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We demonstrate behaviour of the momentum space screened Coulomb
t-matrix, obtained by a numerical solution of the three-dimensional Lipp-
mann—Schwinger equation. Examples are given for different types of screen-
ing. They prove that it is possible to obtain numerically a reliable three-
dimensional screened Coulomb t-matrix, what is important in view of its
application in few-body calculations.

PACS numbers: 21.45.—v, 21.45.Bc, 25.10.+s

1. Introduction

The few nucleon systems can be nowadays studied using realistic nuclear
forces in all their complexity. However, addition of the Coulomb force acting
between protons poses serious obstacle and is still a challenging task. Up to
now the long range Coulomb potential could be exactly implemented only
into calculations of *He and “He bound states and of scattering states up to
three nucleons.

In the proton—proton (pp) elastic scattering Coulomb force can be in-
cluded exactly and observables can be calculated using e.g. the Vincent—
Phatak method [1]. For three-nucleon (3N) reactions it is possible to in-
clude the Coulomb force when performing calculations of the elastic proton—
deuteron (pd) scattering both in a coordinate [2| as well as in a momentum
space representation [3,4]. The pd breakup observables can be predicted
only in the momentum space using two approaches [5,6]. Both rely on
the screened Coulomb potential and renormalisation, what permits to apply
standard methods valid for short-range interactions.

In the formalism of Refs. [4] and [6] the Coulomb interaction enters Fad-
deev equations via the screened Coulomb t-matrix. This t-matrix appears
in a partial wave decomposed form as well as in its direct three-dimensional
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form for which no partial wave decomposition is performed. This allows to
include the full Coulomb interaction, not restricted to the finite number of
the lowest partial waves. Since that three-dimensional screened Coulomb
t-matrix is a basic component of that formulation, therefore one has to put
a special attention to its numerical realization.

Precise numerical calculations of the three dimensional screened Coul-
omb t-matrix are possible for any type of screening. They are numerically
quite demanding but in principle use the concepts developed in [7] for the
Malfliet—Tjion potential. This potential consists of two terms which have
the same functional form as an exponentially screened Coulomb potential
with the screening parameter n = 1 (for details see below). Such particular
value of the screening parameter n allows one to perform many steps ana-
lytically when obtaining momentum space partial wave decomposed as well
as direct three-dimensional t-matrix elements. The analogous procedure can
be adapted to the higher values of n, as done in [8], where observables for
pp scattering were calculated. Also there on-, half- and off-the-energy-shell
elements of the t-matrix are compared with the analytical expressions in the
screening limit from Refs. [9,10].

In this paper we present details of three-dimensional screened Coulomb
t-matrix calculations. The behaviour of the numerically obtained t-matrix
and its dependence on the screening parameters for different types of screen-
ing will be presented. In Sect. 2 we describe the numerical procedure to get
the three dimensional screened Coulomb t-matrix. In Sect. 3 the behaviour
of resulting t-matrices obtained with different forms of screening will be pre-
sented and t-matrices will be compared to the screened Coulomb potential.
In Sect. 4 the convergence of the partial wave decomposition of the screened
Coulomb t-matrix will be shown by comparing it with the generated three-
dimensional screened Coulomb t-matrix. Finally, we summarise in Sect. 5.

2. Numerical calculation of the screened Coulomb t-matrix
The three-dimensional momentum space matrix elements of the screened
Coulomb potential (§'|VE|p) = VE(p',p,x = cos(d) = p-p/) and the
3-dimensional screened Coulomb t-matrix elements (5'|tF(E)[p) =
2
th(p',p,p-P'; E) at energy E = %0 are related by [7,8§]

1
t8w p s E) = ool (0,pw,1)
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with
2
vf(p',p,x’,m) = /dqbVCR <p’,p,a:’x + \/1 — .%"2\/1 — x2 cos gb) . (2)

0

We solve Eq. (1) by generating its Neumann series and applying Padé
summation [8] for three types of screening:

1. The sharp cut-off screening
2

VI = e(R - (3)
with the unit step function ©. This screening leads to matrix elements
2m
o2
il a) = 5 [ 40l = costaR), 0
0

where ¢ = \/p2 +p? = 2pp/ (' + V1 — 2%/ 1 — 22 cos @).

