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The ergometric theory of the ergodic hypothesis is a physical theory for
studying ergodicity in quantum many-body systems. It is based on the re-
currence relations method, an exact dynamical formalism, well established
and applied to numerous models both classical and quantum mechanical.
In this work we show that the frequency spectra, in particular the distri-
butions of the frequency, have properties which appear equivalent to the
invariant measure and transitivity of phase space in classical ergodicity. We
also show that the ergometric statement of the ergodic hypothesis can be
reduced to Boltzmann’s statement cast in microcanonical ensembles. This
reduction indicates that the ergometric theory is a general theory of the
ergodic hypothesis.

PACS numbers: 05.70.Ln, 05.20.–y, 05.30.–a

1. Introduction

The ergodic hypothesis is fundamental to statistical mechanics, first put
forth by Boltzmann more than a hundred years ago, well before the time of
quantum mechanics. It is thus a concept couched in classical ideas, intended
for classical many-body systems. Would a hypothesis born in classical me-
chanics be valid in its form in quantum many-body systems? Surely some
generalizations on the original statement would be necessary. The purpose
of our paper is to show how Boltzmann’s definition must be generalized for
modern problems of interest.
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First we will briefly review here the classical theory as it will be needed
when we discuss ergodicity in quantum many-body systems. For reviews
on the classical theory, see Refs. [1–3]. Consider a classical many-body
Hamiltonian defined by

H = H(p, q) , (1)

where p and q are sets of canonical momenta and coordinates, p = {pi} and
q = {qi}, i = 1, 2, . . . , 3N , where N is the total number of particles. They
are independent classical variables which depend on time t, determined by
Hamilton’s equations

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
. (2)

Using these canonical variables, one can construct an element of phase space
∆Γ = Π∆pi∆qi. By the Liouville theorem this space is a measure preserving
space. The average of an arbitrary positive phase function φ = φ(p, q) is
assumed to exist in this phase space. That is, φ̄ <∞, where

φ̄ =
∫
dΓφ(p, q)δ(H − E)

/∫
dΓδ(H − E) , (3)

evaluated on the surface of constant energy E. The average is also known
as microcanonical ensemble average.

The classical ergodic hypothesis states that

limT→∞
1
T

T∫
0

φ(p(t), q(t))dt = φ̄ . (4)

Is it true? Or conditionally true? This is a physical question tied to the
thermodynamic limit and other physical properties and processes. Yet it
has drawn the attention of many mathematicians for nearly a hundred years,
even today. Almost all the important progress has been made by mathemati-
cians, hardly anything comparable by physicists. See e.g.Refs. [3] and [4].

The mathematical approach by its own nature tends to be abstract and
universal, not tied to some specific models or systems. They have given us
theorems on invariant measures and transitivity of phase space. A theorem
due to Khinchin [4], for example, says that a variable A is ergodic for almost
all trajectories starting from any initial point on the surface of constant en-
ergy except those of a set of measure 0. Another theorem due to Birkhoff [5]
says that a variable A is ergodic if the phase space of motions of the phase
points of A is metrically transitive. See Ref. [3].
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They appear devoid of physical content. It is unclear where and how
some of these abstract ideas bear on the essential physical properties. It is
after all a physical problem and we need to know where the thermodynamic
limit enters into. We need some physical basis to understand Boltzmann’s
hypothesis.

The classical definition of the ergodicity is restrictive. Most problems
of modern interest are not formulated in microcanonical ensembles, but in
canonical or grand canonical ensembles [1,2]. It is not known how or even
whether the math theorems drawn from microcanonical ensembles could be
translated for larger and less restrictive ensembles.

Some years ago Kubo [6] argued that “for a very large system, the canon-
ical distribution is almost equivalent to a microcanonical distribution, the
relative fluctuation being very small”. Thus he concluded that the time aver-
age over canonical ensembles is almost like the time average over an ergodic
surface, i.e. a surface of constant energy. This view seems to be more of
a throwback, rather than an attempt to create something new. Given the
weight of mathematical advances in classical ergodic theory, the reluctance
to tamper with its very foundation is understandable.

