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We construct a quintom dark energy model with two non-minimally
coupled scalar fields, one quintessence and the other phantom field, con-
fined on the warped DGP brane. We study some important issues such
as phantom divide line crossing, existence of the bouncing solutions and
the stability of the solutions in this framework. We show that this model
accounts for crossing the phantom divide line and realization of the bounc-
ing solutions. This model allows for stability of the solutions in separate
regions of the ω–ω′ phase-plane.

PACS numbers: 98.80.–k, 95.36.+x, 98.80.Cq

1. Introduction

Despite all of its successes, the standard model of cosmology suffers from
a series of problems. The most serious of these problems is the problem of
initial singularity because the laws of physics break down at the singularity
point. In order to avoid this lawlessness, there is a huge interest in the
solutions that do not display divergences. These solutions could be obtained
at a classical level or by quantum modifications. Most of the efforts in
quantum gravity is devoted to reveal the nature of the initial singularity
and to understand the origin of matter, non-gravitational fields, and the
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very nature of the spacetime. In recent analysis based on the loop quantum
cosmology, the Big Bang singularity is replaced by a quantum Big Bounce
with finite energy density of matter. This scenario has strong quantum
effects at the Planck scale too. Another motivation to remove the initial
singularity is the initial value problem. A sound gravitational theory needs
to have a well posed Cauchy problem. Due to the fact that the gravitational
field diverges at the singularity, we could not have a well formulated Cauchy
problem as we cannot set the initial values at that point.

On the other hand, one of the most important discoveries over the past
few years is that we live in a positively accelerated universe which is al-
most spatially flat [1]. Another remarkable hint of the cosmological obser-
vations is that the equation of state parameter (ω) transits from ω > −1
to ω < −1 [2–4]. These discoveries generated renewed interest in bouncing
models of the universe because it can be shown that at a positively acceler-
ated universe a necessary condition for a bounce in general relativity is to
violate the null energy condition, i.e. to have ρ+p < 0. To interpret the cos-
mic acceleration, a so-called dark energy component has been proposed. On
the other hand the nature of dark energy is ambiguous. The simplest can-
didate of dark energy is a cosmological constant with the equation of state
parameter ω = −1. However, this scenario suffers from serious problems
like a huge fine tuning and the coincidence problem [5]. Alternative models
of dark energy suggest a dynamical form of dark energy, which is often re-
alized by one or two scalar fields. In this respect, dark energy components
such as quintessence, k-essence, chaplygin gas, phantom and quintom fields
have been studied extensively [6] (see also [7] and [8]). Another alterna-
tive approach to explain the universe’s late-time acceleration is modifying
the General Relativity itself [9]. Also, some braneworld scenarios are other
successful models to achieve this goal [10]. In a braneworld scenario, our
3-brane is embedded in a higher dimensional bulk. Matter fields are confined
to a four dimensional brane while gravity and possibly non-standard matter
fields are free to propagate in entire space time. Among the braneworld
models, the Randall–Sundrum II (RSII) model is very popular since it has
a new modification of the gravitational potential in the very early stages
of the universe evolution [11]. On the other hand, the Dvali–Gabadadze
and Porrati (DGP) braneworld scenario is a very interesting model which
can describe the origin of the late-time accelerating behavior of the universe
without adopting any additional mechanism [12]. In this setup, gravity is
modified at large distances because of an induced four-dimensional Ricci
scalar on the brane. This term can be obtained by the quantum interac-
tion between the matter confined on the brane and the bulk gravitons. The
DGP braneworld scenario explains accelerated expansion of the universe via
leakage of gravity to extra dimension without need to introduce a dark en-
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ergy component. While the RSII model produces ultra-violet modification
to the General Relativity, the DGP model leads to infra-red modification.
By considering the effect of an induced gravity term as a quantum correc-
tion in RSII model, we have a combined model that dubbed warped DGP
braneworld in the literature [13]. This setup gives also a self-accelerating
phase in the brane cosmological evolution.

While DGP-inspired models essentially have the capability to explain
late-time acceleration, crossing the cosmological constant line and issues
such as realization of bouncing solutions and their stability need additional
mechanism to be explained in these models. With this viewpoint, in this
paper we construct a quintom dark energy model with two scalar fields non-
minimally coupled to induced gravity on the warped DGP brane. We study
some currently important cosmological issues such as phantom divide line
crossing, avoiding singularities by realization of the bouncing solutions and
stability of these solutions. We analyze the parameter space of the model
numerically and we show that this model allows for stability of the solutions
in the separate regions of the ω–ω′ phase-plane.