2. The localised screening [11], where the transition from the pure Coul-
omb potential to zero values takes place smoothly in a finite interval

[R, 3R]

1207 (o001 Lot moton—n (- (Z)

(5)

The corresponding vZ(p/, p, 2', ) is

e 8q2R2 (cos(qR) + COS(SqR))
Uf(p,’p’ x/7:l") = 47T2q2 /d¢ 4q2R2
0

(6)

3. The exponential screening, dependent on two parameters: the power
n and the screening radius R:

Ry _ € (/R
V) = Sene/mr, 7)
In this case
9 2T [e'e) . ( ) 2 2T
sin(qr) _(zyn _

vl p, o’ x) = 22/dq§/dr . R:2/

0 0 0 @®
—(r/R)™

where the function I, r(q) = [ drsin(qr)e
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For the value of n = 1 the integration over r can be performed analytically
resulting in [7]

[\

e 1

" \/(p’2 +p? = 2pp'x + )2 — Ap?p2(1 - 2)(1 - )
(9)
For n > 1 a two-dimensional numerical integration is required to obtain
Uf(p’,p, 2’,x). Due to strong oscillations of the integrand in (8) the big
number of integration r-points is needed to achieve sufficient precision. This
significantly increases the computer time needed for the t-matrix calculation,
which has to be done on a big grid of p, p’, x and 2’ points. Typically, we solve
the Lippmann—Schwinger equation (1) using 120 p-points and 190 z-points
for the sharply cut off potential and 95 p-points with 130 z-points for other
screenings, what requires over 1.5 x 10® calculations of the vZ(p/,p,2’, )
function. The integration over ¢ in (8) can be performed with relatively
small number of ¢-points and thus the whole numerical difficulty is shifted
to calculation of I,, g(g). In order to speed it up we use the following method:
in the first step we prepare the I,, r(q) on a grid of 300 g-points in the range
of 0-100 fm~!. In order to calculate the integral over r we use the Filon’s
integration formula [12] which is dedicated to integrals of the product of the
sine (or cosine) with some nonoscillatory function f(z). The upper limit of
integration ryax is chosen sufficiently large so that the integrand approaches
zero (e~ (Tmax/R)™ = 10720) . Since the resulting function I,, r(¢) undergoes
changes of 10 orders of magnitude in a rather small region of ¢, it is very dif-
ficult to handle it properly in further interpolations and integrations. A way
out is to perform interpolations for the ratio Iﬁ?}%‘)(q) = I, r(q)/11,r(q) with

R p,al x) =

analytically known I g = q/(¢*> + R2). Variation of that ratio I'4°(q) is
much more restricted, as shown in Fig. 1, and we use its polynorﬁial rep-
resentation to get Ifi‘go(q) at any value of ¢q. For each value of n and R
we divide the interpolation region into some optimal number of intervals,
optimising their length as well as degree of the polynomial. Typically we
have 6 intervals while the degree of the polynomial varies between 6 to 12.
This allows us to describe the oscillating function I fj}%"(q) with a sufficiently
high precision, what is exemplified in Fig. 1 for n = 3 and R = 120 fm. In
addition to the solid line for I3333(q), the z-es in Fig. 1 show the I5%3(q)
values obtained from the polynomial formula. The agreement is perfect.
The examples of the polynomial representation of I;‘rj‘}t%io(q) for two sets of
screening parameters are given in the Appendix. The important and useful
feature of I}[Lago(q), and thus also of the fit parameters, is its independence
from the scajctering energy. Due to that the interpolation can be done once
for a given set of n and R values.
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Fig.1. (Colour online) The I, ;?go(q) for different combinations of screening parame-
ters and the quality of polynomial fit for I5%3 (¢). The solid (black) line represents
I35 (q) calculated by direct integration over r in (8) as a function of momenta g.
The black z-es show the values of I5%43(¢) obtained from its polynomial repre-
sentation. Other curves: dash-dotted (green), double-dashed-dotted (red), dotted
(blue) and dashed (magenta) represents I559, I5%453, I3 and I3, respectively.

