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We show that a turnover from the classical Debye to the two-power-law
relaxation behavior, observed in the majority of physical systems, is asso-
ciated with a new type of a coupled memory continuous-time random walk
driving a fractional dynamics. We derive a general class of the two-power-
law relaxation responses which is able to reproduce all of the observed
relaxation patterns, given by the low- and high-frequency power-law expo-
nents falling in the range (0,1].

PACS numbers: 89.75.Kd, 02.50.Fz

1. Introduction

Dielectric spectroscopy investigations of different physical systems
(i.e. polymers, alcohols, disordered crystals, amorphous and crystalline
semiconductors) revealed that a wide-class of various materials exhibits a
non-exponential, two-power-law relaxation pattern. The dielectric response
of such systems [1] is represented by low- and high-frequency power-law de-
pendency of the complex dielectric permittivity ε (ω) = ε′ (ω) − iε′′ (ω) on
frequency:

ε(0)− ε′(ω) ∼ ε′′(ω) ∼
(
ω

ωp

)m
, ω � ωp ,

ε′(ω) ∼ ε′′(ω) ∼
(
ω

ωp

)n−1

, ω � ωp , (1)
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where ωp denotes the loss peak frequency, ε(0) is the static permittivity and
the power-law exponents m and n fall in the range of (0, 1]. A large part
of these power-law properties may be satisfactorily described by the most
popular analytical expression applied to fit the frequency-domain data, i.e.
the empirical Havriliak–Negami (HN) relaxation function:

ε(ω) ∼ 1
[1 + (iω/ωp)

α]γ
, 0 < α, γ ≤ 1 . (2)

The power-law exponents expressed by means of the HN parameters read:
m = α, 1 − n = αγ. For α = 1 and γ < 1 formula (2) takes the form
of the Cole–Davidson (CD) function, for α < 1 and γ = 1 — the Cole–
Cole (CC) function, whereas for α = 1 and γ = 1 the Debye (D) function
is obtained. It is easy to observe that the HN function fits only the re-
laxation data for which the power-law exponents satisfy relation m ≥ 1− n
(see Fig. 1). Whenever the data fall in the range for whichm < 1−n, the ex-
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Fig. 1. Schematic representation of various cases of relaxation processes.

tended range 0 < α,αγ ≤ 1 of the HN function parameters could be used [2].
Unfortunately, the theoretical approaches [3, 4] leading to the HN function
fail for γ > 1 and an explanation, based on simple subdiffusion mechanisms
such as those involved in the CC relaxation process [5], cannot be given.
To complete the diffusion scenario, underlying the two-power-law patterns,
the clustered-jump continuous time random walk (CTRW), resulting from a
stochastic generalization of the renormalization group transformation idea,
has been proposed [6]. Implementation of this type of a CTRW allows to
clarify the stochastic origins of the power-law exponents in all two-power-
law empirical data. In Fig. 2 sample of the frequency-domain relaxation
responses in various complex systems are presented. Both the curves ex-
hibit single maxima peak, however, the low- and high-frequency exponents
satisfy different relations discussed above. For the liquid crystalline epoxy
monomer EPPEPB, which is used to fabricate polymer networks [7], the
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Fig. 2. Various non-exponential relaxation patterns in real systems. The HN di-
electric response (a) was observed by Włodarska et al., in liquid crystalline epoxy
monomer EPPEPB [7]. The GML relaxation (b) was observed by us in gallium
(Ga) doped semiconducting mixed crystal Cd1−xMnxTe of x = 0.01 manganese
(Mn) content.

power-law exponents satisfy relation m > 1 − n, whereas for the semi-
conducting mixed crystal Cd0.99Mn0.01Te:Ga, used in holography or data
storage [8], the power-law exponents satisfy m < 1− n.

2. Relaxation model

Description of the dielectric relaxation phenomena by means of the com-
plex permittivity ε (ω) is equivalent [1] to the representation utilizing notion
of the time-domain relaxation function Φ(t):

ε(ω) ∼
∞∫
0

exp(−iωt)
(
−dΦ(t)

dt

)
dt .