In fact, it may very well be that these math theorems are universal
enough to perhaps transcend the ensembles. Could they transcend the sys-
tems too? To answer this question we first need to see whether the classical
definition of the ergodicity is tenable if quantum behavior rules. If not
tenable, we would need to put forth a more general definition if to study
ergodicity in quantum many-body systems. A new general definition must
encompass the classical one. If, for example, the classical limit is taken on
it, the classical definition must emerge. Let us now see whether the classical
definition can hold up in face of quantum mechanics.

2. Limitations of the classical definition

The concept of phase space, whose element is ∆Γ , is central to the clas-
sical theory. The phase element is built up with ∆pi∆qi, i = 1, 2, . . . , 3N .
If they are not classical variables, each of them is bound by the uncertainty
principle, ∆pi∆qi∼~ for every i. Thus ∆Γ is no longer a well defined quan-
tity. It is a statement that the canonical variables (p, q) are not independent
and commuting variables, implicitly assumed in classical mechanics. Thus
from the very outset it is evident that the phase space concept, so critical
to the classical formulation of the ergodic hypothesis, runs into difficulty.

Moreover, the classical ergodicity is premised on time averaging of pre-
cisely described trajectories on the surface of constant energy E, the ergodic
surface. This basic concept is no more on secure ground as soon as the
uncertainty principle is operative. Since ∆E∆t∼~, at a precise moment of
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time where a trajectory lies in phase space is not ascertainable. Quantum
mechanics undermines the very foundations of the classical ergodicity. It
brings to mind the challenges posed to classical mechanics by the black-
body radiation before the advent of old quantum theory.

That is not the end of difficulty as there is a technical issue that must also
be addressed: In quantum mechanics, variables are in general operators, not
functions. Variables of interest in quantum many-body systems are typically
the current or velocity operators, or the number density or spin operators.
Let us denote these operators by A. If A(t) is the time evolution of A, one
would not time-average A(t) for they are pure operators. There would be
no physical content to them.

One would need to make functions out of them by bringing in the time-
dependent density matrix ρ(t). That is, we would time-average 〈A(t)〉, where

〈A(t)〉 = TrAρ(t) . (5)

The presence of the density matrix here implies that the system whose vari-
able A is to be time-averaged in some manner would attain a thermal equi-
librium once a perturbing field were turned off. See below for more details.

3. Ergometric theory

Quantum many-body systems are of primary contemporary interest.
Knowing whether these systems are ergodic adds to our understanding of
these models. The ergometric theory provides essential means for gaining
this knowledge. Being a physical theory, it is system-specific. It provides a
tool known as an ergometer with which to probe a particular variable of a
system to see whether it is ergodic.

We will sketch below the essentials of the ergometric theory developed
in the 2000s. For more details, see Refs. [7–17]. This development seems to
have come at a time when there has been a growing active interest by physi-
cists in this old abstract problem, still fundamental to statistical mechanics.
See e.g. Refs. [18–45].

Let a large body be described by a Hermitian Hamiltonian H(A) where
A is a dynamical variable of interest. Place this body in a weak external
field h, which couples linearly to the body via A. The external field may be
either time-independent or time-dependent. The total energy is described by

H ′ = H(A) + hA . (6)

The relevant density matrix is to be described by the above total energy H ′.
If h = h0 a time-independent field, the ensemble average of A is

〈A〉H′ = TrAρ . (7)
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It is a standard expression except in that the density matrix ρ is defined by
H ′ not H. If h = h0(t) a time-dependent field, the observable or measur-
able is

〈A(t)〉H′ = TrAρ(t) , (8)
where ρ(t) is again defined by H ′ with h = h0(t).

What we have here is a large body initially in thermal equilibrium, per-
turbed by a weak external field h. This process is to be described by linear
response theory, a quantum mechanical many-body perturbation theory.