2. Warped DGP brane

The action of the warped DGP model can be written as follows

S = Sbulk + Sbrane , (1)

S =
∫

bulk

d5X

√
−(5)g

[
1

2κ2
5

(5)R+(5)Lm
]
+
∫

brane

d4x
√
−g
[

1
κ2

5

K±+Lbrane(gαβ, ψ)
]
.

(2)
Here Sbulk is the action of the bulk, Sbrane is the action of the brane and
S is the total action. XA with A = 0, 1, 2, 3, 5 are coordinates in the bulk
while xµ with µ = 0, 1, 2, 3 are induced coordinates on the brane. κ2

5 is the
5-dimensional gravitational constant. (5)R and (5)Lm are the 5-dimensional
Ricci scalar and the matter Lagrangian respectively. K± is trace of the ex-
trinsic curvature on either side of the brane. Lbrane(gαβ, ψ) is the effective
4-dimensional Lagrangian on the brane. The action S is actually a com-
bination of the Randall–Sundrum II and DGP model. In other words, an
induced curvature term appears on the brane in the Randall–Sundrum II
model, hence the name Warped DGP Braneworld [13]. Now consider the
brane Lagrangian as follows

Lbrane(gαβ, ψ) =
µ2

2
R− λ+ Lm , (3)

where µ is a mass parameter, R is the Ricci scalar of the brane, λ is the
tension of the brane and Lm is the Lagrangian of the other matters localized
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on the brane. We assume that bulk contains only a cosmological constant,
(5)Λ. With these choices, action (1) gives either a generalized DGP or a
generalized RS II model: it gives DGP model if λ = 0 and (5)Λ = 0, and
gives RS II model if µ = 0 [13]. The generalized Friedmann equation on the
brane is as follows [13]

H2 +
k

a2
=

1
3µ2

[
ρ+ ρ0

(
1 + εA(ρ, a)

)]
, (4)

where ε = ±1 corresponds to two possible branches of the solutions (two
possible embedding of the brane in the AdS5 bulk) in this warped DGP

model and A =
[
A2

0 + 2η
ρ0

(
ρ − µ2 E0

a4

)]1/2

, where A0 ≡
[
1 − 2η µ

2Λ
ρ0

]1/2

,

η ≡ 6m6
5/ρ0µ

2 with 0 < η ≤ 1 and ρ0 ≡ m4
λ + 6m6

5/µ
2. By definition,

mλ = λ1/4 andm5 = k
−2/3
5 . E0 is an integration constant and corresponding

term in the generalized Friedmann equation is called dark radiation term.
We neglect dark radiation term in forthcoming arguments. In this case,
generalized Friedmann equation (4) attains the following form,

H2 +
k

a2
=

1
3µ2

[
ρ+ ρ0 + ερ0

(
A2

0 +
2ηρ
ρ0

)1/2
]
, (5)

where ρ is the total energy density, including energy densities of the scalar
fields and dust matter on the brane:

ρ = ρϕ + ρσ + ρdm . (6)

In what follows, we construct a quintom dark energy model on the warped
DGP brane.

3. A quintom dark energy model on the warped DGP brane

As a part of matter fields localized on the brane, we consider a quintom
field non-minimally coupled to induced gravity on the warped DGP brane.
The action of this non-minimally coupled quintom field is given by

Squint =
∫

brane

d4x
√
−g
[
− 1

2ξR(ϕ2 + σ2)− 1
2∂µϕ∂

µϕ+ 1
2∂µσ∂

µσ − V (ϕ, σ)
]
,

(7)
where ξ is a non-minimal coupling and R is induced Ricci scalar on the
brane. ϕ is a normal (canonical or quintessence) component while σ is a
phantom field. We have assumed a conformal coupling of the scalar fields
and induced gravity. Variation of the action with respect to each scalar field
gives the equation of motion of that scalar field
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ϕ̈+ 3Hϕ̇+ ξRϕ+
∂V

∂ϕ
= 0 , (8)

and
σ̈ + 3Hσ̇ − ξRσ − ∂V

∂σ
= 0 . (9)

The energy density and pressure of the quintom field are given by the fol-
lowing relations

ρquint = ρϕ + ρσ

= 1
2

(
ϕ̇2 − σ̇2

)
+ V (ϕ, σ) + 6ξH(ϕϕ̇+ σσ̇) + 3ξH2

(
ϕ2 + σ2

)
(10)

and
pquint = pϕ + pσ

= 1
2

(
ϕ̇2−σ̇2

)
−V (ϕ, σ)−2ξ

(
ϕϕ̈+ 2ϕHϕ̇+ ϕ̇2 + σσ̈ + 2σHσ̇ + σ̇2

)
−ξ(2Ḣ + 3H2)