For 0.15 < ¢ < 100 fm the Iff}%io(q) is practically equal 1.

Once the If:‘go(q) is calculated also I,, r(q) is known and the final inte-

gration over ¢ leads to v®(p', p,2’,x). In our calculations we use typically a
set of 500 Gaussian points for the ¢-integration for all types of screening.

The properties of the resulting screened t-matrices are presented in the
next section.

3. The screened Coulomb t-matrix properties

In this section the three-dimensional screened Coulomb t-matrix ¢(p’, p,
x = cos(6)) will be shown as a function of momenta p, p’ at given scattering
angle . We choose as examples of backward, intermediate and forward
angles the following values of #: 134°,45° 10° and 5°.

In Fig. 2 the real and imaginary parts of the exponentially screened Coul-
omb t-matrix with n = 4 and R = 20 fm at £ = 13 MeV are shown. The
real part of ¢ has a high and steep maximum at small momenta at § = 134°,
which evolves to a ridge lying along diagonal p’ = p for smaller angles. The
spiky structure seen for the smallest angle comes only from the graphical
representation on the finite grid of p and p’-points. The increasing range
of the ridge shows that action of the screened Coulomb force becomes more
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Fig. 2. The real (left) and imaginary (right) parts of the screened Coulomb t-matrix
t(p,p',x = cos(f)) at E = 13 MeV for different scattering angles § = 134°(1st
row), 8 = 45°(2nd row), 6 = 10°(3rd row) and 6 = 5°(4th row). The exponential
screening with R = 20 fm and n = 4 has been applied.
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Fig.3. The same as in Fig. 2 but for R = 120 fm.
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and more important at bigger momenta when moving to smaller scattering
angles. The imaginary part has a minimum at the on-shell point p = p’ =
po (= 0.396 fm~! for E = 13 MeV). Its absolute value is about one order
of magnitude smaller than the maximum of the real part. The minimum of
the imaginary part becomes deeper and narrower with decreasing angle.

The similar behaviour exists also for other values of the screening ra-
dius R. This is exemplified in Fig. 3 for R = 120 fm. Taking higher values
of R leads to a more restricted range of momenta, at which the real part of ¢
takes large values. However, the maximum of Re(¢) is much higher than for
R = 20 fm. Also the range of momenta, where Im(¢) has the deep minimum
is much smaller than for R = 20 fm.

In Figs. 4 and 5 the t-matrix for the sharp cut-off screening at £ =
13 MeV is shown for two values of cut-off parameter: R = 20 fm and
R = 80 fm, respectively. The general picture is similar to that for the
exponential screening, however, some oscillations are visible for both real
and imaginary parts of the t-matrix. For the real part they are clearly vis-
ible at small momenta. For the imaginary part at bigger scattering angles
they are relatively large, when compared to the absolute minimum of Im(¢)
and decrease with decreasing angles.

The t-matrices obtained using the localised screening of Eq. (5) are shown
in Fig. 6 (R =9 fm) and Fig. 7 (R = 55 fm). These values of the localized
screening range parameter R = 9 (55) fm correspond roughly to the values
of the screening radius R = 20 (120) fm for the exponential screening. The
resulting t-matrices are very similar to those obtained with the exponential
screening at the same angles.

For the exponential screening we investigated the dependence of the
screened Coulomb t-matrix on the value of the screening parameter n. We
found only weak dependence, as exemplified in Fig. 8 where t-matrices at
0 = 10° are shown for n = 2 and n = 3. This picture can be further
supplemented by parts of Fig. 2 (n = 4) and Fig. 4 (sharp cut-off, what
corresponds to infinite value of n) at the same angle. It is seen that there is
only small decreasing of the height of the diagonal ridge for the real part of
the t-matrix at the smallest momenta. The minimum of the imaginary part
becomes narrower and deeper with increasing n.