According to the ergometric theory [7,12,15], the ergodic hypothesis on
dynamical variable A of H(A) takes the following form:

limT→∞
1
T

T∫
0

〈A(t)〉H′dt = 〈A〉H′ . (9)

In the physical setting described by (6), h the external field (neutron
beams, X-rays etc.) scatters off from a macroscopic target H(A). In this
scattering picture, the right-hand side of (9) may be viewed as elastic scat-
tering at a fixed value of the momentum transfer while the left-hand side of
(9) as inelastic scattering at the same value of the momentum transfer but
at vanishing energy transfer. Thus, in our view, ergodicity is a measurable
quantity, an observable.

If h is a very weak field, by the linear response theory [46–49] we have
proved [7,12,15] that (9) is equivalent to:

limT→∞
1
T

T∫
0

χA(t− t′)dt′dt = χA , (10)

where χA(t) and χA are, respectively, the dynamic and static susceptibilities
in zero external field, hence defined by H(A), i.e., system-specific. As a
result, the corresponding density matrices are also defined by H(A). Thus
these scattering response functions are calculable by the formalism of the
recurrence relations method for a given model H. See Sec. 4 below.

Proved in Refs. [7,12,15] is that the equality (10), hence also (9), holds if
and only if WA 6=0 or∞, where WA, dubbed an ergometer, is defined below:

WA =

∞∫
0

rA(t)dt , (11)

where rA(t) is the autocorrelation function of A:

rA(t) =
(A(t), A)

(A,A)
. (12)
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Here the inner product means the Kubo scalar product defined by H[50],
which is thus system-specific. The inner product space of A is realized by
the Kubo scalar product, so that it is not an abstract space. We shall now
bring in the recurrence relations formalism to show how rA(t) is calculated
which goes into WA.

If h = 0 in (6), so that H′ = H

ρ(t) = e−iHtρ eiHt , (13)

that is, ρ̇(t) = −i[H, ρ(t)]. See e.g. Ref. [51]. Thus, now suppressing the
subscript on the right bracket

〈A(t)〉 = TrAρ(t) = TrA(t)ρ , (14)

where
A(t) = eiHtAe−iHt , (15)

which satisfies the Heisenberg equation of motion:

Ȧ(t) = i[H,A(t)] . (16)

The recurrence relations formalism calculates A(t) on a realized space. For
different but related approaches, see e.g. Refs. [52–60].

4. Recurrence relations formalism

This is an exact dynamical formalism, developed in the early 1980s, to
obtain A(t) and related physical functions like the autocorrelation function
rA(t) defined by (12). For a recent review, see Ref. [61]. The formalism
in addition yields conditions for admissible solutions for the autocorrelation
function. For example, a simple exponential decay is found not admissible
for a Hermitian system [92]. During the ensuing years it has been widely
applied to a variety of problems by many workers, cited in [61]. For more
recent works, see Refs. [62–83].

The solution to the equation of motion may be described geometrically
as follows [84]: If A(t) is a vector in an inner product space, it is spanned by
d orthogonal basis vectors. Hence d denotes the number of dimensions of the
inner product space, itself system-specific. As time t evolves, the projection
of A(t) onto different basis vectors changes. If H is Hermitian, the norm
||A(t)|| = ||A||, where A = A(0), meaning that the norm of A(t) is an
invariant of time. Thus as t evolves the magnitude of A(t) does not change
only its direction. More formally it is given by an orthogonal expansion

A(t) =
d−1∑
k=0

ak(t)fk , (17)
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where {fk}, k = 0, 1, 2, . . . , d− 1, is a set of basis vectors satisfying orthog-
onality

(fk, fk′) = 0 if k′ 6=k (18)

and {ak(t)} is a set of autocorrelation functions

ak(t) =
(A(t), fk)
(fk, fk)

. (19)

If f0 = A for k = 0, we obtain the basal function

a0(t) =
(A(t), A)

(A,A)
, (20)

which corresponds to rA(t) of WA. See (11) and (12). The boundary condi-
tions are: ak(0) = 1 if k = 0 and = 0 if k 6= 0. Both {fk} and {ak(t)} satisfy
3-term recurrence relations of their own known as rr1 and rr2, respectively.
In all this, the value of d is an important property. It too is system-specific,
depending on the parameters of H, e.g. spin statistics, number of degrees
of freedom, etc. and on its environment through the realized inner product
space.