Then the low- and high-frequency power laws (1) correspond to the following
short- and long-time power-law dependency on time:

−dΦ(t)
dt
∼
{

(ωpt)−n for ωpt� 1 ,
(ωpt)−m−1 for ωpt� 1 . (3)

The diffusion mechanism, underlying the two-power-law relaxation phe-
nomenon, can be studied by means of the diffusion front related to the total
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distance R(t), reached till time t by a walker performing a continuous-time
random walk (CTRW) [4–6, 9–11]. The total distance R(t) is equal to the
sum of the walker’s random jumps Ri:

R(t) =
ν(t)∑
i=1

Ri , (4)

where ν(t) denotes the random number of steps performed by the walker
till time t at random instants of time. The jumps Ri and the inter-jump
waiting times Ti are assumed to form a sequence of independent and iden-
tically distributed random vectors (Ri, Ti), i ≥ 1. The diffusion front R̃(t),
corresponding to (4), represents the asymptotic behavior of the rescaled to-
tal distance f(c)R(ct) when dimensionless time-scale coefficient c tends to
∞ and the space-rescaling function f(c) is chosen appropriately. In this
framework the temporal decay of a given mode k, representing excitation
undergoing diffusion in the system under consideration, is represented by
the inverse Fourier transform of the diffusion front: Φ(t) = 〈e−ik eR(t)〉. The
resulting relaxation patterns are obviously connected with the stochastic
properties of the jumps and the inter-jump times. Also they depend on the
detailed construction of the counting process ν(t).

In the classical waiting-jump CTRW idea the jump Ri occurs after the
waiting-time period Ti. Hence, ν(t) = νwj(t) is equal to the largest n such

that
n∑
i=1

Ti ≤ t. On the other hand, if the jump-waiting CTRW scenario,

in which Ri precedes Ti, is considered, the number of jumps ν(t) = νjw(t)

is equal to the smallest n such that
n∑
i=1

Ti > t. Both numbers of the steps

performed by the walker up to time t are inter-related: νjw(t) = νwj(t) + 1.
In the case of the decoupled CTRW (i.e. when we additionally assume the
stochastic independence of the jump Ri and the waiting time Ti) these two
CTRW scenarios yield exactly the same diffusion front and the correspond-
ing type of relaxation [12]. In contrary, in the coupled cases the waiting-
jump and jump-waiting schemes may lead to essentially different relaxation
patterns [12].

Stochastic generalization [6] of the renormalization-group transformation
idea applied to random walks [13, 14], has led to a special class of coupled,
clustering-jump CTRWs with properties yielding the two-power-law relax-
ation patterns. The construction of the clustering-jump CTRW results orig-
inally [4,6,12] from assembling the jumps and inter-jump waiting times into
clusters of random sizes. However, it can be defined equivalently by formula
(4) with a specially constructed compound counting process ν(t) = νc,s(t)
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νc,s (t) =
µs(νs(t))∑
i=1

Mi , (5)

where s = wj refers to the waiting-jump scheme, s = jw to the jump-waiting

scheme, µwj(n) is the largest m such that
m∑
j=1

Mj ≤ n, while µjw(n) =

µwj(n) + 1, for a sequence {Mi} of independent and identically distributed
cluster sizes, independent of the spatio–temporal sequence {(Ri, Ti)}.

The waiting-jump and jump-waiting schemes may lead to different re-
laxation patterns. The result depends on the cluster-size properties. For
finite-mean-value cluster sizes both scenarios provide the same result as the
classical decoupled CTRW models. To obtain a general class of the two-
power-law relaxation responses one should apply the clustering procedure
characterized by the cluster sizes obeying a heavy-tailed distribution with
the power-law exponent 0 < γ < 1. In such a case the resulting diffusion
front is modified by coupling between jumps and inter-jump times. More-
over, the waiting-jump and jump-waiting schemes lead to different relaxation
responses [12].

For instance, let us take into account the case of heavy-tailed distributed
waiting times for which

Pr(Ti ≥ t) ∼
(
t

τ0

)−α
as t→∞ , (6)

for some 0 < α < 1, τ0 > 0, and symmetric jumps Ri with finite-mean-
square length 〈R2

i 〉 = σ2 > 0, independent of Ti. Then, if the cluster sizes
have finite mean value, for both waiting-jump and jump-waiting schemes we
obtain

R̃(t) d= (At)α/2Fα , (7)

where symbol “ d=” denotes equal distributions, A = σ2/α/τ0, and Fα is a
fractional stable random variable, distributed as a mixture of completely
asymmetric α-stable law with standard Gaussian distribution1. The diffu-
sion front (7) yields the Mittag–Leffler relaxation function

ΦML(t) = Eα (−(ωpt)α) , (8)

where Eα(x) is the Mittag–Leffler function [5, 10, 15] and ωp = A|k|2/α de-
notes a positive, characteristic material constant. For this Mittag–Leffler

1 Namely, Fα
d
= S−α/2α G, where Sα is distributed according to the completely asym-

metric Lévy-stable law with the index of stability α, and G is a standard Gaussian
random variable independent of Sα.
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time-domain relaxation pattern, the corresponding frequency-domain re-
sponse ε(ω) takes the CC form [10], which exhibits the power-law prop-
erty (1) with m = 1− n = α.

