supersymmetric degeneracy for finite cut-off. Again, this re-
sult can be proved for any N using the generating functions [18].

This is still not true supersymmetry. There is no dynamical super
multiplets, because at this stage we have not defined any Hamiltonian.
However, it is interesting that already at this level we have such match-
ings.

Particle–hole symmetry

• For any nB, the number of states in the sector with nF fermions is
equal to the number of states in the sector with N2−1−nF fermions,

∀nB D(nB, nF ) = D(nB, N2 − 1− nF ) , nF = 0, . . . , N2 − 1 .

If we expect that the spectrum in the sector with nF fermionic quanta
coincides with the spectrum in the sector with N2 − 1 − nF then
the equality of the multiplicity of basis states in those sectors can be
interpreted as a nontrivial announcing of the particle–hole symmetry.

Summarizing, already at kinematic level one can find symptoms of the
symmetries of the SYMQM systems.

3. Description of the algorithm

The main idea of the recursive algorithm has been already described
in [11, 12]. It relies on the observation that the most efficient way to eval-
uate a matrix element of an operator is to relate it to simpler matrix ele-
ments of some operators, which have been already evaluated at an earlier
stage of calculations. In this way the explicit construction of the Fock basis
vectors is not necessary. As an input the algorithm needs the commuta-
tors/anticommutators of elementary bricks and any other invariant opera-
tors, which appear in these resulting commutators/anticommutators.

In order to expose the algorithm in a clear way, we will start by ex-
plaining the construction of the Fock basis and then the calculation of the
matrix of scalar products. Having such a matrix, one can orthonormalize
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the basis vectors. The procedure used to this end will be described in the
subsequent subsections. At that point the formula used for calculation of
matrix elements of any operator will become evident. Eventually, the full
recursive relations will be presented.

3.1. Recursive construction of the Fock basis

Although the Fock states are not explicitly needed for the computation
of matrix elements of an operator, they do appear in the labeling of those
matrix elements. Hence, we should have a recursive way of obtaining the
Fock basis. Let us assume that such basis is already constructed in the
sectors with the number of bosonic and fermionic quanta smaller than nB
and nF respectively. Then, the Fock basis in the sector with nB bosonic and
nF fermionic quanta can be created as the sum of all states obtained by the
action of appropriate bricks on the already generated Fock basis states. In
our generalized notation this can be written as

|{nB, nF }〉 =
N∑
k=2

C†(k, 0)|{nB − k, nF }〉 .

Note that in general such states will not form an orthonormal set of states.
Moreover, the same state may appear in several copies, differing in the order
of successive bricks used to build it. Those duplicates will be treated as
distinct states. The basis is obtained once this redundancy is removed and
the remaining states orthonormalized.

3.2. Matrix of scalar products

The Fock basis obtained recursively form a complete set of states which
are however not orthonormalized. Thus, one has to calculate the matrix of
scalar products. It is sufficient to calculate the scalar products among the
states containing a given number of quanta, nB and nF , since those having
different number of bosonic or fermionic quanta are orthogonal by definition.
The matrix of such scalar products will be denoted by S(nB, nF ).

The definition of S(nB, nF ) differs from the standard definition of the
Gram matrix in few aspects. The traditional Gram matrix contains the
scalar products of linearly independent states and for our system it is
a D(nB, nF )×D(nB, nF ) matrix. Contrary, since in our algorithm the Fock
basis is defined recursively, the S(nB, nF ) is the matrix of scalar products of
states that have nB bosonic and nF fermionic quanta and are obtained by
the action of appropriate bricks on states from sectors with smaller number
of bosonic and fermionic quanta. Therefore, the matrix S(nB, nF ) is usually
bigger than the Gram matrix since some of the states can be included several
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times. Such redundancy is best illustrated by the following example. For
the SU(3) gauge group, there is only one Fock state with 5 bosonic quanta,
|
{
5, 0
}
〉 = C†(2, 0)C†(3, 0)|0〉. However, the calculation of the matrix of

scalar products S(5, 0) yields a 2 × 2 matrix instead of a single number,
namely,

S(5, 0) = 〈
{
5, 0
}
|
{
5, 0
}
〉 −→

(
S(5, 0)3,3 S(5, 0)3,2
S(5, 0)2,3 S(5, 0)2,2

)
,

where the different matrix elements S(5, 0)i,j correspond to the multiple
possibilities of pulling out an elementary brick out of the state |

{
5, 0
}
〉,

|
{
5, 0
}
〉 = C†(2, 0)|α〉 = C†(3, 0)|β〉 ,

where |α〉 and |β〉 are appropriate remaining states. Such doubling must be
eliminated. The procedure which we used to achieve this will be described
in the next subsection.

