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We show that a turnover from the classical Debye to the two-power-law
relaxation behavior, observed in the majority of physical systems, is asso-
ciated with a new type of a coupled memory continuous-time random walk
driving a fractional dynamics. We derive a general class of the two-power-
law relaxation responses which is able to reproduce all of the observed
relaxation patterns, given by the low- and high-frequency power-law expo-
nents falling in the range (0,1].

PACS numbers: 89.75.Kd, 02.50.Fz

1. Introduction

Dielectric spectroscopy investigations of different physical systems
(i.e. polymers, alcohols, disordered crystals, amorphous and crystalline
semiconductors) revealed that a wide-class of various materials exhibits a
non-exponential, two-power-law relaxation pattern. The dielectric response
of such systems [1] is represented by low- and high-frequency power-law de-
pendency of the complex dielectric permittivity € (w) = &’ (w) — ie” (w) on
frequency:

(0 -) ~ L~ (2) v,
) ~ &) ~ (;") w> wp, 1)
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where wj, denotes the loss peak frequency, £(0) is the static permittivity and
the power-law exponents m and n fall in the range of (0,1]. A large part
of these power-law properties may be satisfactorily described by the most
popular analytical expression applied to fit the frequency-domain data, i.e.
the empirical Havriliak—Negami (HN) relaxation function:

1
[1+ (iw/wp)* T

g(w)w O<a,v<1. (2)

The power-law exponents expressed by means of the HN parameters read:
m=a, 1l —n=ay. Fora =1andy < 1 formula (2) takes the form
of the Cole-Davidson (CD) function, for @« < 1 and 7 = 1 — the Cole-
Cole (CC) function, whereas for « = 1 and v = 1 the Debye (D) function
is obtained. It is easy to observe that the HN function fits only the re-
laxation data for which the power-law exponents satisfy relation m > 1 —n
(see Fig. 1). Whenever the data fall in the range for which m < 1—n, the ex-
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Fig. 1. Schematic representation of various cases of relaxation processes.

tended range 0 < a, vy < 1 of the HN function parameters could be used [2].
Unfortunately, the theoretical approaches [3,4] leading to the HN function
fail for v > 1 and an explanation, based on simple subdiffusion mechanisms
such as those involved in the CC relaxation process [5], cannot be given.
To complete the diffusion scenario, underlying the two-power-law patterns,
the clustered-jump continuous time random walk (CTRW), resulting from a
stochastic generalization of the renormalization group transformation idea,
has been proposed [6]. Implementation of this type of a CTRW allows to
clarify the stochastic origins of the power-law exponents in all two-power-
law empirical data. In Fig. 2 sample of the frequency-domain relaxation
responses in various complex systems are presented. Both the curves ex-
hibit single maxima peak, however, the low- and high-frequency exponents
satisfy different relations discussed above. For the liquid crystalline epoxy
monomer EPPEPB, which is used to fabricate polymer networks [7], the
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Fig.2. Various non-exponential relaxation patterns in real systems. The HN di-
electric response (a) was observed by Wlodarska et al., in liquid crystalline epoxy
monomer EPPEPB [7]. The GML relaxation (b) was observed by us in gallium
(Ga) doped semiconducting mixed crystal Cd;_,Mn,Te of z = 0.01 manganese
(Mn) content.

power-law exponents satisfy relation m > 1 — n, whereas for the semi-
conducting mixed crystal Cdg.g9Mng g1 Te:Ga, used in holography or data
storage [8], the power-law exponents satisfy m < 1 — n.

2. Relaxation model

Description of the dielectric relaxation phenomena by means of the com-
plex permittivity € (w) is equivalent [1] to the representation utilizing notion
of the time-domain relaxation function &(t):

o)~ [ exotoion) (<2240 .
0

Then the low- and high-frequency power laws (1) correspond to the following
short- and long-time power-law dependency on time:

_do(1) L (wpt)™" for wpt <1, 3)
dt (wpt)™™= L for wyt > 1.