On the other hand, if the cluster sizes have a heavy-tailed distribution
with the power-law exponent 0 < γ < 1, the waiting-jump scenario leads to

R̃wj(t)
d= (At)α/2FαB1/2

γ , (9)

where Bγ is a generalized arcsine random variable2 independent of the frac-
tional stable random variable Fα, and A is defined as in (7). However, for
the jump-waiting scheme we have:

R̃jw(t) d= (At)α/2FαB−1/2
γ . (10)

To obtain diffusion fronts (7), (10), and (9), the scaling function has to be
of the form f(c) = (Γ (1− α)c−α)1/2, where Γ (·) is the gamma function.

For both cases the corresponding relaxation functions are generalizations
of the Mittag–Leffler relaxation function (8). In the case of the waiting-jump
diffusion front (9) we obtain the generalized Mittag–Leffler (GML) relaxation
function [6]

Φwj(t) = ΦGML(t) =

∞∫
0

Eα (−(ωpt)αx)hwjγ (x)dx (11)

with hwjγ (x)=(Γ (γ)Γ (1−γ))−1xγ−1(1−x)−γ for 0<x<1, and 0 otherwise.
In this scenario the corresponding frequency-domain response cannot be ex-
pressed in an analytical form. Nevertheless, the power-law exponents in (1)
and the relationship between them can be derived by means of Tauberian
theorems [6]. We get the following: n=1−α and m=αγ < 1−n, which fit
the less typical (non-Havriliak–Negami) relaxation behavior, see Fig. 3.

The jump-waiting diffusion front (10) leads to

Φjw(t) = ΦHN(t) =

∞∫
0

Eα (−(ωpt)αx)hjwγ (x)dx (12)

with hjwγ (x) = (Γ (γ)Γ (1 − γ))−1x−1(x − 1)−γ for x > 1, and 0 otherwise.
(Notice that hjwγ (x) = x−2hwjγ

(
x−1

)
.) In this scenario the corresponding

frequency domain response takes the form of the HN function (2) yielding
the power-law property (1) with exponents n = 1− αγ and m = α > 1− n,
characteristic for the typical relaxation behavior.

2 Generalized arcsine distribution with parameter γ is just a beta distribution with
parameters γ and 1− γ, 0 < γ < 1.
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Fig. 3. Sample time-domain representation of the Havriliak–Negami and the gen-
eralized Mittag–Leffler responses. Values of the power-law exponents as for the
experimental data presented in Fig. 2.

Notice that for 0 < α, γ < 1 we can represent the obtained relaxation
functions in the form of a weighted average of an exponential decay e−bt

with respect to the distribution of the effective relaxation rate b. Namely,
we have ΦGML(t) =

∫∞
0 e−btgGML(b)db for

gGML(b) =


sin(γψ(b))(πb)−1

((b/ωp)−2α + 2(b/ωp)−α cos(πα) + 1)γ/2
for b > 0 ,

0 for b ≤ 0 ,

where ψ(b) =
π

2
− arctan

(
(b/ωp)α + cos(πα)

sin(πα)

)
. Similarly, we can obtain

ΦHN(t) =
∫∞
0 e−btgHN(b)db for

gHN(b) =


1
πb

sin(γψ(b))
((b/ωp)2α + 2(b/ωp)α cos(πα) + 1)γ/2

for b > 0 ,

0 for b ≤ 0 ,

where ψ(b) =
π

2
− arctan

(
(b/ωp)−α + cos(πα)

sin(πα)

)
. At this point we have

to stress that such a representation, following the most natural attempt to
non-exponential relaxation [1], is not possible for the HN relaxation function
with γ > 1.

Let us add that considering jumps Ri satisfying another properties than
finite mean-square length (e.g. heavy-tailed distributed jumps) one obtains
the same relaxation patterns [4, 16]. The assumed type of the jump distri-
bution influences the characteristic material constant ωp only.
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3. Conclusions

We have shown that the clustered-jump CTRW underlies a general class
of the two-power-law relaxation patterns experimentally observed in various
types of complex materials. The proposed model results from the stochastic
generalization of the renormalization-group transformation idea applied to
the CTRW. The resulting new type of the coupled-memory walk brings into
limelight the stochastic origins of the low- and high-frequency power laws
and clarifies the mutual relation between the power-law exponents. It gives
waiting-jump and jump-waiting diffusion schemes which may lead to dif-
ferent relaxation processes depending on the cluster-size properties. If the
distribution of cluster sizes possesses a heavy tail then the waiting-jumps sce-
nario leads to the generalized Mittag–Leffler relaxation function, whereas the
jump-waiting scheme results in the Hariliak–Negami function. The finite-
mean-value clusters do not lead beyond the well-known subdiffusion scenario
underlying the CC relaxation.

The work of A.J. and J.T. was partially supported by the project number
POIG.01.03.01-02-002/08.
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