The evaluation of S(nB, nF ) can be divided into two separate cases.
If nF = 0, we pull out one bosonic elementary brick from each of the

basis states. Since we have N − 1 bosonic elementary bricks (see Tables II,
III, IV), there is N − 1 different ways to do this, if only nB ≥ N . If nB < N
we can pull out only nB − 1 different bosonic elementary bricks. Thus, in a
generic situation, S(nB, 0) will be a (N − 1)× (N − 1) matrix of the form,

S(nB, 0) =


S(nB, 0)2,2 S(nB, 0)2,3 . . . S(nB, 0)2,N−1

S(nB, 0)3,2 S(nB, 0)3,3 . . . S(nB, 0)3,N−1
...

S(nB, 0)N−1,2 S(nB, 0)N−1,3 . . . S(nB, 0)N−1,N−1

 ,

where

S(nB, 0)p,q ≡ 〈
{
nB − p, 0

}
|C(p, 0)C†(q, 0)|

{
nB − q, 0

}
〉 .

The matrix element, calculated by extracting the C(p, 0) elementary brick
from the left state and the C†(q, 0) elementary brick from the right state,
denoted by S(nB, 0)p,q, can be expressed in terms of matrix elements of
operators between basis states with lower number of bosonic quanta as,

S(nB, 0)p,q = 〈{nB − p, 0}|
[
C(p, 0), C†(q, 0)

]
|{nB − q, 0}〉

+ 〈{nB − p, 0} |C†(q, 0)C(p, 0)| {nB − q, 0}〉 . (36)

Hence, we expressed S from the sector with nB quanta in terms of matrix
elements of operators evaluated in the sector with nB − q quanta. The
procedure to calculate these matrix elements is described in Subsection 3.3.
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If nF 6= 0, we first want to anticommute the composite fermionic bricks
with nF fermionic quanta. Again, in a generic case, we treat S(nB, nF ) as
a matrix of size d(nF )× d(nF ) and of the form

S(nB, nF ) =
S(nB, nF )1,1 S(nB, nF )1,2 . . . S(nB, nF )1,d(nF )

S(nB, nF )2,1 S(nB, nF )2,2 . . . S(nB, nF )2,d(nF )

...
S(nB, nF )d(nF ),1 S(nB, nF )d(nF ),2 . . . S(nB, nF )d(nF ),d(nF )

 ,

where

S(nB, nF )p,q ≡ 〈{nB − np, 0} |C(np, nF , p)C†(nq, nF , q)| {nB − nq, 0}〉 .

Let us consider one of the scalar products, denoted by S(nB, nF )p,q, and
obtained from the scalar product of two basis vectors, first containing
C(np, nF , p), second containing C†(nq, nF , q). We have

S(nB, nF )p,q = 〈{nB − np, 0} |
{
C(np, nF , p), C†(nq, nF , q)

}
| {nB − nq, 0}〉 .

The anticommutator
{
C(np, nF , p), C†(nq, nF , q)

}
is a normally ordered op-

erator containing only bosonic creation and annihilation operators. If it is
not, one can always bring it to such form4. The matrix elements of the oper-
ator C†(nq, nF , q)C(np, nF , p) vanish since there are fermionic annihilation
operators acting on the Fock vacuum. Thus, by anticommuting all fermionic
operators in one step, we can express S(nB, nF ) in terms of matrix elements
of operators between states from the bosonic sector exclusively.

Summarizing, the procedure of calculating S(nB, nF ) consists of three
steps. First, we pull out one bosonic (fermionic) brick from the left and
right states. There is in general N − 1 (d(nF ) ) ways to do this. Second,
we commute (anticommute) these two bricks, and replace the commutator
(anticommutator) by a normally ordered operator. Third, we evaluate the
matrix elements of this operator between states with a lower number of
quanta (see Section 3.3).

4 Such an anticommutator is equal to a sum of operators involving only bosonic creation
and annihilation operators. In general not all of these operators will be normally
ordered operators. However, any such operators can be brought to a normally ordered
form by appropriately ordering the creation and annihilation operators, which they
are composed of, using the commutation rules Eqs. (1). Such ordering will produce
additional operators which have to be taken into account and which can also be
brought to a normally ordered. Thus, any anticommutator can always be written in
a normally ordered form.
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However, before we move to the description of the evaluation of matrix
elements of operators, we have to tackle the problem of orthonormalization
of the basis states and of the evaluation of the commutators of composite
bricks. We do this in the following two subsections.

