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If we want to explain the recently discovered accelerated stage of the
universe, one of the option we have is to modify the Einstein tensor. The
simplest such modification, in agreement with all observations, is the posi-
tive cosmological constant A. Such a modification will also have its impact
on local observables and on the propagation of weak gravitational waves.
We show here that the inclusion of a cosmological constant impedes the
detection of a gravitational wave if the latter is produced at a distance
larger than L. = (Gﬂwfﬁ/\/g)ri, where 74 = 1/ﬂ and f and h are
the frequency and the strain of the wave, respectively. L. is of astro-
physical order of magnitude. We interpret the result in the sense that the
gravitational wave interpretation is only possible if the characteristic wave
properties are smaller than the non-oscillatory solution due to A.

PACS numbers: 95.36.+x, 04.30.—w, 04.80.Nn

1. Introduction

In testing Einstein’s theory of gravity, its modifications and ramifica-
tions, two important sub-areas of research remain to be explored and ex-
plained in more detail. The first one has to do with cosmology and goes
back to the discovery of dark energy ten years ago which drives the accel-
eration of the universe [1,2]. The second one is the possibility to detect
gravitational waves [3] directly [4] by already operating [5] or forthcom-
ing [6, 7] gravitational wave detectors. In order to explain the accelerated
universe, we can either modify the Einstein’s tensor G, or try to suitably
alter the cosmological energy-momentum tensor. The first category encom-
passes modified gravity theories and theories with the inclusion of a positive
cosmological constant A [8]. This simplest modification is in agreement
with all observations and, notably, its equation of state p = —p is observa-
tionally also favored [9]. Once we change the Einstein’s tensor to explain
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cosmological facts, we are also forced to accept the fact that the very same
parameters will also affect local physics, at least in principle. Hence, for
instance, the Schwarzschild metric becomes Schwarzschild—de Sitter metric
where A-effects are also sizable on local scales. Indeed, the theory now con-
tains two lengths scales, the small Schwarzschild radius s and the large
cosmological scale r4 = 1/ VA ~ Hy 1 Where Hy 1'is the Hubble radius.
However, a combination like (rsri)l/ 3 is of astrophysical order of magnitude
and has the meaning to be the distance beyond which no bound orbits are
possible [10]. Other local effects of the cosmological constant can be found
in [11]. Similarly, the linearized version of the now modified, Einstein’s
equations will include the cosmological constant. These expressions are not
any more interpretable as the Fierz—Pauli equations [12] for a spin-2 object.
Nonetheless we can still understand them as a mathematical approximation
for weak fields. Moreover, part of these linearized equations will contain the
Fierz—Pauli term and therefore the question about gravitational waves in
the new theory can be also addressed in a meaningful way. What remains
to see is how exactly the modification of Einstein’s tensor influences the
propagation of the gravitational waves. To this end we solve the linearized
equations with A and use them in the energy-momentum pseudo-tensor of
gravity to study the effect of the cosmological constant. The result, which
can be formulated in form of a critical distance, is proportional to 7'31 and
depends on the frequency and amplitude of the wave and the distance of the
source from the detector. Although r, is of cosmological order of magnitude,
the small amplitude of the wave arriving on earth renders it possible that
the negative contribution of A to the power P is as large as the standard os-
cillatory one. As a result, though the promises to detect gravitational waves
from most of the systems can be fulfilled, there are some whose gravitational
waves detection is impeded by A. This is a curious effect of the accelerated
universe which gives us also the chance to probe the theory of dark energy
through gravitational wave detection, provided we know the exact distance
of the source. The interpretation of our result involves a distinction be-
tween two tests for gravitational waves: (i) an internal comparison between
the two parts of the solution (wave and the non-oscillatory part) and (i) a
comparison between the wave solution and the cosmological background.

2. Linearized Einstein’s equation with A

We start with the linearized Einstein’s equations with A for weak field
hyw, i.e. the metric is gu, = N + b [13], where 1, is the Minkowski
metric (our conventions are like in [15]):

RY) = —87G Sy, — Ay, (1)
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where we have used the trace-reversed part of the energy-momentum tensor
Sy =Ty — 20 T (2)

The linearized expression of the Ricci tensor is easily obtained to be

RY =1 (th — 0l — Oyl + 8u81,h> (3)

which gives us the linearized equations
Ohy — 02 9uhyy — 02 0phyy, + 0,0,k = —167G Sy — 240, . (4)