If L is the Laplace transform operator,

ã0(z) = L[a0(t)] =
1

z +
∆1

z +
∆2

z + ...
∆d−1

z

, (21)

a continued fraction, where ∆k = ||fk||/||fk−1||, k = 1, .., d− 1.
If H and A are given, one can determine d by calculating fk’s term by

term by rr1 up to fd = 0. If {fk} is known, {∆k} is also calculable. Thus,
ã0(z) is explicitly given. For a number of quantum and classical many-
body models, {∆k} has been calculated. See the review paper by Balucani
et al. [61].

5. Frequency spectra

If z = ±iω, ão(z) gives the spectral or frequency distribution. Observe
that since W = ã0(z = 0), it refers to the frequency distribution at the
origin or zero frequency. But not all distributions are admissible for W . In
deriving W it was proved [7,12,15] that d→∞ is a necessary condition. For
this limit to exist, it is necessary that N→∞ where N is the number of
particles, a parameter of H.
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If d→∞ in (21), ã0(z) becomes an infinite continued fraction. It is no
longer a meromorphic function but an irrational or multi-valued function
with a branch cut or cuts. If H is Hermitian, the branch cuts must lie on
the imaginary axis of z symmetrically above and below the real axis of z.
We will consider two examples:

5.1. Example 1

∆k = 2 if k = 1 ,
= 1 if k = 2, 3, . . . ,∞ . (22)

This particular structure (known as a hypersurface in the language of
the recurrence relations method) is realized in both quantum and classical
models: (i) In the ground state of a 2D ideal electron gas at long wavelengths
if A is the density fluctuation operator [85]. (ii) In a 1D nn coupled classical
harmonic oscilator (HO) chain with periodic boundary conditions if A is the
momentum of any particle in the chain [86]. The two inequivalent systems
(one quantum mechanical and the other classical) necessarily must have
dynamically equivalent behavior.

For this hypersurface the infinite continued fraction (21) is summable to:

ã0(z) =
1√

z2 + 4
. (23)

There is a branch cut from −2i to +2i.

5.2. Example 2

∆k =
k2

(4k2 − 1)
, k = 1, 2, 3, . . . ,∞ . (24)

This hypersurface is realized in the ground state of a 3D ideal electron gas
at long wavelengths if A is the density fluctuation operator [87]. The infinite
continued fraction is summable to

ã0(z) = arctan
1
z

=
1
2
i log

(z + i)
(z − i)

. (25)

There is a branch cut between branch points z = +i and z = −i.
Mathematically, one may draw a branch cut any line connecting the two

branch points, e.g. a line going through ±i∞. But to be physically relevant
it must be drawn a line on the imaginary axis going through the origin since
this is where the frequency spectra lie.
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In the literature of the recurrence relations method are found many other
solutions of this kind, all derived from some Hermitian many-body models
both classical and quantum. But these two examples should suffice for our
purposes of illustration. Since the above two solutions are realized in physical
models, the following analysis is not abstract but physically pertinent.

The presence of branch cuts is significant. On a branch cut between a pair
of branch points are contained all possible irrational values of the frequency.
There are indenumerably many such that the frequency spectrum is dense or
has measure µ = 1. That is, dµ(ω) = P(ω)dω, where P(ω) is the distribution
or density of the frequency ω’s. This is analogous to an invariant measure
with which ergodicity in classical chaos is characterized [88,89]. Thus we
can conclude that the ergometric theory also contains the same element of
classical ergodicity, that of an invariant measure.

But we must remember that in the ergometric theory this requirement of
d→∞ is only a necessary condition for ergodicity. The sufficient condition
is provided by W = finite (not zero, not infinity). Since W = ã0(z = 0), it
refers to the frequency distribution at the origin. If W = 0, we see that the
branch cut is divided into two halves. If W =∞, ã0(z) must be singular as
z→0 from both sides, again splitting the branch cut into two halves. If W
is finite, it is as if there is a bridge over the origin connecting the two halves
of the spectrum.