3.2.1. Linear independence and orthonormalization

The recursive approach produces a set of Fock states in which some states
may be contained in several copies. Therefore, one has to implement a mech-
anism to remove such redundancy. Because of the recursive structure, such
mechanism will have to deal only with states with a given number of bosonic
and fermionic quanta. Hence, its computational effort is small compared to
what would it be should the whole Fock basis be considered. Moreover, the
remaining states must be orthonormalized. We use a procedure which real-
izes these two tasks in one step. It is done by a numerical diagonalization
of the matrix of scalar products S(nB, nF ). Subsequently, eigenvectors with
corresponding nonzero eigenvalues are retained. Since the Fock states are
not normalized, the normalized eigenvectors have to be multiplied by the
inverse of the square root of their corresponding eigenvalues. We group such
vectors in a matrix denoted by R(nB, nF ). Note that R(nB, nF ) is not to a
square matrix in general. Then, we can write

RT (nB, nF )S(nB, nF )R(nB, nF ) = 1D(nB ,nF )×D(nB ,nF ) ,

where 1D(nB ,nF )×D(nB ,nF ) is the unity matrix which rank is equal to the
size of the subspace of the Hilbert space with nB bosonic and nF fermionic
quanta.

3.2.2. Automatic evaluation of commutators and anticommutators

We can conclude from Eqs. (36) and (37) that, in order to calculate
a scalar product or a matrix element of some operator, the set of com-
mutators and anticommutators of all composite bricks must be supplied.
These commutators and anticommutators must be brought to a gauge in-
variant, normally ordered form and should be maximally reduced using the
Cayley–Hamilton theorem. In general, there will appear some new single
trace operators containing both creation and annihilation bosonic opera-
tors. Their commutators and anticommutators with all composite bricks
should be evaluated as well and supplied to the algorithm. The number
of such relations to be calculated grows rapidly, both, with increasing N ,
and increasing fermionic occupation number. Already, for the SU(3) gauge
group one needs about a thousand of (anti)commutators. Therefore, a com-
puter program was written to evaluate them. It uses standard relations (1),
(2) and (3) between the bosonic and fermionic creation and annihilation
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operators to move them among and within traces. As an example Eq. (37)
presents one of the commutators needed for the calculations,

[(a†a†aa†a†aa), (a†a†)] = 1.5555(a†a†a†) + 1.3333(a†a†)(a†a†a)

+ (a†a†a†)(a†a†aa) + 1.1111(a†a†a†)(a†a)

+ 0.1666(a†a†)(a†a†a†)(aa) + (a†a†)(a†a†aa†a)

+ 0.25(a†a†)(a†a†)(a†aa) . (37)

We have found that it is more efficient to work with composite bricks than
elementary ones. For example, if we have treated the operator (a†a†f †)(a†f †)
(a†f †f †), which is one of the composite bricks in the nF = 4 sector for the
SU(3) group, as a product of three operators, we would relate the desired
matrix element with matrix elements from the nF = 3 sector, which, in
turn, would be related to some matrix elements in the nF = 2 sector, and
so on. However, one could treat it as a single operator, and jump to the
bosonic sector in one step, considerably decreasing the number of commuta-
tion and anticommutation relations needed for such computations. On the
other hand, the more elementary bricks will be contained in a composite
brick, the more complicated the commutation and anticommutation rela-
tions will be. Hence, the usefulness of using more complex composite bricks
is a question of balancing between the processor time consumed for evalua-
tion of these relations, the memory needed to store them and the processor
time gained by using more complex (anti)commutators.

3.3. Matrix elements of gauge invariant operators

In this section we describe the evaluation of matrix elements of operators,
such as those appearing in the right hand side of Eqs. (36) and (37).

Let us denote a generic operator by O(nOB, n
O
F ). The arguments of O,

nOB and nOF have the following meaning

• nOB is the difference between the number of bosonic creation and anni-
hilation operators contained in O,
• nOF is the difference between the number of fermionic creation and

annihilation operators in O.