This equation is clearly covariant under the local gauge transformation
hyw — hyuw +0u€, +0y€,, as imposed by the general diffeomorphic covariance
of the Einstein’s equations with A. Any attempt to make the cosmological
constant more dynamical by replacing A7, — Ag,, would violate this gauge
covariance (in the Appendix we discuss this issue in more detail and confirm
the validity of (4)). This gauge freedom allows us to fix the gauge which we
choose to be the de Donder condition: 0"h,, = %&,h. The equation to be
solved becomes a wave equation with two kinds of inhomogeneities; one the
standard source S, (z), the other one a constant term proportional to the
cosmological constant:

Ohy = —16GS,,, — 241, . (5)
Since the equation is linear we can split its solution A, in two parts

h;w =Y T+ g;w ) (6)

where ., = €, (7, w)e*o* +c.c. is the standard retarded solution (written
here for a monochromatic source at a distance far away from the source
[15]) and &, solves 0§, = —2An,,. The latter, should satisfy the de
Donder gauge and, in addition, we demand that up to a diffeomorphism
its asymptotic form is of the de Sitter metric. Both the conditions fix the
constants a and b and the solution of the homogeneous wave equation 5/&?,)
(this is necessary to satisfy the de Donder condition) in the general ansatz
5,89 —|—§,(3,) where 5,(5,) = (ar?+bt*)n,,. In other words, f,(}y) is the initial ansatz,
supplemented by f,(f,,) which guarantees that the metric is asymptotically
de Sitter, and the de Donder condition is satisfied. The full solution which
is in agreement with [16] (to compare with [16] one has to take the graviton
mass m to 0 in [16]) reads,

€00 = —At?, Eoi = 3 At &ij = At*6i5 + gAeij (7)

where €;; = x;x; for ¢ # j and 0 otherwise. These solutions will be used in
the energy momentum pseudo-tensor f,w for gravitational waves.
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3. The energy momentum tensor

In the absence of the cosmological constant the latter is defined as (G, —

G,(}V)) /8mG [17] where, again, the index (1) indicates that we expand the
tensor in the order of O(h). Taking into account that G, is now modified,
the very same procedure can be adopted for theories with A leading to

A 1
t,uu = t;w - %Ahuua (8)

where ,,, is the part defined by

1

b = 5 (—%hWR(l) + 1nhRO) + REZ) — %anUPRg%g) +0 (B .
(9)
Note that t,, is of the order of h%. In agreement with the linearized
equation of motion which is of the first order in h and first order in A, the
effects of the cosmological constant in gravitational waves can be only of the

order of A2 or Ah. It remains to calculate

(—Shomn R + RS — Ahoi) + O (h?) (10)

fos =
017 p

1
871G
which in the averaged form (fo;) enters the expression for the power of the
gravitational waves. Making use of the equation of motion Rl(}l,) = —Anu,
we obtain three contributions of A to the gravitational Poynting vector tg;,
namely

.1 (44 2\ L (10,
tOZ_8TrG<3+9 3>/ltxz+ _87rG<9Am)+ (11)

indicating the different contributions in the same order as in equation (10).
The dots stand for oscillatory contributions proportional to v€ (which aver-
age to zero) and the standard terms proportional to 42 surviving the averag-
ing process. The explicit calculation of the contribution R(()? is lengthy albeit
straightforward. Assuming the direction of the wave to be z, the important
quantity for us is (£%%) = (#93)yave + (%) 4 where the subscript ‘wave’ refers
to the standard contribution without the cosmological constant. Taking into
account that the wave-front moves with the velocity of light (which entitles
us to identify time with the distance L) one calculates
<tﬂ3> _ <t03> _ W2h27 <1)3> _ L 510
wave wave  8rG A 8rG 18T

(12)
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where I is either |ej1| or |ejs|. Note that due to A, the power

— == (" 13
AP _ 2t o 13
receives a negative contribution. The power is only well defined i.e. positive
definite below a certain critical distance Lt where the oscillatory character
of the solution dominates. To calculate this critical distance it suffices to
compare the magnitudes of the two contributions to (£%3). The result is

Gﬂﬁfﬁ
V5

Had we not modified the energy-momentum gravitational pseudo-tensor ¢,
to become t,,, in equation (8) the contribution of A would be bigger and the
critical distance smaller by a factor 0.8 which would increase its relevance.
In interpreting the above result we emphasize that there is little doubt that
a modification of the Einstein’s tensor will change the linearized version of
the Einstein’s equation (in our case with A this is equation (4)). One could
also paraphrase this in saying that the Newtonian Limit will change [18].
As a consequence, the solution will now contain an oscillatory and a new
contribution originating in the modifications of G, (proportional to A in
our case). The interpretation of gravitational waves as ripples on spacetimes
can be only maintained if the oscillatory solution is more sizable than the
non-oscillatory one proportional to A. The result in (14) reflects exactly
this fact. Omne can also view this result from a more formal perspective.
Even though the cosmological constant is not part of the energy-momentum
tensor, one can nevertheless, formally, absorb it there as evident in (4). It is
then obvious that A will be always a source for the metric, gravitational
waves to which it contributes, not excluded.

