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Detection method of long-range dependences based on multifractal
analysis in time series is proposed. A short description of multifractal anal-
ysis and estimator construction (based on Multifractal Detrended Fluctua-
tion Analysis) are given. This method gives accurate results when applied
to large scale analysis of fractional Brownian motions (fBm) and describes
consistently the mixture of two fBm processes. Finally, this method has
been applied to series corresponding K+ ionic current through the cellular
membrane. For times shorter than 1 sec, a similarity between ionic K+

current and the mixture of two antipersistent processes has been found
with self-similarity parameter of this mixture less than 0.30.

PACS numbers: 05.45.Tp, 05.40.Fb, 02.70.Rr, 87.16.Uv

1. Introduction

Natural systems signals need special tools to treat properly their non-
stationarity and multiscale organization. Especially, the presence of scaling
in time series implies that the usual intuitive search techniques, such as e.g.
characteristic scale, must be replaced by evidencing relations between scales.
The relation between the statistical self-similarity of fractional Brownian
motions (fBm) and their increment processes: fractional Gaussian noises
(fGn) establishes a starting point for considerations of links between long-
range dependencies and scaling [1]. The multifractal formalism is one among
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many techniques to find self-similarity exponents The so-called asymptoti-
cally second-order self-similarity caused by aggregation makes this formalism
widely applicable [2–7].

A method based on well known multifractal properties of the standard
synthetic signals such as fGnH , fBmH and integrated fBmH is used to avoid
complains about reliability and misleadings received otherwise [8]. Namely,
point spectra at (0, 1), (H, 1) and (1+H, 1) which are expected in the case of
fGnH , fBmH and integrated fBmH , respectively, are used for discrimination
of the type of an unknown signal. Our paper consistently uses simultaneous
analysis of the three related signals: an original signal, the signal of incre-
ments and the integrated signal to decrease traps of the intrinsic peculiarity
in the multifractal analysis.

Spectra received for two types of fBmH mixtures: a random mixture
of fBmH1 and fBmH2, and by regular switches between fBmH1 and fBmH2

will be discussed in details. It will be shown that our method is effective
in detection of the intrinsic organization in a random mixture. In the case
of regular switches between two fBm signals non-homogeneous scaling fea-
tures are observed — scaling properties in fine scales are completely different
from scaling properties on large scales. The crossover point is related to the
switching interval. Hence Stoev’s et al. [4] idea that a multifractal spec-
trum is not the only signal representation received from the multifractal
approach obtains a practical shape — the important information can be ex-
tracted from changes of the scaling. Moreover, unhidden in this way, time
scales can be then related to particular phenomena which form a signal [3].
Such approach was successfully applied to series representing time intervals
between subsequent heart contractions [6, 7].

Section 2 gives some details of the method necessary for still not stan-
dardized multifractal tools used. A construction of the estimator (based on
Multifractal Detrended Fluctuation Analysis) is given as well. In Section 3
the multifractal protocol to discover monofractality is proposed. Section 4
reports results found for mixtures of fractional Brownian motions. Finally,
the method is applied to the series of values of potassium ions’ currents
passing through the biological channel.

2. Long-range dependence versus multifractal analysis

2.1. Long-range dependence

The rigid autocorrelation structure of fractional Gaussian noise — fGnH ,
implies that the integrated process — fractional Brownian motion fBmH , is
self-similar with the self-similarity parameter H. fBmHs are the unique
self-similar processes with the self-similarity index H ∈ (0, 1), and with
stationary Gaussian increments [9].
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The correlation function of fGnH can be approximated by the power-law
function:

rfGnH
(k) ∼ H(2H − 1)k2H−2 (1)

for large k. Notice that the correlation vanishes when H = 1
2 or H → 0. The

case H = 1
2 describes the Brownian walk ( = fBm1/2 ) and the corresponding

Brownian noise ( = fGn1/2) is not correlated. If H > 1
2 then the decay of

the correlation is so slow that rfGnH
(k) is not summable over k. A corre-

sponding process fGnH has the long range dependence (LRD). If H < 1
2 (the

correlation function takes negative values) then a signal is anticorrelated.
Long range dependence (LRD), which was discovered in many different

real signals, see e.g., [1] for examples, is thought to be an important feature
of stationary signals. Therefore, the presence of LRD has inspired a weaker
concept of self-similarity, namely, in terms of second-order statistics only.
It appears that LRD can be equivalently characterized by properties of the
aggregated processes.