(
ϕ2 + σ2

)
. (11)

In what follows, by comparing the modified Friedmann equation in the
warped DGP braneworld with the standard Friedmann equation, we de-
duce the equation of state of the dark energy component. This is reasonable
since all observed features of dark energy are essentially derivable in gen-
eral relativity (see [14] and references therein). The standard Friedmann
equation in four dimensions is written as

H2 +
k

a2
=

1
3µ2

(ρdm + ρde) , (12)

where ρdm is the dust matter density, while ρde is dark energy density. Com-
paring this equation with equation (5), we deduce

ρde = ρϕ + ρσ + ρ0 + ερ0

(
A2

0 + 2η
ρ

ρ0

)1/2
. (13)

The conservation of the quintom field effective energy density can be stated
as

dρquint

dt
+ 3H(ρquint + pquint) = 0 . (14)

Since the dust matter obeys the continuity equation and the Bianchi identity
keeps valid, total energy density satisfies the continuity equation. In order
to solve the Friedmann equation (5) we choose the following potential

V (ϕ, σ) = (ζϕσ)2 + 1
2m

2
(
ϕ2 − σ2

)
, (15)
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where ζ is a dimensionless constant describing the interaction between the
scalar fields. With this potential, a possible solution of our basic equations,
(5), (9) and (10) with supplemented equations (11) and (12) is as follows
(see [15] for a similar argument)

ϕ =
√
C0 cos(mt) , σ =

√
C0 sin(mt) , (16)

where C0 is a parameter with the dimension of mass squared describing the
oscillating amplitude of the fields. For a flat spatial geometry on the brane
and setting ρdm = 0, if we consider low-energy limit where by assumption
ρde � ρ0, we find(

ȧ

a

)2

≈ 1
3µ2

[
(ρϕ + ρσ)

(
1 +

εη

A0

)
+ ρ0(1 + εA0)

]
. (17)

Using (17) in (11), we find

ρϕ + ρσ =
ζ2C2

0

4
sin2(2mt) + 3ξH2C0 . (18)

Therefore, Friedmann equation (17) can be rewritten as follows

H = ±

 ζ2C2
0

12µ2 sin2(2mt)(1 + εη
A0

) + ρ0
3µ2(1+εA0)

1− ξC0

µ2(1+ εη
A0

)

1/2

. (19)

There are four possible combinations of signs in this equation. We use this
result in our forthcoming arguments. Before proceeding further, we note
that one could choose the quantities in the square root in a way that lead to
a imaginary Hubble parameter. We avoid such cases in what follows. Also
singularity points of H are treated in forthcoming arguments.

3.1. Bouncing behavior of the model

We start with a detailed examination of the necessary conditions required
for a successful bounce. During the contracting phase, the scale factor a(t)
is decreasing, i.e. ȧ(t) < 0, and in the expanding phase we have ȧ(t) > 0. At
the bouncing point, ȧ(t) = 0, and around this point ä(t) > 0 for a period of
time [15,16]. Equivalently in the bouncing cosmology, the Hubble parameter
H runs across zero from H < 0 to H > 0 and H = 0 at the bouncing point.
A successful bounce requires that around this point the following relation
should be satisfied

Ḣ = −4πGρ(1 + ω) > 0 . (20)
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So, at the bouncing point the scale factor reaches a non-zero minimum value
while the Hubble parameter reaches zero. By solving the Friedmann equa-
tion (19) we plot the behavior of the scale factor versus the cosmic time, t,
for two branches of the solutions. Figure 1 (a) shows the behavior of a(t)
for ε = +1 and Fig. 1 (b) shows the case for ε = −1. As one can see, in
both branches of this DGP-inspired model, the scale factor reaches a non-
zero minimum and the universe switches between expanding and contracting
phases alternatively. As we have emphasized, equation (19) has four alter-
native representations corresponding to four possible combinations of the
signs. If we integrate this equation, we find

a(t) = a0 exp

±∫
 ζ2C2

0
12µ2 sin2(2mt)(1 + εη

A0
) + ρ0

3µ2(1+εA0)

1− ξC0

µ2(1+ εη
A0

)

1/2
 . (21)

Other possible combinations of signs lead to only a shift in the corresponding
figures.