Notice that what we are really comparing is the averaged solution pro-
portional A with the averaged wave component of the solution. We then say
that the wave character of the solution is lost when both are comparable.

Ecrit = T?l . (14)

4. Phenomenological results

In exploiting (14) phenomenologically, we first point out that the gravi-
tational waves arriving on earth are indeed weak which is exactly the reason
making their detection difficult. They can also be considered weak over the
largest part of the distance they travel to earth. Therefore, even if (14) is
an approximation, it is a rather good one. Secondly, the very same fact that
the waves arriving are weak makes L of astrophysical order of magnitude
in spite of the large value of r4. To see that, let us take some typical values:
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f =0.38 x 1073Hz and h = 40 x 10723, We obtain Lai = 1957 pc. The
values taken are for the white dwarf binary system WD 0957-666 whose dis-
tance from earth is expected to be roughly 100 pc. In this case even though
the critical distance is of astrophysical order of magnitude, the gravitational
waves from the white dwarf devil’s system will be seen as its distance from
earth is smaller that the critical one. The detector sensitive to the values
of frequency and amplitude (strain) would be in this case the forthcoming
space-located LISA detector [6]. Another example is the collapse of rotating
stare cores [19] suited e.g. for the planned Euro detector [20|. With the
characteristic amplitude h. =~ 10~2*, the frequency f ~ 900 Hz and the
relation he = \/mfTh/2 [21] with 7 ~ 1073 s the duration time, we obtain
Leit = 1.16 Mpc. The maximally allowed distance from earth is supposed
to be d = 15 Mpc, which implies that the range for the gravitational waves
to be detected is much smaller than d if A enters the Einstein’s equations
with the value needed to explain the accelerated universe. In Tables I and II
we have listed three kinds of examples for the LIGO and LISA detectors,
respectively. In examples where the wave is not monochromatic, we pick up
one frequency and the corresponding amplitude.

TABLE 1

Sources of gravitational waves for LIGO from references [23]. AIC means accretion
induced collapse. For P we have used geometrized units G = ¢ = 1.

System f [Hz] h Distance Lerit dP/d2 dP/d2
[pc] [pc] A=0 A#0

NS/NS binary 100| 1x 1023 109 12.9 x 108 — —
BH/BH binary 100| 1x10722| 2x 10%|12.8 x 107 — —
Collapse and explosion 20 (4.1 x 10723 107 10.6 x 108 |1.11 x 10712 | 1.18 x 1013
of Supernova
NS formed from AIC 450| 8 x 10723 108 46 x 107 [2.15 x 10~7 |2.05 x 10~7
NS/NS binary 1000 1x10720|2.3 x 107 [12.8 x 1010 |8.79 x 104 |8.79 x 104
Stellar collapse 100 1x10722| 15 x 106 [12.9 x 107 [3.74 x 10710 |3.69 x 10~1°
Centrifugal hang up

The first two entries serve the purpose to demonstrate that indeed ac-
cording to (14) the detection of some gravitational waves will be impeded
by A. The next two examples show that the two contributions to the grav-
itational Poynting vector can be of the same order of magnitude reducing
thereby the power of the gravitational wave. Finally, and this is the majority
of cases, the last two examples show that the effect of A can be also negligi-
ble. This allows us to conclude that constructing a more exhaustive map of
all sources whose gravitational waves will not be seen on earth, provided the
cosmological constant is the right explanation of the accelerated universe, is
a worthwhile undertaking. Maybe in the near future we will enjoy to see the
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connection between dark energy and gravitational waves which is not only
important for the latter, but converts the gravitational wave detectors partly
also in experimental devices to check dark energy. A better knowledge of
the distance of the source is here a crucial ingredient and would require an
improvement. Indeed, the 100 pc which appears so often in Table II seems
to be only an order of magnitude estimate. If its estimate goes up by a
factor 2-5, several sources might fall into the category whose gravitational
waves will not be see due to A. Thus the good knowledge of characteristics
of the source are of utmost importance for the critical distance.