In general, nOB and nOF can be any integers. Furthermore, we denote by
O(nOB, n

O
F )nB ,nF the matrix element of O between basis states containing nB

bosonic and nF fermionic quanta on the right hand side, and n′B = nB +nOB
bosonic and n′F = nF + nOF fermionic quanta on the left-hand side,

O
(
nOB, n

O
F

)
nB ,nF

= 〈
{
n′B, n

′
F

}
|O
(
nOB, n

O
F

)
| {nB, nF }〉 . (38)



Recursive Approach to Supersymmetric Quantum Mechanics for . . . 817

O
(
nOB, n

O
F

)
nB ,nF

is a matrix of sizes D(nB, nF ) × D(n′B, n
′
F ), where the

numbers Dn,m denote the multiplicity of basis states with n bosonic and m
fermionic quanta, as it was introduced in Section 2.4.1.

We first deal with some “boundary” situations, and then we consider the
generic case.

3.3.1. Boundary cases

Let #(x)O denote the number of occurrences of the operator x in the
operator O. The following observations can be exploited to simplify the
computations:

• If a matrix element of an operator for which #(f †)O > #(f)O is
to be calculated then it is more convenient to evaluate its complex
conjugate. Similarly, if we have to compute a matrix element of an
operator for which #(f †)O = #(f)O, but #(a†)O > #(a)O we should
rather compute its complex conjugate.

• The matrix element of an operator O which has fermionic or bosonic
annihilation operators acting on the Fock vacuum vanishes.

• The matrix element of the bosonic elementary brick between states
from the bosonic sector can be read off from the appropriate part of
the matrix of scalar products.

• The matrix element of an operator which is a product of two trace
operators can be calculated by inserting an identity operator between
them, evaluating their matrix elements separately, and eventually mul-
tiplying and summing the partial results.

3.3.2. Generic case

In the generic case, we can assume that O is normally ordered (see foot-
note 4). If it is composed exclusively of creation operators, one can express
it in terms of bosonic elementary bricks and use the appropriate boundary
case, described above.

The strategy to evaluate a matrix element of O is to drag O over the
operators constituting the right hand side state so that it annihilates the
Fock vacuum. We start by pulling it through the composite fermionic brick,(

O
(
nOB, n

O
F

)
nB ,nF

)
., p

= 〈
{
n′B, n

′
F

}
|O
(
nOB, n

O
F

)
C†(np, nF , p)|

{
nB, nF

}
〉

= 〈
{
n′B, n

′
F

}
|
[
O
(
nOB, n

O
F

)
, C†(np, nF , p)

]
|
{
nB − np, 0

}
〉

+〈
{
n′B, n

′
F

}
|C†(np, nF , p)O

(
nOB, n

O
F

)
|
{
nB − np, 0

}
〉 .

(39)
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In order to move further, we substitute the relation for the (anti)commutator
of O(nOB, n

O
F ) and C†(p, nF , α). For each operator appearing in this relation

we evaluate its matrix element, first checking whether conditions for any of
the special cases are met. This task should be easier, since these matrix ele-
ments must be evaluated between states with smaller number of bosonic and
fermionic quanta. The second term in Eq. (39), can be calculated by insert-
ing an identity operator between the operators C†(np, nF , p) and O(nOB, n

O
F ).

Again, this computation should be easier. On one hand, the matrix element
of the elementary brick C†(np, nF , p) should be known from the matrix of
scalar products. On the other hand, the matrix element of O(nOB, n

O
F ) in-

volves states with smaller number of bosonic and fermionic quanta.
The purely bosonic case can be treated analogously. We have(
O
(
nOB, 0

)
nB ,0

)
.,p

=〈
{
n′B, 0

}
|
[
O
(
nOB, 0

)
, C(p, 0)

]
|
{
nB − p, 0

}
〉

+ 〈
{
n′B, 0

}
|C(p, 0)O

(
nOB, 0

)
|
{
nB − p, 0

}
〉 . (40)

In principle, we can proceed with those relations until O hits the Fock
vacuum. Since O is a normally ordered operator, such matrix element van-
ishes by definition. Therefore, collecting all the intermediate results, we
should be able to evaluate the desired matrix element. Nevertheless, one
has to remember that states in |

{
nB, 0

}
〉 are in general not orthonormal, so

one has to implement into relations (39) and (40) the orthonormalization
procedure.