Formally, let X(n) be a sample path of some process X. Then it can be
shown [10] that the process X and the averaged process X(m):

X(m)(k) =
1
m

(k+1)m−1∑
n=km

X(n) (2)

have both identical correlation structure and that

rX(k) ∼ k2H−2 (3)

is equivalent to

var
[
X(1)(k)

]
≈ m2−2Hvar

[
X(m)(k)

]
(4)

which implies that the correlation exponentH for the signalX can be equiva-
lently estimated from the scaling properties of the variance of the aggregated
processes X(m). Therefore it is said that X is asymptotically second-order
self-similar with self-similarity parameter H.

Estimates of LRD from plots of variance vs. time are known to be unre-
liable [11]. Alternatively LRD can be measured through spectral properties
because (3) is equivalent to the power-law behavior of its Fourier transform,
i.e., to the power spectrum of a signal. In the next section the method of
estimation of LRD based on multifractal formalism will be investigated.
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2.2. Multifractal analysis

The mathematical meaning of multifractality arises from an idea of the
pointwise regularity of a continuous function X(t), see,e.g., [9, 12,13]. Mul-
tifractal analysis provides the description of the fractal structure of subsets
of the domain of X(t) selected by fractional singularities. Formally, the mul-
tifractal spectrum h→ D(h) (the aim of the multifractal analysis) displays
a decomposition of the domain of X(t) according to X(t)’s singularity ex-
ponents: it assigns a Hausdorff dimension D(h) to the domain subset which
collects t points where the singularity exponent is equal to h [9].

Let {X(i)}i=1,2,... be a discrete approximation of a sample path of some
stochastic process X(t). Let the series {X(i)} be divided into boxes con-
sisting of n points. Any quantity R(n)

X (k) which describes some property of
a signal in a k-th box is called a multiresolution quantity. It is said that X
possesses scaling properties if the partition function F (n, q) — the average
of q moments of a given multiresolution quantity, depends on a scale n in
the power-law form, namely:

F (n, q) =
1
K

K∑
k=1

∣∣∣R(n)
X (k)

∣∣∣q ∝ |n|τ(q) , (5)

where τ(q) is called the scaling exponent function and q takes real values.
The positive q describes wild parts of a signal whereas the negative qs collect
properties of smooth parts of a signal. The multifractal spectrum (h,D(h)) is
obtained by the Legendre transform applied to the scaling exponent function
(q, τ(q)):

h =
dτ(q)
dq

, D(h) = qh− τ(q) . (6)

The theory gives freedom in choosing the form of the multiresolution
quantity — several statistics have been considered as R [2, 9, 12, 13] and
still new propositions appear, see, e.g., [14]. A lot of simulations (see e.g.
[2,4,6,7,13,15]) were performed to validate numerically different procedures.
A popular method is called Multifractal Detrended Fluctuation Analysis
(MDFA) [13].

The MDFA method estimates departures of a signal path points X(i)
from a local polynomial trend:

R
(n)

X,Pk
m

(k) =

 (k+1)n∑
i=kn+1

[
X(i)− P km(i)

]21/2

, (7)

where P km is the best polynomial approximation of the order of m found for
the points from k-th box. The partition function F (n, q) is given as
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F (n, q) =
K∑
k=1

(
R

(n)

X,Pk
m

(k)
)q

. (8)

Hence the scaling of F (n, q) determines the scaling exponent function τ(q),
and then the multifractal spectrum h→ D(h). Notice that proposed above
the MDFA method is slightly different from the original one [13] where
so-called profiles of a signal, namely an integrated signal, are considered.
The MDFA method has been found as satisfactory, accurate, and weakly
dependent on the method parameters, while it was tested on synthetic data
[5, 13, 15]. In the following, we use the square detrending i.e., m = 2 and
the software packets of Physionet [16] to calculate (8).