TABLE II

Sources of gravitational waves for LISA from references [24]. The last entry is a
special white dwarf binary. For P we have used geometrized units G = ¢ = 1.

System [ [Hz] h Distance | Leyit dP/d dP/d2
[pc] [pc] A=0 A#0

X-ray pulsar binary | 7.9 x 1074 |6 x 10724 | 8000 61 — —
4U1626-67
X-ray pulsar binary | 3 x1073|2x 10723 | 8100 773 — —
4U1820-30
White dwarf binary | 1.4 x 1074 |2 x 1022 100 360 1.3x 10731 | 1.2x 103!
WD 23314290
White dwarf binary | 1.6 x 1074 |2 x 1022 100 412 1.7 x 10731 | 1.6 x 10731
WD 1101+364
White dwarf-B star | 2.4 x 1074 |1 x 1072! 100 3090 |9.57 x 10730 [9.56 x 1030
KPD 193042752
RXJ080 6.2x1073|4x 10722 300 [32x10%| 9.2x10727| 9.2 x 10727
6.3-+1527

5. Interpretation

In this section we argue that due to the appearance of A in the Einstein
tensor (and not in the energy-momentum tensor) two tests of gravitational
waves are required. The first one (the cosmological test) is more standard
and is due to the interpretation of the gravitational waves as ripples on
spacetime. Here A appears in the solution of the cosmological background.
The other test based on (14) is between two solutions: the oscillatory part
versus the non-oscillatory proportional A. It appears at the first glance that
this is the same, especially as at present epoch our universe is dominated
by A. To see that these two tests are different, imagine a universe with a
non-zero cosmological constant (say, of the same value as in our universe)
where, however, the cosmology is dominated by the background density (i.e.
we can neglect A is the cosmological equations). The crucial point is now
that the second test relying on (14) would be still required and its outcome
would be just the same as presented in the tables. The effect of Dark Energy
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models which modify the cosmological fluid equation (i.e. the ingredients of
the model enter the energy-momentum tensor and not the Einstein tensor)
could be probed only in a cosmological test which is not what we have done
here. This is also true for effects which rely on general equation of state
distinguishing the Dark Energy models [22]. Such a distinction does not
make a difference if the model modifies the Einstein tensor or the energy-
momentum one.

5.1. A in cosmology and local physics

We seem to be biased by the name “cosmological constant” which has
instilled in some the impression that A is good for cosmology and nothing
else. As mentioned in the Introduction, this is not correct, but it makes
sense to look at it from a different perspective. Consider, for instance, a
gravity theory defined by the more general action

S=x / i/ g/ (R), (15)

where f(R) is more complicated than the standard f(R) = R. Any new
constant which appears in f(R) will also appear in the calculation of any
effect of local physics. It would be hard to argue that no other constant apart
from the Newtonian one (GN) can enter local physics if the gravitational
theory is described by (15). Equally, it would be hard to argue that no
constant other than Gyn can affect the solution of the linearized versions
or that the effects due to the new constant are coordinate effects. In view
of (15) we would be forced to interpret the gravitational waves anew since
part of the solution would involve the new constants entering f(R). The
situation with A is just a special case of what we outlined above. What
is really required in cases where the standard G, is modified, is to pay
attention to the interpretation of gravitational waves.

First, let us note that no local effect of A is per se a coordinate effect.
One cannot get rid of the cosmological constant A in deriving effects on
local physics, in general, and in the linearized version of Einstein’s equation,
in particular. A is an integral part of the modified Einstein’s tensor G,
and not of the energy-momentum tensor. This implies that A will appear
locally, in principle, everywhere where gravitational effects are considered.
More specifically, we have two equations. The first,

G'w/ = le — %g;wR + Ag,LW — KTESiverse (16)

for the universe defines the cosmological background and the Hubble flow
and the second one where A affects the expansion of the universe, and

G = Ruw — 39 R + Agp = kT (17)
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for the local physics including the gravitational waves. In spite of the fact
that A appears already in the cosmological part (16), it makes its entry once
again in calculating local effects. In a concrete example, a star is part of
the Hubble flow (expansion) where A already contributes, nevertheless the
Schwarzschild—de Sitter metric (see e.g. [25]) will again contain terms with
A which is a local effect of this constant. Another way to see it, is the
Newtonian Limit. A survives the Newtonian Limit ( [18,25])