3.3.3. Recurrence relations

Since the recursively constructed set of basis states can contain degener-
ate states, the matrices of operators, calculated as described above, will also
contain such redundant matrix elements. In order to get rid of them one has
to use the R(nB, nF ) matrix. Incorporating this matrix in the relations for
the matrix element of any operator, enables us to formulate the complete
and correct recurrence relations. We have two recurrence relations:

• the expression of the matrix element in the fermionic sectors in terms
of matrix elements in the bosonic sector,

〈
{
n′B, n

′
F

}∣∣O(nOB, n
O
F )
∣∣{nB, nF}〉 =(〈{

n′B, n
′
F

}∣∣[O(nOB, n
O
F ), C†(np, nF , p)

]∣∣{nB−np, 0}〉
+
〈{
n′B, n

′
F

}∣∣C†(np, nF , p)O(nOB, n
O
F )
∣∣{nB−np, 0}〉) ·R(nB, nF ) ,

(41)

and
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• the expression of the matrix element in the bosonic sector with bigger
number of bosonic quanta in terms of matrix elements with smaller
number of bosonic quanta,

〈{n′B, 0}|O(nOB, 0)|{nB, 0}〉 =(〈{
n′B, 0

}∣∣[O(nOB, 0), C†(p, 0)
]∣∣{nB − p, 0}〉

+
〈{
n′B, 0

}
|C†(p, 0)O(nOB, 0)|

{
nB − p, 0

}〉)
·R(nB, 0) . (42)

Thus, we have expressed the desired matrix element in terms of matrix
elements of operators between states will lower number of quanta, which
should have been already evaluated during some previous calculations.

With these recurrence relations the presentation of the whole algorithm
is complete. One can use them to evaluate the matrix of scalar products in
the sectors which have not been considered so far in the calculations. This
done, the matrix elements of operators, needed for the calculations in sectors
with yet bigger number of quanta, can be computed. In this way one can
proceed until the cut-off Ncut is reached.

Note that the above algorithm is very universal. In principle it can
be used to systems defined in space of any dimensionality. Particularly,
if the Hamiltonian is invariant under a SO(d) symmetry our method can
be generalized in order to calculate the spectra in the channels with given
angular momentum [12]. Moreover, it is applicable to systems with bosonic
and fermionic polynomial interactions as well as to systems with discrete or
continuum spectrum.

In the next section we describe the results for supersymmetric model
with discrete spectrum obtained with our approach.

4. Applications

As an application of the above algorithm we present results for a super-
symmetric system given by the Hamiltonian constructed in 2.2,

H = Tr p2 + g2
(
Tr x4 − 1

3

(
Tr x2

)2)+ 2g Tr
(
x
[
f †, f

])
, (43)

where the gauge symmetry group is chosen to be the SU(3) group.
The main motivation for studying this Hamiltonian is that, being a sys-

tem with a discrete spectrum, it is a good test-ground for our numerical
method. Moreover, the bosonic part of its potential is similar to the poten-
tial of SYMQM with the tensor fabc replaced by dabc [12]. Therefore, one
hopes that some analytic approaches based on the numerical results from
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such simple model can be tested for a future application to the more di-
mensional SYMQM systems. On the other hand, Eq. (43) is interesting by
itself. Being a supersymmetric anharmonic oscillator it contains a nontrivial
fermionic interaction.

In the following we start by analyzing the convergence of the eigenvalues,
then present the spectra calculated numerically. Subsequently, we briefly
describe their symmetries, such as supersymmetry and scaling symmetry.
Eventually, we calculate numerically the Witten index for this model.

4.1. Numerical spectra

One of the advantages of the cut Fock space approach as a numeri-
cal method is that it enables one to judge on the reliability of the results
and estimate their errors. To this end, the convergence of eigenenergies or
eigentates with increasing cut-off must be investigated. Table VII contains
the energies of the lowest eigenstate in fermionic sector with nF = 0, . . . , 4
obtained for different Ncut. The results in sectors with higher fermionic

TABLE VII

The dependence on the cut-off Ncut of the lowest eigenenergy in several fermionic
sectors. Note the exact degeneracy of the levels in the nF = 0 and nF = 1 sectors
due to supersymmetry and the appearance of the supersymmetric vacuum in the
nF = 3 sector.