2.3. LRD from multifractal analysis

The multifractal scaling exponent τ(2) which corresponds to the second
moment of the partition function, measures also the power-law behavior of
the second-order statistics, hence describes LRD. However, LRD is defined
in the limit of large scales while multifractal analysis is formulated in the
limit of fine scales. Therefore the limit exponents: for fine scales and for
large scales, are exactly the same only if the scaling is the same on all scales.
So, when the scaling in fine scales differs from the scaling in large scales then
these two approaches provide different answers [9].

It can be proved [9] that if a process X has zero-mean increments then
the correlation function of increments is determined by

H =
τ(2) + 1

2
. (9)

The self-similar processes with stationary increments have the simplest
multifractal spectra. A sample path fBmH has everywhere a local singularity
exponent equal to H what leads to the multifractal spectrum concentrated
in a point (H, 1). It denotes the corresponding signal of increments: fGnH
has LRD which is described by H. However fGnH itself has the multifractal
spectrum in a point (0, 1) because there is no LRD between increments
of fGnH . The multifractal spectrum of a process of integrated values of
fBmH(i):

fBmint
H (k) =

∑
i=0,...,k

fBmH(i)

is also a point which is located in (H int = 1+H, 1). The distance between the
spectrum for the original signal fBmH and integrated signal fBmint

H is equal
to 1 what implies strong deterministic-like dependence in the incremental
process of fBmint

H i.e., in fBmH itself.
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Formula (9) holds for all self-similar processes with stationary zero-mean
increments, therefore it holds for Lévy motions, too. The Lévy stable mo-
tion Lα is the self-similar, symmetrical α-stable process with stationary and
independent increments [9]. The self-similarity exponent H of Lα is related
to the stability index α by a relation α = 1/H. The stability index describes
the decay of the distribution tails, namely the tail decay with a power-law
with the exponent α (such a distribution is called α-stable distribution).
Since Lα has independent increments (and so Lα generalizes the fractional
Brownian motion in the case when H = 1

2) therefore, it does not provide a
modeling of LRD. The multifractal spectrum of Lα consists of two points:
(0, 0) and (1/α, 1). In Fig. 1 we plot an example of the multifractal spectrum
received for L1.5 and its increments. The spectra are similar but shifted by
1/2 in h values. It appears that correlations and non-stationarity of a noise
with α-stable distribution do not influence the multifractal spectrum of the
corresponding Lévy process [17].

Fig. 1. Multifractal spectrum for Lévy motion L1.5 (left), and for corresponding
Lèvy noise (right) received from the MDFA partition function (8). Notice that the
multifractal spectra, when considered numerically and from limited data sets, are
not the two points but they consists of all values between the two points.

Detrended Fluctuation Analysis — the base on which the MDFA method
has been derived, is known to be a reliable tool to quantify accurately cor-
relations in noisy signals embedded in polynomial trends [18]. However, if it
is not known whether a given time series has LRD, it is advised to compare
the results with other methods [5].
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3. Protocol to estimate LRD by multifractal tools

There are two main reasons for multifractality observed in time series:
one related to the broad distribution (like in Lèvy motions) and second
due to LRD [5]. The practical use of multifractal formalism suffers from
numerical difficulties so it happens that results are misinterpreted [2–5,19].
The basic misleading is related to the fact that the scaling found numerically
— from log–log plots of (8), is not uniform in all scales but changes when
the box size n is changed. Even in the simplest case of fBmH the effect is
noticeable (see Appendix A for explanation).