Ts 172
P=——— ——
T 6r2’

A

re=GNM, ra=1/VA (18)
because locally its effects are not coordinate effects. Note that the back-
ground density pp, in T, ;Bi"erse in equation (16) does not appear in the Newto-
nian Limit nor in the Schwarzschild—de Sitter metric. The Schwarzschild—de
Sitter metric is constructed with the boundary conditions that its asymptotic
form de Sitter. For the latter we could also demand the asymptotic form to
be the metric of the cosmological background, i.e. Friedmann—Robertson—
Walker metric [26]. In such a case, A would eventually enter twice, once
in the differential equations through (17) and the second time through the
boundary condition where A is part of cosmological background metric. This
clearly shows its double role, due to the fact that it is part of G, .

Hence, strictly speaking we have to compare the oscillatory part of the
solution with the non-oscillatory one (7). This could be done in a simplistic
way taking the amplitude of the oscillatory part h and comparing it with
L?/r% which comes from (7). This comparison would conceptually not be
very different from what we obtained in (14). However, this way the critical

distance would come out smaller than (14) (of the order of \/ETA) as (14)
is suppressed in addition by fr4. It makes, therefore, more sense to make a
more sophisticated analysis as done in Section 2. If the distance of origin of
the gravitational wave is larger than L, the non-oscillatory background is
larger than the actual wave and therefore the wave interpretation untenable.

In [27] a condition for the validity of the picture of a gravitational wave
as a ripple on spacetime is given. Essentially it states that the wave length
must be much smaller then the curvature background R. Since the part of
solution which is connected to A is non-oscillatory we cannot make such a
direct test. In case of a non-zero graviton mass m trigonometric functions
cos(mt), sin(mt) would enter the solution (7) as shown in [16]. Then, the
above criteria would apply. In our case, we could compare the change of £,
by calculating 8, L/R ~ O(L?/r3) which is much smaller than one as long
as L is of astrophysical order of magnitude. The reason why the oscillatory
solution becomes comparable to the non-oscillatory is because the amplitude
of the oscillatory is small.
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5.2. Local versus global test

The central point of our interpretation is that given any modified Einstein
tensor, there has to be two tests of the gravitational waves:

1. Global cosmological test: This test can be presented without any re-
course to the details of the modified Einstein’s tensor. The test consists
in global comparison between a given background cosmology and the
wave solution 157 of the gravitational wave. It is crucial to realize
that we are comparing here only part of the full solution of the gravi-
tational wave, namely the wave part 15" (in the case of A we called it
Yuv)- This pre-assumes, however, that the wave part is the dominant
part of the full local solution hy, = hj7¥ + h,ﬂelft where the hfﬁft is
due to the modifications in the Einstein’s tensor (£, in our specific
case). Such a comparison of hj3"® with the cosmological background
is exactly the Misner-Thorne-Wheeler method [27] mentioned above.
One does not compare h,,, or hffjt with the cosmological background,
but only the wave part h;;* such that all quantities needed for such a
test like wavelength, background curvature etc. are well defined. The
cosmological constant enters here only through cosmology i.e. equa-
tion (16). In the present paper we are not concerned about this global
cosmological test. We rather assume that all sources for LIGO and
LISA passed this test already.

There will be also other effects whose root can be traced back to the
cosmological background. One of them will be the direct appearance
of such a background in the propagation of gravitational waves for
large distances. This effect can be taken into account by expanding
the Einstein’s equations around the de Sitter metric [28]. Such a pro-
cedure to include cosmological effects is not general (indeed a general
procedure does not exist), but is for the present epoch of the universe
which is dominated by A. The most important effect is the exponen-
tially decay of the wave [29]. As long asr < ry (or T < Ty =1,) we
can, however, still rely on the expansion around the Minkowski metric.

2. Local test: In the global test above we made the assumption that i)+
is the dominant part of the full solution. This has to be done in a
more quantitative manner i.e. we have to device a local test which
will decide when the wave character is dominant. In this local test A
enter through equation (17). Our suggestion for such a test is based
on the power P as explained in the text above. This test is rather
conservative as other, more ‘naive’ tests yield a smaller L.

For a better understanding the difference of the two tests, let us visual-
ize a universe (or, equivalently, an earlier epoch of our universe) where
the cosmology is dominated by the background density and not A.
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We could then drop A in (16), but not in (17). The appearance and
relevance of A in the local test would pertain i.e. the results of such
a test would be the same in any epoch of the universe or any universe
with the same A (and different background density).