The diffusion mechanism, underlying the two-power-law relaxation phe-
nomenon, can be studied by means of the diffusion front related to the total
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distance R(t), reached till time ¢ by a walker performing a continuous-time
random walk (CTRW) [4-6,9-11]. The total distance R(t) is equal to the
sum of the walker’s random jumps R;:

R(t) = Z R;, (4)

where v(t) denotes the random number of steps performed by the walker
till time ¢ at random instants of time. The jumps R; and the inter-jump
waiting times T; are assumed to form a sequence of independent and iden-
tically distributed random vectors (R;,T}), i > 1. The diffusion front R(t),
corresponding to (4), represents the asymptotic behavior of the rescaled to-
tal distance f(c)R(ct) when dimensionless time-scale coefficient ¢ tends to
oo and the space-rescaling function f(c) is chosen appropriately. In this
framework the temporal decay of a given mode k, representing excitation
undergoing diffusion in the system under consideration, is represented by

the inverse Fourier transform of the diffusion front: &(t) = (e=**£(®). The
resulting relaxation patterns are obviously connected with the stochastic
properties of the jumps and the inter-jump times. Also they depend on the
detailed construction of the counting process v(t).

In the classical waiting-jump CTRW idea the jump R; occurs after the

waiting-time period Tj. Hence, v(t) = 14,;(t) is equal to the largest n such
n
that >  T; < t. On the other hand, if the jump-waiting CTRW scenario,
i=1
in which R; precedes Tj, is considered, the number of jumps v(t) = v, (t)
n
is equal to the smallest n such that > 7; > t. Both numbers of the steps
i=1
performed by the walker up to time ¢ are inter-related: vy, (t) = 14 (t) + 1.
In the case of the decoupled CTRW (i.e. when we additionally assume the
stochastic independence of the jump R; and the waiting time 7;) these two
CTRW scenarios yield exactly the same diffusion front and the correspond-
ing type of relaxation [12]. In contrary, in the coupled cases the waiting-
jump and jump-waiting schemes may lead to essentially different relaxation
patterns [12].

Stochastic generalization [6] of the renormalization-group transformation
idea applied to random walks [13,14], has led to a special class of coupled,
clustering-jump CTRWs with properties yielding the two-power-law relax-
ation patterns. The construction of the clustering-jump CTRW results orig-
inally [4,6,12] from assembling the jumps and inter-jump waiting times into
clusters of random sizes. However, it can be defined equivalently by formula
(4) with a specially constructed compound counting process v(t) = v, 4(t)
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ps(vs(t))
ves ()= > M, (5)
i=1
where s = wj refers to the waiting-jump scheme, s = jw to the jump-waiting
m
scheme, f1,5(n) is the largest m such that > M; < n, while pj,(n) =
j=1
pwj(n) + 1, for a sequence {M;} of independent and identically distributed
cluster sizes, independent of the spatio-temporal sequence {(R;,T;)}.

The waiting-jump and jump-waiting schemes may lead to different re-
laxation patterns. The result depends on the cluster-size properties. For
finite-mean-value cluster sizes both scenarios provide the same result as the
classical decoupled CTRW models. To obtain a general class of the two-
power-law relaxation responses one should apply the clustering procedure
characterized by the cluster sizes obeying a heavy-tailed distribution with
the power-law exponent 0 < v < 1. In such a case the resulting diffusion
front is modified by coupling between jumps and inter-jump times. More-
over, the waiting-jump and jump-waiting schemes lead to different relaxation
responses [12].

For instance, let us take into account the case of heavy-tailed distributed
waiting times for which

Pr(T; > t) ~ (;) as t— oo, (6)

for some 0 < o < 1,79 > 0, and symmetric jumps R; with finite-mean-
square length (R?) = 0 > 0, independent of T;. Then, if the cluster sizes
have finite mean value, for both waiting-jump and jump-waiting schemes we

obtain N
R(t) £ (A)* F,, (7)

where symbol «L2 denotes equal distributions, A = o2/ /70, and F, is a
fractional stable random variable, distributed as a mixture of completely
asymmetric a-stable law with standard Gaussian distribution!. The diffu-
sion front (7) yields the Mittag-Leffler relaxation function

Pyin (1) = Eo (=(wpt)®) (8)

where F,(z) is the Mittag-Leffler function [5,10,15] and w, = A[k|?/ de-
notes a positive, characteristic material constant. For this Mittag—Leffler

! Namely, Fa < S;“/Qg, where S, is distributed according to the completely asym-
metric Lévy-stable law with the index of stability «, and G is a standard Gaussian
random variable independent of S,.
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time-domain relaxation pattern, the corresponding frequency-domain re-
sponse €(w) takes the CC form [10], which exhibits the power-law prop-
erty (1) withm=1—-n = a.