In the case of fBmH signals the relation between LRD and multifractality
is the most straightforward and therefore, the quality of the MDFA method
can be evaluated by practical tests [6,7]. Tests were performed on 50 samples
(consisting of 25000 points) of each process fBmH with H = 0.1, 0.2, . . . , 0.9.
(Signals were prepared by tsfBm packet [20].) Properties of multifractal
spectra obtained on large scales by the MDFA method are collected in
Fig. 13, right column in Appendix A. Following them we claim that MDFA
gives satisfactory and consistent results for fBmH signals, however, only if
the multifractal analysis is performed on large scales, i.e., when log n > 2.
Finally we propose the following protocol to validate the MDFA method as
the self-similarity estimator:

Protocol for monofractal indices by multifractal tools:

(A) If for each q a linear approximation for logF (n, q) vs. log n dependence
is found over the same range of scales and the Pearson correlation
error r2 > 0.98, then the scaling exponents τ(q) are considered as
representatives for the underlying scaling phenomenon.

(B) If the width of the multifractal spectrum is smaller than 0.05 then the
spectrum is assumed as a monofractal.
If a spectrum has a nonsymmetric shape with one wing larger than
the other one then ignore the larger wing, and estimate the width as
the shorter wing doubled, see Appendix B.
If a shape is not a parabola-type then one should apply symmetric
conversions (reflection mainly) which transform the spectral points
into a concave curve.

(C) If the maximum of the multifractal spectrum is the only spectrum ac-
cumulation point hacc, see Appendix C, then the spectrum is assumed
as a monofractal.
The spectrum accumulation points must be determined by observation
distributions of hi in different q-intervals. If the spectrum is multival-
ued, we propose to consider q interval which corresponds to the convex
part of τ(q), namely, the part where h(q) is a strictly monotonic func-
tion of q.
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(D) If the exponent H estimated directly from τ(2) following (9) is equal
to hacc then the spectrum is assumed as a monofractal.

(E) If the multifractal spectrum of the integrated signal satisfies (A)–(D)
and is described by 1 +hacc then the spectrum of the original signal is
assumed as a monofractal.

When all above conditions are satisfied then a given signal can be claimed
as a monofractal.

4. Detection of monofractality in switched fBm signals

Let us apply our protocol to description of the multifractality of the
mixture of two different fBm series. As an example, we consider a signal
received by switching at random from a sample path of fBm0.1 to a sample
path of fBm0.2. The steps of our analysis are presented in Fig. 2.

Fig. 2. Left top: Means of partition functions found for 30 independent samples of
fBm0.1 and fBm0.2 random mixture, together with the std errors of means. Right
top: Scaling exponent functions τ(q) formed according to the partition functions.
Right bottom: Multifractal spectra, respectively. Left bottom: Distributions of hi.
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The mean partition function of the random mixture of fBm0.1 and fBm0.2

(found from 30 independent runs) weakly depends on a scale, see left top
panel in Fig. 2. However, by using a sliding window (consisting of 40 points)
one can extract a family of scaling exponent functions τ(q)s and calculate the
corresponding multifractal spectra. It is evident that there is a difference
in results when different scales are taken into account. To extract LRD
properly, we concentrate on large scales, i.e., when n > 500. Additionally,
the partition functions have the smallest variability if |q| < 2. Therefore,
we limit our analysis to this q-interval. An example is shown in Fig. 2, left
bottom. To retrieve the description of LRD via second-order self-similarity,
we calculate H from τ(2).

Fig. 3. Left: Means of the partition functions found for 30 different samples of
fBm0.1 and fBm0.2 integrated together with std-errors of means. Right top: De-
pendence of τ(2) on scales (the middle of a window of 40 subsequent points is
assigned) where scaling is performed. Right bottom: Multifractal spectra and
distributions of hi.

In this particular case when the mixture is made of fBm0.1 and fBm0.2,
the distribution of accumulation points is roughly uniform for 0 ≤ hi ≤ 0.15
— no accumulation point can be marked out, and the spectrum width is far
from a point-type. The exponent H, calculated from τ(2), is H = −0.02
what agrees with the left limit of the spectrum. Moreover, D(0) � 0. All
these properties lead to the conclusion that correlations among increments
are not present. Nevertheless one can test whether the signals are similar to
a correlated noise if the analysis is performed on integrated series. Integrated
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signals provide an evident dependence of the partition function on a scale in
which the scaling is performed, see Fig. 3, left. Because of this dependence
the value of τ(2) changes significantly when scaling moves from fine to large
scales. However, on large scales only, a narrow multifractal spectrum con-
centrated at hacc = 1.05 and with H = 1.01 for LRD (what approximates
1.0 accurately) is found see Fig. 3, right bottom. According to our protocol
the noisy signals, which are studied, are driven deterministically.