Fig. 1. The evolution of the scale factor for two branches of the warped DGP model
with quintom field localized on the brane: (a) Self-accelerating branch of the model
(with ε = +1), the universe undergoes an expansion, reaches a maximum radius
and then crunches to a finite minimum size and this cycle repeats. There is no
bounce at the minimum point since the scale factor has no derivative at that point.
(b) Normal branch of the model (with ε = −1). The universe switches alternatively
between expanding and contracting phases. The minimum points are the bouncing
points.
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3.2. Crossing the phantom divide line

In the DGP scenario if we use a single scalar field (ordinary or phantom)
on the brane, we can show that the equation of state parameter of dark
energy crosses the phantom divide line [17] (see also [14] and [18]). It has
been shown that DGP model with a quintom dark energy fluid in the bulk
or brane, accounts for the phantom divide line crossing too [19]. Now we try
to realize this crossing in the warped DGP braneworld with quintom matter
localized on the brane and non-minimally coupled to induced gravity. In
this warped DGP model, the equation of state parameter, ω of dark energy
component has the following form ( with ρdm = 0)

ω=−1+
(ϕ̇2−σ̇2)−2ξ

[
−H(ϕϕ̇+σσ̇)+Ḣ(ϕ2+σ2)+ϕϕ̈+σσ̈+ϕ̇2+σ̇2

]
ρde

×

{
1+εη

(
A2

0+2η
1
2 (ϕ̇2−σ̇2)+V (ϕ, σ)+6ξH(ϕϕ̇+σσ̇)+3ξH2(ϕ2+σ2))

ρ0

)−1/2
}
.

(22)

After substituting corresponding relations for ϕ, σ, H and V in equation
(22), we plot the behavior of ω for two branches of the DGP-inspired model
versus the cosmic time. Figure 2 shows the variation of ω versus cosmic time
for two possible branches of the model. In figure 2 (a) which is devoted to
self-accelerating branch, the equation of state parameter crosses the cosmo-
logical constant line. This behavior is repeated periodically due to oscillating
nature of the cosmic expansion. Figure 2 (b) shows the situation for normal
(non-self accelerating) branch. In this case crossing the cosmological con-
stant line occurs too, but the behavior of equation of state parameter differs
considerably compared to self-accelerating branch. As this figure shows, at
the bouncing point ω approaches the negative infinity. Before discussing
the stability of solutions in this setup, one important point should be em-
phasized here: we note that the potential (15) does not make the equations
(8)–(11) symmetric with respect to transformations ϕ → −σ and σ → −ϕ.
One may think that this is the case if we take

ϕ→ −iσ (23)

and
σ → −iϕ , (24)

where i is the imaginary unit. However, this is not actually the case: with
these transformations, there is a shift in phase of both canonical and phan-
tom fields defined in equation (16). In absence of non-minimal coupling
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Fig. 2. Time evolution of the equation of state parameter ω. There is a crossing the
cosmological constant line in both branches of the scenario: (a) Self-accelerating
branch. ω mimics the oscillating nature of the cosmic expansion. (b) Normal
branch. As usual, at the bouncing point ω approaches the negative infinity.

parameter (ξ = 0), equations (8)–(11) remain unchanged under these trans-
formations and the form of the scale factor and the equation of state param-
eter are invariant under these transformations. However, the presence of the
non-minimal coupling between the scalar fields and induced gravity on the
brane leads to a breakdown of this symmetric behavior. In summary, we
stress that the presence of the non-minimal coupling breaks the symmetric
behavior of the model under transformations (23) and (24).

3.3. Stability of the model

Now we study the stability of our model. The sound speed expresses the
phase velocity of the inhomogeneous perturbations of the quintom field. In
order to study the classical stability of our model, we analyze the behavior
of the model in the ω−ω′ plane where ω′ is the derivative of ω with respect
to the logarithm of the scale factor (see [20–23] for a similar analysis for
other interesting cases)

ω′ ≡ dω

d ln a
=
dω

dt

dt

d ln a
=
ω̇

H
. (25)

We define the function ca as

c2a ≡
ṗ

ρ̇
. (26)
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If the matter is considered as a perfect fluid, this function would be the
adiabatic sound speed of this fluid. But, for our model with two scalar
fields, this is not actually a sound speed. Nevertheless, we demand that
c2a > 0 in order to avoid the big rip singularity at the end of the universe
evolution. From equation (14) we have

ρ̇de = −3Hρde(1 + ωde) . (27)

Using equation of state pde = ωdeρde, we get

ṗde = ω̇deρde + ωdeρ̇de . (28)

So, the function c2a could be rewritten as

c2a =
ω̇de

−3H(1 + ωde)
+ ωde . (29)

In this situation, the ω − ω′ plane is divided into four regions defined as
follows 

I : ωde > −1 , ω′ > 3ω(1 + ω) ⇒ c2a > 0 ,
II : ωde > −1 , ω′ < 3ω(1 + ω) ⇒ c2a < 0 ,
III : ωde < −1 , ω′ > 3ω(1 + ω) ⇒ c2a < 0 ,
IV : ωde < −1 , ω′ < 3ω(1 + ω) ⇒ c2a > 0 .