Finally, we checked, how good is the approximation of the three-dimen-
sional screened Coulomb t-matrix by the screened Coulomb potential alone.
To that aim we looked at the ratio

tg(p,’p7 I‘) B ‘/v:R(p/7p7 'T)
VE( ,p, @)

A=
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Fig.4. The same as in Fig. 2 but for the sharp cut-off screening of Eq. (3) with
R =20 fm at £ =13 MeV.
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Fig.5. The same as in Fig. 2 but for the sharp cut-off screening of Eq. (3) with
R =280 fm at £ =13 MeV.
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Fig.6. The same as in Fig. 2 but for the localized screening of Eq. (5) with R = 9 fm.
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Fig.7. The same as in Fig. 2 but for the localized screening of Eq. (5) with
R =55 fm.
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Fig.8. The real and imaginary parts of the exponentially screened Coulomb t-
matrix at £ = 13 MeV for the scattering angle §=10°, R = 20 fm and for two
values of the screening parameter n = 2 (up) and n = 3 (down).

In Fig. 9 we show A at different scattering angles, obtained for the expo-
nential screening with R = 120 fm and n =4 at £ = 13 MeV. At all angles
the real part of A does not exceed 12%. The imaginary part of A is below
3% for all p and p’ values what emphasises the smallness of the imaginary
part and would indicate on validity of approximation tf by pure screened
Coulomb potential V,f*. The differences between the values of tf and V% are
biggest for p,p’ < pg and around p = py or p’ = pg. It means that in those
regions of momenta the approximation of the screened Coulomb t-matrix by
the corresponding screened Coulomb potential is rather poor.

~ 2
For the on-shell screened Coulomb t-matrix elements <p0p’ |tf(%)|poﬁ>

obtained with exponential screening we show quality of the Born approxima-
tion in Figs. 10 and 11. There the screened Coulomb potential V./*(pg, po, )
together with t-matrix elements are shown as a function of cosine of scatter-
ing angle 6. The screening parameters are n = 4 and R = 20 fm for Fig. 10
and n =4 and R = 120 fm for Fig. 11.

The real part of the screened Coulomb t-matrix (solid line) and the
screened Coulomb potential (dotted line) are close to each other, and their
ratio does not exceed 4% of V.2 for the screening range R = 20 fm and
increases up to about 10% when the screening radius reaches R = 120 fm.
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Fig.9. The real (left) and imaginary (right) parts of the ratio A = (¢t — v)/v
(see text) for different scattering angles 6: 134°(1st row), 45°(2nd row), 10°(3rd
row) and 5°(4th row) for the exponential screening with R = 20 fm and n =4 at
E =13 MeV.
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In both cases the imaginary part of the t-matrix is much smaller than its real
part and becomes important only at very small scattering angles. The real
part of the t-matrix is in all cases somewhat smaller than the corresponding
potential matrix element.
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Fig.10. The real (solid line) and imaginary (dashed line) parts of the on-shell
exponentially screened Coulomb t-matrix t1*(pg, po, z) at E = 13 MeV as a function
of the cosine of scattering angle 6 (x = cos(6)) (upper part). The dotted line is the
corresponding screened Coulomb potential V.%(pg, po, z). In the lower part of figure
the ratio Re(tZ)/V.F is shown. The parameters of the screening are R = 20 fm and

n=4.
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Fig.11. The same as in Fig. 10 but for R = 120 fm.
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4. The three-dimensional t-matrix
from the partial wave decomposition

In this section we would like to compare the on-shell elements of the
three-dimensional screened Coulomb t-matrix obtained directly from Eq. (1)
with its value derived from solutions of the partial wave decomposed Lipp-
mann-Schwinger equation (p,[|t|p’,l). The latter is given as a sum of con-
tributions from different angular momenta [

l
o . B max 2l+ 1
tP (p,p’,l‘):; ym Py(z) {p,lt]p,1) , (10)

where Pj(z) is the Legendre polynomial of the cosine of the scattering angle,
x = p-p, and lpax should be high enough to give convergent result at
given energy and screening. The (p,l|t|p’,]) partial wave t-matrix element

is a solution of the one-dimensional Lippmann—Schwinger equation with the

3

Re (t) [MeV fm’]