In Fig. 4, left column, we present the multifractal spectra and properties
of distributions of hi for random mixtures of two signals fBmH1 and fBmH2

for different H1 and H2. Results can be summarized as follows. The spec-
trum of a random mixture of fBmH1 and fBmH2 concentrates in two points.
The first point is h′acc = 0 and D(0) = 1 what significantly discerns the con-
sidered signal from a Lévy motion. This spectrum accumulation point comes
from q > 0 what also results in H = 0. The localization of the second point
varies from a sample to a sample because its value comes from q < 0 what is a
numerically sensitive part of a partition function. The most probable value
for the second spectrum accumulation point is h′′acc = max{H1, H2} with
D(h′′acc) = 0. Hence the smoother path of the random mixture is detected
by negative moments. Following our experiments we claim that

τ(−2) = −max{H1, H2} − 1 . (10)

At labels in Fig. 4 we give both: the values of H from the LRD statistics
and τ(−2) to support the above observation.

The integrated signals provide also a two-point-type multifractal spectra,
see Fig. 4, right column. If there is a large difference between H1 and
H2, or when both signals are persistent, then the first point is (1/2, 1), as
expected from randomness of increments. The second point is approximately
at (1 + max{H1, H2}, 0) what is expected from the discovered structure in
the direct signals.

We have to emphasize that our conclusions are derived from studies of
averages of partition functions, and therefore, when an individual run is
observed then a different answer can be easily found.

Finally, let us check the influence of regular switches between the two
paths — let a signal be generated by switching from a path of fBmH1 to a
path of fBmH2 after each step. In particular, we study fBm0.1 switched to
fBm0.2 In Figs. 5 and 6 multifractal analysis is presented as an example.

It appears that the multifractal picture of regularly switched fBm paths
is similar to a picture obtained for a random mixture. However, the results
received for the corresponding integrated signals are significantly different.
The partition functions exhibit the evident crossover property. The cross
point depends on the value of H of participating signals, but approximately,
the change occurs on scales of hundreds. As a consequence, the fine and
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Fig. 4. Results of multifractal analysis and H for LRD received for different random
mixtures of two fBm signals.
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Fig. 5. Left top: Partition function for a signal received when a path of fBm0.1

is switched to a path of fBm0.2 and back after each step. Right top: Scaling
exponent functions τ(q) formed according to the partition function. Right bottom:
Multifractal spectra. Left bottom: Distributions of hi.

large scales estimates are sharply different from each other. The fine scales
always lead to hacc = 0, but the large scales spectra recall ones received for
a random mixture.

The emergence of the crossover property in partition functions is am-
plified when regular switches between paths occur more rarely. In Fig. 7
such partitions functions are shown. A signal consists of subsequent hun-
dred points of fBm0.1 switched then to hundred points of fBm0.2 and so on.
The change in scaling properties is present in both partition functions: the
direct signal and integrated signal. The really rapid change is observed for
qs positive. The crossover point is about the same in both cases and it oc-
curs at scales of hundreds. So by discovering a switch in scaling properties
of partition functions one can learn about the type of a signal mixture —
whether is regular or random?
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Fig. 6. Description to plots is the same as in Fig. 5 but refers to the integrated
signal.

Fig. 7. Partition functions for signals received when paths of fBm0.1 and fBm0.2

are switched to each other after every 100 steps.
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5. Biological currents series

This section presents a detailed analysis of potassium ions’ currents pass-
ing through the biological channel. The channel consists of four protein sub-
units which create an inverted cone with charged entrances [21, 22]. These
data were extensively discussed in several papers [24–29] and their stochastic
properties are known. Adult locust (Schistocerca gregaria) extensor tibiae
muscle fibers with cell attaches patches were the sources of these signals [23].