Ncut nF = 0 nF = 1 nF = 2
1 2.833333333333333 3.750000000000124 3.75000000000008
5 2.805137759654418 2.817654396966426 2.41010649311797
10 2.804878933491876 2.804943385906189 2.38393952020263
15 2.804877899477374 2.804878578502977 2.38379874405844
20 2.804877857980324 2.804877869314702 2.38379576457689
25 2.804877857812559 2.804877857890121 2.38379573799721
30 2.804877857802534 2.804877857804384 2.38379573773261
35 2.804877857802529 2.804877857803605 2.38379573772474
40 2.804877857802507 2.804877857803596 2.38379573772458
Ncut nF = 3 nF = 4
1 1.009109012532963 3.750000000000082
5 0.017808308382480 2.001903558629864
10 0.000102896003680 1.978068350121234
15 0.000002580129746 1.977963562445323
20 0.000000018188518 1.977960963230507
25 0.000000000380532 1.977960939859982
30 0.000000000013940 1.977960939644200
35 0.000000000004579 1.977960939638051
40 0.000000000004250 1.977960939637698
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occupation number are related to the ones presented in the table through
the particle–hole symmetry. A convergence to more than 10 digits is achieved
with Ncut = 40, which corresponds to a Fock basis of about 150 states in the
bosonic sector and about 1300 states in the nF = 4 sector. Therefore, one
can safely use the cut-off Ncut = 40 in order to evaluate the lowest eigenen-
ergies. The uncertainties of those eigenenergies, defined as the difference
of the outcomes for consecutive cut-offs, are negligible. Fig. 1 and Fig. 2
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Fig. 1. Convergence of the 15 lowest eigenenergies in the bosonic sector with in-
creasing cut-off. An exponential-like convergence is seen, which is a characteristic
feature of bound states.

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30  35  40

E
n
e
rg

y

Ncut

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30  35  40

E
n
e
rg

y

Ncut

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  5  10  15  20  25  30  35  40

E
n
e
rg

y

Ncut

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  5  10  15  20  25  30  35  40

E
n
e
rg

y

Ncut

Fig. 2. Convergence of the few lowest eigenenergies in the nF = 1, . . . , 4 sectors
with increasing cut-off.
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show the dependence of 15 lowest eigenenergies on the cut-off in different
fermionic sectors. All the figures were made for g = 1.0. We can clearly see
a fast, exponential-like, convergence, which was shown to be a character-
istic feature of bound states [14, 15]. Hence, one can conclude that indeed
all the spectra are discrete. This should be contrasted with the results for
the SYMQM systems. The latter have potentials with flat directions which
induce continuum spectra in some sectors [8, 12, 13]. Table VII contains
the eigenenergies of lowest states in all 9 fermionic sectors calculated with
g = 1.0 and a cut-off Ncut = 40. We comment these results in more details
in the following subsection.

4.2. Symmetries
4.2.1. Supersymmetry

Supersymmetry can be seen in Table VIII as an exact degeneracy of
the converged eigenenergies in neighboring fermionic sectors. One notices a
non-degenerate vacuum state in sector with nF = 3 and its image through
the particle–hole symmetry in the sector with nF = 5 signaling an unbroken
supersymmetry. The number of supersymmetric vacua was discussed in [27]
in the case of free SU(N) model. Accordingly, there are four zero-energy
states in sectors with nF = 0, 3, 5, 8. Hence, two of these states disappear
when the interaction is turned on. The particle–hole symmetry is responsible
for a double degeneracy of eigenenergies in the sector with nF = 4. This
sector must contain as many states which are parts of supermultiplets formed
with states from the sector with nF = 3 as there are states which are parts
of supermultiplets formed with states from the sector with nF = 5. Both
these sets must have the same spectra. This is a specific feature of models
with SU(N) gauge group with N odd.

Table VII reveals also signatures of supersymmetry. On one hand, the
lowest states in sectors with nF = 0 and nF = 1 are exactly degenerate. On
the other hand, the zero-energy vacuum states in the sectors with nF = 3
and nF = 5 fermionic quanta are non-degenerate.
4.2.2. Scaling symmetry

The scaling property of the quantum anharmonic oscillator was first
noted by Symanzik, and elaborated by Simon [28]. If we consider the trans-
formations

x→ λx , p→ 1
λ
p , f → f , f † → f † , (44)

then the Hamiltonian is rescaled as

H→H=
1
λ2

(
Tr p2+g2λ6

(
Trx4 − 1

N
(Trx2)2

)
+2g λ3Tr(x[f †, f ])

)
. (45)
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TABLE VIII

Eigenenergies of few lowest eigenstates with g = 1.0. The states in the nF = 4
sector are double degenerate which follows from the particle–hole symmetry. Hence
the 2 notation. An exact, supersymmetric pairing can be observed among states in
adjacent fermionic sectors.