The two end points W = 0 and ∞ can occur in a single model as dual-
ity points. For example, consider a classical 1D nn coupled equal-mass m
HO chain with periodic boundary conditions. Now make the mass of one
oscillator different from the rest as if it were an impurity mass m0. This
introduces a new parameter say λ = m/m0. See Ref. 86. If λ→0 (Brownian
limit), W→∞. If λ→∞ (vacancy limit), W→0. If λ is finite, the dynamical
variable A (the momentum of the impurity mass) is ergodic.

If a spectrum is divided into two halves, it is equivalent to saying that
the classical phase space is metrically intransitive. If a spectrum is not
divided, it is like the phase space is transitive. The ergometric theory has a
property very much like the transitivity in classical ergodic theory. Birkhoff’s
theory [3,5,13] states that a phase function of a classical system is ergodic
if it is metrically transitive provided that the phase average exists almost
everywhere, i.e. no zero measure. We can thus conclude that the ergometric
theory contains these essential properties of classical ergodic theory.

6. Classical limit

The ergometric theory is constructed for ergodicity in quantum many-
body systems. As already stated, this theory is based on the recurrence
relations formalism. The formalism applies to quantum many-body models
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in the classical limit such as the spin-1/2 Ising and XY chains at T = ∞
[64,65,76–79,90]. It also applies to classical many-body systems such as
classical nn coupled harmonic oscillator chains [63,86] and classical plasmas
[79–83]. Thus the ergometric theory should also be applicable to ergodic-
ity in quantum many-body models in the classical limit as well as classical
many-body systems themselves. Below we shall show how the ergometric
formulation of the ergodic hypothesis reduces to Boltzmann’s ergodic hy-
pothesis postulated in microcanonical ensembles.

To obtain the classical version of the recurrence relations formalism, we
need to express two basic quantities in the classical form:

6.1. Equation of motion

The starting point of the recurrence relations formalism is the Heisenberg
equation of motion, see (16), given in terms of H and A. Let H represent a
classical many-body model. Now A being a dynamical variable of a classical
model, it is a classical function: A = A(p, q), where p and q denote relevant
sets of canonical variables.

For the equation of motion, the right-hand side of (16) is replaced by the
Poisson brackets (pb). Letting C.F. to mean the classical form

A(t)|C.F. = eLtA , (26)

where L is the Liouville operator,

LA = [H,A]pb =
∑

j

(
∂A

∂qj

∂H

∂pj
− ∂H

∂qj

∂A

∂pj

)
. (27)

6.2. Kubo scalar product

According to the recurrence relations formalism, the time evolution of A
takes place on the surface of an inner product space realized by the Kubo
scalar product. The classical form of the inner product of a pair of dynamical
variables A and B say is

(A,B)|C.F. =
∫
dΓρAB , (28)

where dΓ is an element of phase space and ρ is the density matrix in appro-
priate ensembles. All the quantities on the right-hand side of (28) are the
classical analogs of the quantum mechanical quantities.

If the density matrix is defined in grand ensembles (ge), the classical
form is given by

ρge = exp{αN − βH}
/∫

dΓ exp{αN − βH} , (29)
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where α = βµ, µ the chemical potential, N and H are number and energy
variables, respectively. If the variable N is fixed at N = N1 say,

ρge|N=N1 = exp(−βH)∫dΓ exp(−βH) , (30)

where the right-hand side of (30) is ρce the density matrix in canonical
ensembles (ce) in the classical form. If the energy is fixed at H = E,

ρce|H=E = δ(H − E)/
∫
dΓδ(H − E) , (31)

where the right-hand side of (31) is ρme the density matrix in microcanonical
ensembles (me) in the classical form.

Now let us see how the ergometric form of the ergodic hypothesis (9)
reduces to the classical form (4). Since the classical form has no external
field, we let h = 0 in H ′, see (6), so that H ′ = H.