(30)

As one can see from these relations, the regions I and IV have the classical
stability in our model. We plot the behavior of the model in the ω − ω′

phase plane and identify the regions, mentioned above, in figure 3.

Fig. 3. Bounds on ω′ as a function of ω in ω − ω′ phase plane. The stable regions
are I and IV.
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4. Summary

One of the most serious drawbacks of the standard model of cosmology
is the problem of initial (and possibly final) singularity. In recent analysis
done within the loop quantum cosmology, the Big Bang singularity is re-
placed by a quantum Big Bounce with finite energy density of matter. Also
incorporation of the Gauss–Bonnet term in the action of braneworld models
with induced gravity provides a phenomenologically rich framework to over-
come initial singularity with possible realization of bouncing solutions [24].
On the other hand, a sound gravitational theory needs also to have a well
posed Cauchy problem. A Model universe which realizes bouncing solution
is a good candidate to overcome these singularities.

An alternative approach to explain late-time positively accelerated ex-
pansion of the universe is a multi-component dark energy with at least one
non-canonical phantom field. The analysis of the properties of dark energy
from recent observations favors models where ω = p

ρ crosses the phantom di-
vide line, ω = −1 in the near past. In this respect, construction of theoretical
frameworks with potential to describe this positively accelerated expansion
and crossing the phantom divide line by the equation of state parameter is
an interesting challenge. In this paper, we have considered a quintom field
non-minimally coupled to induced gravity on the warped DGP braneworld
as a dark energy component. We have studied the bouncing behavior of
the solutions in both branches of this DGP-inspired scenario. In the self-
accelerating branch of the model (with ε = +1), the universe undergoes
an expansion, reaches to a maximum radius and then crunches to a finite
minimum size and this cycle repeats. In this case, there is no bounce at the
minimum point since the scale factor has no derivative at that point. In
the normal (non-self accelerating) branch of the model (with ε = −1), the
universe switches alternatively between expanding and contracting phases.
The minimum points of the scale factor versus cosmic time are the bouncing
points. In fact, there is a sequence of phases as: Expansion → Turn-around
→ Contraction → Bounce and this cycle repeats regularly. This model can
be regarded as an oscillating universe: this oscillation can be regarded as
the result of the existence of positive pressure of the standard scalar field
competing with the negative pressure of the phantom field [25].

Next, we study the dynamics of the equation of state parameter. One
can see that there is a crossing the phantom divide line in both branches
of this DGP-inspired model although the evolution of the equation of state
parameter is different in these two branches. We have studied the stability
of this model. As a result, there are appropriate regions of ω − ω′ phase
plane that solutions are stable.
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Finally, we should stress on the ghost instabilities present in the self-
accelerating branch of this DGP-inspired model. The self-accelerating branch
of the DGP model contains a ghost at the linearized level [26]. Since the
ghost carries negative energy density, it leads to the instability of the space-
time. The presence of the ghost can be attributed to the infinite volume
of the extra-dimension in DGP setup. When there are ghosts instabilities
in self-accelerating branch, it is natural to ask what are the results of solu-
tions decay. As a possible answer we can state that since the normal branch
solutions are ghost-free, one can think that the self-accelerating solutions
may decay into the normal branch solutions. In fact, for a given brane ten-
sion, the Hubble parameter in the self-accelerating universe is larger than
that of the normal branch solutions. Then it is possible to have nucleation
of bubbles of the normal branch in the environment of the self-accelerating
branch solution. This is similar to the false vacuum decay in de Sitter space.
However, there are arguments against this kind of reasoning which suggest
that the self-accelerating branch does not decay into the normal branch by
forming normal branch bubbles (see [26] for more details). It was also shown
that the introduction of Gauss–Bonnet term in the bulk does not help to
overcome this problem [27]. Also recently it has been argued that the pres-
ence of higher derivatives in the field equations on the brane introduce very
massive ghost excitations with mass of the order of Planck mass which are
generated in the ordinary branch of the modified DGP model [28]. In fact, it
is still unclear what is the end state of the ghost instability in self-accelerated
branch of DGP inspired setups. On the other hand, non-minimal coupling
of scalar field and induced gravity in our setup provides a new degree of
freedom which requires special fine tuning and this may provide a suitable
basis to treat ghost instability. It seems that in our model this additional
degree of freedom has the capability to provide the background for a more
reliable solution to ghost instability due to a wider parameter space.
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