Im (©) [MeV fm’]

P SRR TN T SR T SR TR S SR NS A W
-1 -0.5 0 0.5 1

Fig.12. The convergence in the partial waves of the exponentially screened Coul-
omb t-matrix at £ = 13 MeV. The real and imaginary parts of the on-shell elements
of the three-dimensional screened Coulomb t-matrix are given by thick dotted line.
The other lines represent partial wave generated results obtained by summation of
partial waves up to lpax = 3 (dotted), lmax = 5 (dashed) and [, = 10 (solid).
The screening parameters are n = 4 and R = 20 fm.
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screened Coulomb potential driven by its partial wave element:

oo

2a . —(r/R)"™ -
VA1) = 22 [ drripre I ). (1)
0

In Fig. 12 we show convergence of the result with respect to lpa.x for
lmax = 3,5 and 10. The partial wave generated screened Coulomb t-matrix
is compared to the exponentially screened Coulomb t-matrix obtained di-
rectly from Eq. (1) with n = 4 and R = 20 fm at £ = 13 MeV. For such
relatively small screening radius R it is sufficient to restrict to partial waves
up to lmax = 10 only to reproduce the full 3-dimensional t-matrix (thick
dotted line). However, the number of partial waves needed to reproduce the
full three-dimensional t-matrix increases rapidly with increasing screening
radius. This is exemplified in Fig. 13 for R = 120 fm, where partial wave
generated results with [, = 10, 20,30 and 50 are shown together with the
full solution. It is clearly seen that even taking ly.x = 50 is still not enough
to describe with sufficient precision the full three-dimensional screened Coul-
omb t-matrix. This shows the importance of the direct three-dimensional
solution of Eq. (1), which avoids problems caused by very slow convergence
of the partial wave expansion for big screening radii.
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Fig.13. The same as in Fig. 12 but for R = 120 fm. The partial waves generated
results are obtained by summing up to lax = 10 (dash-dotted), l;nax = 20 (dotted),
Imax = 30 (dashed) and Iy = 50 (solid). The thick dotted line represents as before
the three-dimensional screened Coulomb t-matrix.
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5. Summary

In this paper we investigated numerically behaviour of the three-dimen-
sional screened Coulomb t-matrix using different types of screening. Such
t-matrix is solution of the three-dimensional Lippmann—Schwinger equation
and is an important component of a recently developed novel approach to in-
clude the pp Coulomb force into the three-nucleon Faddeev calculations [4,6].
The direct application of the three-dimensional screened Coulomb t-matrix
decreases substantially number of partial waves needed in 3N calculations
reducing them to the number of partial waves needed to get converged re-
sults in case when only nuclear part of the potential is acting. The presented
numerical procedure enables to get precise values of the three-dimensional
screened Coulomb t-matrix for any form of the screening.

We have also presented behaviour of the screened Coulomb t-matrix for
different types of screening and for different values of screening parameters.
The resulting t-matrices are similar. Only the t-matrix based on the sharply
cut off Coulomb potential reveals oscillations, which are absent for other
types of screening. Those oscillations cause, that numerical requirements
on computer resources are bigger in that case. The behaviour of the real
and imaginary parts of the three-dimensional screened Coulomb t-matrix
with varying scattering angle is clearly seen in given examples. The range
of relative momenta, where the real part of ¢ is important rapidly grows
with decreasing scattering angle for all types of screening. Contrary, the
imaginary part of ¢ becomes more localized with decreasing scattering angle
but the depth of its minimum grows.