6. Conclusions

Any gravity theories with modified Einstein’s tensor will require a re-
interpretation of the picture of gravitational waves as ripples on spacetime.
The solution of the linearized new Einstein’s equations will contain the os-
cillatory part (wave) plus a new component associated with the extension
of Einstein’s tensor. The latter will not be oscillatory, in general. It is clear
that a suitable comparison between these two solutions is due in order to
be able to say when the wave picture can be maintained. In this paper we
suggested such a comparison by using the gravitational energy momentum
tensor associated with observables. Applying the method for a theory with
the cosmological constant, we deduced a maximal distance beyond which
the wave picture loses its meaning. This makes a direct connection between
gravitational waves and theories with A explaining the accelerated universe.

In deriving our results we have not expanded the metric around the
de Sitter space, but around the Minkowski space. This is, of course, permis-
sible (the expansion is just a mathematical perturbation) and has been done
on purpose to include the full effect of the cosmological constant. Note that
the derivation of the Newtonian limit of gravity with the cosmological con-
stant known from literature proceeds along the same lines: one linearizes the
Einstein’s equations around the Minkowski space (and not de Sitter) and, in
the second step, goes over to the static case. An expansion around de Sitter
would, of course, yield a different result where part of the information on the
cosmological constant would be hidden in the background metric. The exam-
ple of the Newtonian limit shows that the expansion around the Minkowski
is not only allowed, but also preferred. The same holds fro gravitational
waves.

Appendix

The Veltman Lagrangian

It is instructive to re-derive the same linearized equations as in (4) and
to cast a brief glance at the reason why the term proportional A is not dy-
namical 7.e. proportional to 7,,. For this purpose we evoke the Lagrangian
given by Veltman in [30] which reads
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Ln = =241+ Sh = dhagh® + Lhh) = 10,hag0"h”
+10,h0"h — L05hd,h " + L0k, 50" hOP . (A1)

The part proportional to A is not gauge invariant under h,,, — hy, + 0,6, +
0y€,. Indeed, one obtains under this transformation

24 (14 3h = Shash®® + Lhh) -
24 (14 3h = Shagh®® + Lhh + 076, — hagde” + Sho7e, ) . (A.2)
The formal condition for the gauge invariance to hold up to total derivative

is obviously

hapd®e® = Lhd7¢, . (A.3)

The correct gauge invariant Lagrangian is simply
L), =Ly +24 (1/8hh —1 /4haﬂha5> . (A.4)
In vacuum, the Euler-Lagrange equations according £; come out to be

ORM — Ok + g 0, 0uh®® + 910" h — Oy 0" hY — 950" ho"
= 20" — 24 (W — Lph) . (A.5)

The second term on the right-hand side of (A.5) is due to the non-gauge
invariant terms in the Lagrangian. Dropping this term results in equation
of motion which we had before i.e. (4). (this is equivalent to use the gauge
invariant Lagrangian (A.4). Indeed, taking the trace of

Ot — " Oh+ 10" 050, h7" + 00" h — 0,0"h°Y — 0,0 h°H = 2An"" (A.6)

and multiplying with 7, we can replace —n,,0h = —1,,0,0,h°* + 4An,,
in (A.6) to arrive at (4) in vacuum (with matter the steps to obtain (4) are
similar). This shows once again that equation (4) is correct.

In passing let us make a comment regarding the gauge invariance of
(A.1). Taking the divergence of equation (A.5) gives us

0" hyyy = 20,0 (A7)

which is actually the de Donder condition, now not as a gauge fixing, but as a
result of the equation of motion (this is in analogy to the free massive vector
case A, where in spite of the loss of gauge invariance the equation of motion
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gives us the Lorentz gauge 0,A" = 0). If we put this equation into the
Lagrangian (A.1), then according to (A.2) and (A.3) the total Lagrangian
would come out now gauge invariant up to total derivatives. Obviously,
this is in contradiction with our previous result and the resolution of this
seemingly different results is that it is not permissible to use equations of
motion (or a part of them) in the Lagrangian itself. Similarly, we cannot
use a gauge fixing in (A.4) without changing physical results. For instance,
if we use the traceless gauge h = 0 in (A.4), the term (1/4)0,h0"h in (A.4)
would be absent. Such a term under variation of the action gives (1/2)n,,,0h
which turns out to be crucial to obtain the equation (4) as explained above.
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