On the other hand, if the cluster sizes have a heavy-tailed distribution
with the power-law exponent 0 < v < 1, the waiting-jump scenario leads to

Ruj(t) < (At)*2 FoBY? 9)

where B, is a generalized arcsine random variable? independent of the frac-
tional stable random variable F,, and A is defined as in (7). However, for
the jump-waiting scheme we have:

Rju(t) < (A FoB12. (10)

To obtain diffusion fronts (7), (10), and (9), the scaling function has to be
of the form f(c) = (I'(1 — a)c™*)'/2, where I'(-) is the gamma function.

For both cases the corresponding relaxation functions are generalizations
of the Mittag—Lefller relaxation function (8). In the case of the waiting-jump
diffusion front (9) we obtain the generalized Mittag—Leffler (GML) relaxation
function 6]

By (1) = Pais (1) / B (—(wpt)®z) b (2)da (11)
0

with hy7 () =(T(v)['(1—7)) tz7 "} (1—2)77 for 0<z <1, and 0 otherwise.

In this scenario the corresponding frequency-domain response cannot be ex-

pressed in an analytical form. Nevertheless, the power-law exponents in (1)

and the relationship between them can be derived by means of Tauberian

theorems [6]. We get the following: n=1—« and m =y <1—mn, which fit

the less typical (non-Havriliak—Negami) relaxation behavior, see Fig. 3.
The jump-waiting diffusion front (10) leads to

B (1) = P (1 / E, ) b () da (12)

with b (z) = (D'(y)I'(1 — 7))tz Yz — 1) for z > 1, and 0 otherwise.
(Notice that h}”(z) = z72hy” (z71).) In this scenario the corresponding
frequency domain response takes the form of the HN function (2) yielding
the power-law property (1) with exponents n =1—ayand m =a > 1 —n,
characteristic for the typical relaxation behavior.

2 Generalized arcsine distribution with parameter v is just a beta distribution with
parameters v and 1 —v, 0 < v < 1.
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Fig.3. Sample time-domain representation of the Havriliak—-Negami and the gen-
eralized Mittag—Leffler responses. Values of the power-law exponents as for the
experimental data presented in Fig. 2.

Notice that for 0 < a,y < 1 we can represent the obtained relaxation
functions in the form of a weighted average of an exponential decay e~
with respect to the distribution of the effective relaxation rate b. Namely,
we have Samr,(t) = [3° e P gamm(b)db for

sin(y1 (b)) (mb) "

for b>0),
goa(b) = 3 ((bfwy) 2 +2(bfe,) " cos(ma) + 177
0 for b <0,
where w(b) = % — arctan ((b/wpg' ?_CC;S(WO[)) Similarly, we can obtain
Im(mo
Pun(t) = [y° e grn(b)db for
1 sin(y4 (b))
il for b>0
gun(®) = { 7b ((b/wp)?@ + 2(bjwy) cos(ra) + 1)7/2 ’
0 for b<0,

b —x
where ¥(b) = g — arctan <( /wp)s, (+ c;)s(wa)>. At this point we have
in(ra

to stress that such a representation, following the most natural attempt to
non-exponential relaxation [1], is not possible for the HN relaxation function
with v > 1.

Let us add that considering jumps R; satisfying another properties than
finite mean-square length (e.g. heavy-tailed distributed jumps) one obtains
the same relaxation patterns [4,16]. The assumed type of the jump distri-
bution influences the characteristic material constant w, only.
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3. Conclusions

We have shown that the clustered-jump CTRW underlies a general class
of the two-power-law relaxation patterns experimentally observed in various
types of complex materials. The proposed model results from the stochastic
generalization of the renormalization-group transformation idea applied to
the CTRW. The resulting new type of the coupled-memory walk brings into
limelight the stochastic origins of the low- and high-frequency power laws
and clarifies the mutual relation between the power-law exponents. It gives
waiting-jump and jump-waiting diffusion schemes which may lead to dif-
ferent relaxation processes depending on the cluster-size properties. If the
distribution of cluster sizes possesses a heavy tail then the waiting-jumps sce-
nario leads to the generalized Mittag—Leffler relaxation function, whereas the
jump-waiting scheme results in the Hariliak—Negami function. The finite-
mean-value clusters do not lead beyond the well-known subdiffusion scenario
underlying the CC relaxation.

The work of A.J. and J.T. was partially supported by the project number
POIG.01.03.01-02-002/08.
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