The presented results exemplify, that the three-dimensional screened
Coulomb t-matrix can be obtained numerically in a reliable way for any
type of screening making it a valuable input in three-body calculations.
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(acronym HadronPhysics2, Grant Agreement No. 227431) under the Seventh
Framework Programme of EU. The numerical calculations were performed
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Appendix

In the following tables we give values of parameters a, for the polynomial
representations of the Iff}t%io(q) => a,q” in case of exponential screening
and two sets of (n, R) parameters: (n = 2, R = 20) in Table I and (n = 4,
R = 120) in Table II. The k (first column) gives a power of q which goes
with the corresponding aj factor given in next columns for different ranges
of ¢ [fm™1].

TABLE I

Parameters for the polynomial representation of 1, ;?}%O(q) for exponential screening
with n = 2 and R = 20.

k g<04 0.4 < g<0.4825 0.4825 < ¢ < 0.98

0 0.5000125677171 2.400709537574 3.921200500830

1 —0.006479230796918 —11.71854218076 —37.98859669416

2 167.3502341712 42.56921618797 242.8850249646

3 —20.31247086770 —80.71301847419 —974.8378775605

4 —12352.87853580 78.54728957584 2694.796660079

5 36456.32220409 —31.11252021404 —5362.934658952

6 —524160.9711593 — 7842.047876700

7 15708513.64668 — —8464.239235675

8 —165490836.2729 — 6679.063924791

9 931536159.6442 — —3752.307134393
10 —3219232757.359 — 1423.137799525

11 7104191720.650 — —326.9144001002
12 —9827857786.235 — 34.37700645114

13 7804143302.566 — —

14 —2723712664.926 — —

k 0.98 < ¢ < 1.725 1.725 < ¢ < 10.5 10.5 < ¢ < 100

0 1.100526033577 1.015402877247 1.000334483409

1 —0.2600475901233 —0.1503793799690E-01 | —0.4682291329186E-04
2 0.2987640252234 0.6468810517976E-02 0.2854148534117E-05
3 —0.1809241210266 —0.1511703363356E-02 | —0.9406333859035E-07
4 0.5644212648115E-01 0.2040113688732E-03 0.1787524617018E-08
5 | —0.7169472025225E-02 | —0.1584593947154E-04 | —0.1954522705295E-10
6 — 0.6567867383073E-06 0.1140554415044E-12
7 — -0.1124054147047E-07 | -0.2748652734470E-15
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TABLE 11
The same as in Table I but for n =4 and R = 120.

k ¢ < 0.0735 0.0735 < ¢ < 0.11 0.11 < ¢ < 0.148

0 0.4430751038110 —61.12120265116 17222.40652970

1 0.1624327164522 3122.555537517 —1665157.950661

2 5657.908456700 —61815.86410617 72913086.23221

3 37890.24852747 603243.9054240 —1912425443.395
4 —14459376.10638 —2904646.753554 33474324944.51

) 613454088.3275 5524183.167489 —412042007272.1

6 —34028042154.54 — 3658148517742.0

7 1709808009779. — —0.2360571796460E+14
8 | —0.5319386618092E+14 — 0.1098886587674E+15
9 0.1051045675524E+16 — —0.3598714293204E+-15
10 | —0.1399718714098E+17 — 0.7868023497509E+-15
11 | 0.1294364258655E+18 — —0.1030692803221E+16
12 | —0.8173922266757E+18 — 0.6113583130648E+-15
13 | 0.3207993078724E+19 — —
14 | —0.5891645069211E+-19 — —

k 0.148 < q < 0.4755 0.4755 < ¢ < 1.49 1.49 < ¢ < 100

0 1.014501500770 1.002164118242 1.000039812743

1 —0.1499375990712 —0.8401588857950E-02 | —0.1260392857265E-04
2 0.6806385287457 0.1422552507692E-01 0.1308082855220E-05
3 —1.605992271344 —0.1246326266740E-01 | —0.6209139096908E-07
4 1.925075383945 0.5526732459266E-02 0.1534201149986E-08
5 —0.9274592364796 —0.9817848874961E-03 | —0.2041445354694E-10
6 — — 0.1386086594813E-12
7 — — —0.3765737840762E-15
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