6.3. Classical ensemble average in microcanonical ensembles

〈A〉|C.F./me = TrAρ|C.F./me

=
∫
dΓA(p , q)δ(H − E)

/∫
dΓδ(H − E) = Ā . (32)

6.4. Time evolution in classical form

A(t)|C.F. = eLtA = A(p(t), q(t)) . (33)

6.5. 〈A(t)〉|C.F. in microcanonical ensembles

〈A(t)〉|C.F./me = TrA(t)ρ|C.F./me

=
∫
dΓA(p(t) , q(t))δ(H − E)

/∫
dΓδ(H − E) . (34)

We now return to the ergometric statement of the ergodic hypothesis (9).
If A is a classical function and not an operator, the left-hand side of (9)

may be written as (suppressing the lim sign for simplicity),

l.h.s. of (9) =

〈
1
T

T∫
0

A(t)dt

〉
. (35)
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That is, the order of the two averages is exchanged. This exchange is possible
if and only if A is a classical function. See Ref. [91]. The right-hand of (9)
is a number. Hence its value is unchanged if it is averaged again:

r.h.s. of (9) = 〈〈A〉〉 . (36)

Thus, for classical systems only,〈
1
T

T∫
0

A(t)dt

〉
= 〈〈A〉〉 . (37)

It must also be true if the outer ensemble average is removed from both sides
giving us:

1
T

T∫
0

A(t)dt = 〈A〉 . (38)

If A(t) is a classical function of t and 〈. . .〉 means microcanonical ensembles,
by Secs. 6.1–6.5 the above is expressed as (with the limit sign now restored),

limT→∞
1
T

T∫
0

A(p(t) , q(t))dt=
∫
dΓA(p, q)δ(H−E)

/∫
dΓδ(H−E) , (39)

where on the left-hand side the trajectories of A(p(t), q(t)), now a phase
function, are to be constrained to move on the surface of constant energy E.
Evidently (39) is precisely the ergodic hypothesis postulated by Boltzmann.

7. Concluding remarks

In an earlier paper [13] we showed that if a variable A in a system is mea-
sured ergodic by the ergometer, it also satisfies all the ergodic conditions of
Birkhoff’s theorem. If it is measured not ergodic, one or more of the ergodic
conditions were not satisfied. In that paper we have noted that this cor-
respondence is probably not a coincidence. Although Birkhoff’s theorem is
based on classical physics, pitched in microcanonical ensembles, the under-
lying principles must be universal to transcend the ensembles and systems.
In this present work we have demonstrated that these same principles are
also contained in the ergometric theory, although in a different form, which
explains the correspondence earlier observed.
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The ergometric theory contains additional properties beyond classical er-
godic theory. It was shown in another paper [14] that Khinchin’s condition
for ergodicity, which we have termed irreversibility, is not a sufficient con-
dition. According to the recurrence relations formalism, the autocorrelation
function in a Hermitian system must be irreversible if d (the dimensions of
the realized inner product space) increases without limit. That d→∞ is a
necessary condition for ergodicity in the ergometric theory. An irreversible
autocorrelation function does not necessarily ensure that W be finite. In
such a case, an ergometric analysis would show that there is an incomplete
delocalization of energy were a system perturbed by an external field.

Because of the physical basis of our formulation, we believe that the
ergometric theory is built on sound ground. It contains essential elements
of the classical ergodic theory albeit in different guise. It lends a physical
understanding to what has been long viewed abstruse. Had Boltzmann how-
ever not postulated the ergodic hypothesis, statistical mechanics probably
would have gone in a far different direction.

A portion of this work was completed while I was visiting the Korea
Institute for Advanced Study, Seoul, South Korea. I thank Prof. Hyunggyu
Park for his warm hospitality and support during my stay at the insti-
tute. I thank Prof. Eli Barkai for several discussions related to my theory.
This work is dedicated to the memory of the late Prof. Renat Yulmetyev of
Kazan, Russia.
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