nF = 0 nF = 1 nF = 2 nF = 3 nF = 4 nF = 5 nF = 6 nF = 7 nF = 8

0 0
1.97796 1.977962 1.97796

2.3838 2.3838 2.3838 2.3838
2.80488 2.80488 2.80488 2.80488

3.50147 3.501472 3.50147
4.12774 4.12774 4.12774 4.12774

4.32778 4.327782 4.32778
4.98444 4.98444 4.98444 4.98444

5.01572 5.015722 5.01572
5.02988 5.02988 5.02988 5.02988

5.32891 5.32891 5.32891 5.32891
5.75469 5.75469 5.75469 5.75469

5.75469 5.75469 5.75469 5.75469
5.75469 5.754692 5.75469
5.85572 5.855722 5.85572
6.21387 6.213872 6.21387

6.48704 6.48704 6.48704 6.48704
6.82769 6.827692 6.82769
6.88508 6.885082 6.88508

6.89869 6.89869 6.89869 6.89869
7.49223 7.49223 7.49223 7.49223

7.66421 7.66421 7.66421 7.66421
7.75149 7.751492 7.75149
7.81189 7.811892 7.81189

7.82955 7.82955 7.82955 7.82955
8.11747 8.11747 8.11747 8.11747

8.39012 8.39012 8.39012 8.39012
8.39012 8.39012 8.39012 8.39012

8.39012 8.390122 8.39012

Setting λ = g−
1
3 we obtain the following identity,

H(g)→ g
2
3H(1) . (46)

Since, the transformations Eq. (44) can be unitarily implemented, both
Hamiltonians in Eq. (46) have identical eigenvalues. Therefore, it is sufficient
to calculate the spectrum at g = 1.0.
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Figure 3 shows the dependence of six lowest eigenenergies from the
bosonic sector on the coupling constant. The numerical results are com-
pared with the prediction of Eq. (46). For large g the agreement of both
should be noted, whereas the discrepancies for small g are due to finite
cut-off effects as discussed below.
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Fig. 3. Dependence of the first six eigenenergies on the coupling constant g in
the bosonic sector. Crosses denote the numerical results obtained with cut-off
Ncut = 40, whereas the dashed lines correspond to the prediction of Eq. (46) with
H(1) evaluated numerically. The finite cut-off effects can be seen for small values
of the coupling constant.

4.3. Critical slowing down

A critical slowing down can be observed in Fig. 3 in the vicinity of g = 0.
For a small value of the coupling constant a much higher cut-off is needed in
order to obtain converged results. It is because at g = 0 the spectrum is free
and the eigenenergies corresponding to nonlocalized states calculated by our
algorithm do not converge. Rather, they fall off to zero with increasing cut-
off in a power like manner, a behavior resulting from approximating a plane
wave by a finite set of localized harmonic oscillator eigenstates. Hence, the
eigenenergies calculated for small coupling constant at small cutoff cannot
follow the curve Eq. (46) of exactly converged energies. Nevertheless, with
increasing coupling constant the eigenenergies of bound states converge more
and more rapidly. Those energies that have already converged with the cut-
off agree with the analytic prediction of Eq. (46). The complete discussion of
such critical behavior is out of scope of the present work and will be carried
out elsewhere.
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4.4. Perturbative expansion

In a cut Fock space the states corresponding to the free states in the
continuum are normalizable. Moreover, their exact analytic form can be
obtained for a finite cut-off [30, 31]. Therefore, at fixed finite cut-off Ncut

one can perform a perturbative expansion in the coupling constant g. Using
well-known formulae for the perturbative corrections to the energy [32] one
can obtain the approximate dependence of the eigenenergies on the coupling
constant. We present here the results for the lowest eigenstate from the
bosonic sector calculated for the cut-off Ncut = 20,

E = E0 + g2VE0,E0 + g4
∑
E′ 6=E0

∣∣VE0,E′
∣∣2

E0 − E′

+ g6

( ∑
E′ 6=E0

E′′ 6=E0

VE0,E′VE′,E′′VE′′,E0

(E0 − E′)(E0 − E′′)
− VE0,E0

∑
E′ 6=E0

∣∣VE0,E′
∣∣2

(E0 − E′)2

)

= 0.788363 + 53.6563g2 − 986.556g4 + 977.818g6 , (47)

where VE,E′ is the matrix element of the potential between states with en-
ergies E and E′ respectively. The comparison of this formula with the
numerical results and the prediction of Eq. (46) is presented on Fig. 4.
It is remarkable that the perturbative expansion attains the values of the
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Fig. 4. Comparison of the dependence of the energy of the lowest bosonic eigenstate
on the coupling constant g. Numerical data (crosses) are plot together with the
prediction of Eq. (46) (solid line), and the perturbative expansion Eq. (47) (dashed
lines).
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coupling constant where the numerical results have converged for cut-off
Ncut and agree with Eq. (46). This gives us hope that with an improved
perturbative expansion the whole spectrum may be obtained analytically.
This issue is being investigated in more details.

4.5. Witten’s index

The Witten index is defined as [33,34]

IW(T ) =
∑

b∈bosonic states

e−EbT −
∑

f∈fermionic states

e−EfT . (48)

It is a commonly used quantity to study supersymmetry in quantum me-
chanics. In our set up, the sums over the bosonic and fermionic states are
finite due to the cut-off. For a given Ncut one can just plug the eigenenergies
obtained from each fermionic sector into Eq. (48). Our numerical results are
shown on Fig. 5, where the dependence of IW(T ) on the euclidean time T is
presented. One notices a rapid convergence of IW(T ) to the value −2. This
confirms the fact that the model has two supersymmetric vacua.
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0

0 0.5 1 1.5 2

I W
(T

)

T

Fig. 5. Witten index. Different curves correspond to increasing cut-offs: 5, 10,
15, . . . , 40.

The collapse of the Witten index at T = 0 to zero can be explained in
the following way. At T = 0 the IW(T ) is just the difference in the numbers
of bosonic and fermionic states. However, the cut Fock basis has an equal
number of bosonic and fermionic states (see Subsection 2.5). Thus, the value
of the Witten index at T = 0 is zero for any cut-off. This is no longer true at
T 6= 0. Especially, for T → ∞, contributions from the states with nonzero
energies cancel, and IW(T ) counts the numbers of supersymmetric vacua,
equal −2 in the present case.
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5. Conclusions

In this paper we have described in a very detailed manner a recursive
algorithm for evaluation of matrix elements of any gauge invariant operator
in a Fock basis of Hilbert space. It can be applied to systems with any
SU(N) gauge group and allows the evaluation of spectra in all fermionic
sectors. We demonstrated the calculations on an example of anharmonic
oscillator with supersymmetric interactions for the SU(3) group.

We started by describing the idea of the numerical approach to quan-
tum mechanics in the Hamiltonian formulation using the cut Fock space
method. Then, we presented the construction of gauge-invariant Fock basis,
and particularly we introduced the concepts of elementary bosonic bricks
and composite fermionic bricks. Such approach provided us a systematic,
recursive description of the Fock states with increasing number of quanta.
We discussed the properties and symmetries of such basis. Next, we con-
centrated on the numerical algorithm. We described the calculation of the
matrix of scalar products, emphasizing the main ideas of the recursion re-
lations. Then, other parts of the algorithm were presented: the procedure
which removes redundant basis vectors and orthonormalizes the remaining
ones as well as the program which automatically calculates the commuta-
tors and anticommutators of given operators. Finally, the expressions for the
evaluation of matrix elements of any operator were outlined, and eventually,
the full recursion relations were presented. In the third part of this article we
applied our algorithm to a supersymmetric system with SU(3) gauge group
and a discrete spectrum. We used it as a particularly well suited test-ground
for our approach. We calculated the eigenenergies in all 9 fermionic sectors
and discussed their symmetries. Eventually, we were also able to obtain the
Witten index for this system.

The main advantage of this algorithm is that it treats bosons and fer-
mions on an equal footing, and thus, enables calculations in any fermionic
sector of the Hilbert space. This should be contrasted with the sign problems
encountered in lattice field theories. As a result an exact supersymmetric
degeneracy can be obtained even for finite cut-off. Moreover, the approach
can be applied to systems with discrete and continuous spectra as well as
possessing any kind of gauge symmetry. Particularly, the supersymmetric
anharmonic oscillator presented in this article with gauge groups with N ≥ 3
is currently investigated. Similarly, the D = 2, supersymmetric Yang–Mills
quantum mechanics with several gauge groups, such as SU(3), SU(4) and
SU(5) are studied analytically and numerically [30, 31]. The flexibility of
the algorithm enables also an generalization to higher dimensions, with the
ultimateD = 10, SYMQM case in mind. Results of the work is this direction
are promising.
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