5.1. General characteristics of the signal

The data set consists of 250 000 values corresponding to the channel
currents I(t) excited at 60 mV and measured at δt = 0.0001 s time intervals.
The minimum and maximum currents are: Imin = 0.24 and Imax = 20.46 pA,
respectively. The time dependence of this signal, normalized to unit interval
(called BION):

i(t) = [I(t)− Imin]/[Imax − Imin] , i(t) ∈ [0, 1] , (11)

is shown in Fig. 8.
The whole signal is bimodal (cf. Fig. 9 below), with peaks at about 3.1

and 13.0 pA [24,26–29]. The distribution of transitions between both modes
(low-value and high-value currents) is bimodal and shows roughly the same
location of peaks [24]. Moreover, the signal is non-Markovian [24–28], and
its power spectrum S(f) is of the flicker-noise type (S(f) ∼ f−B), with the
exponent B = 1.1± 0.1 [25, 26].

The distributions of currents from biological channels are usually rep-
resented by linear combinations of several Gaussian functions. This is cer-
tainly possible: a linear combination of sufficiently many Gaussians is able
to reproduce any function. However, we found that much better fit of the
BION data distribution P (i) can be obtained as a linear combination of two,
appropriately scaled and shifted, non-Gaussian, heavy-tailed asymmetrical
α-stable distributions:

P (i) = 0.80Pst(1.58, 0.75) + 0.20Pst(0.75,−0.8) , (12)

where Pst(α, β) denotes the α-stable distribution of the considered quantity.
The parameters α ∈ (0, 2] and β ∈ [−1,+1] describe the robustness and
the asymmetry of the distribution. The distributions of differenced series,
P (∆mI), with ∆mIn = In+m−In, fit to the symmetrical Lévy distributions:

P (∆1I) = Pst(0.7, 0) , P (∆2I) = Pst(0.5, 0) . (13)
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Fig. 8. The time dependence in BION series measured with resolution 0.1 msec
(upper) and details of this dependence in the signal (middle) and in its increments
(bottom). The lower values describe currents for the closed channel whereas the
higher values correspond to currents when the channel is open.

The fits, obtained by the Nolan’s program STABLE [30], are shown in Fig. 9.
Note that (i) for α-stable distributions all moments higher than first are
divergent (when 1 < α < 2 the first moment is divergent also), therefore
the standard definitions of variance, skewness, kurtosis do not hold; (ii) the
differentiation removes the trends and non-stationarities from the signal —
the resulting distributions are monomodal and symmetrical.
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Fig. 9. Distributions (normalized histograms) P (i(t)) of the series BION (circles),
and corresponding fits (smooth, red curves, cf. text). (a) original signal, (b)–(c)
— differenced series.

Fig. 10. Distributions (normalized histograms) P (τ) of the series BION (circles)
and fits: red — stretched exponential, cyan — algebraic. (a),(b): closed, (c),(d):
open states.

Frequently used characteristics of currents through biological channels
are so-called dwell times τ (their distributions and average values) in a given
channel state. Tail properties of BIO closed- and open-channel dwell times τ
were determined in [27]. The tails decrease according to power laws τ−D
with the exponents D = 1.25± 0.03 for closed and D = 4.16± 0.17 for open
channel. According to [28] the distribution of open channel dwell times
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is exponential, P (τ) ∼ exp(−λτ) with λ = 1.20 ± 0.08 ms−1. Note that
both the values and the distributions of dwell-times depend on the choice of
threshold dividing the currents into “open” (high) and “closed” (low) ones.
Taking threshold at the median of the distribution P (I) we found that P (τ)
fits well to stretched exponentials 3.65 exp{−(τ/0.011 ms)0.378} for closed,
and 0.49 exp{−(τ/0.23 ms)0.90} for open channel (with about 5% error in
these coefficients). Algebraic fits are worse. The results are shown in Fig. 10.
The corresponding average dwell-times 〈τ〉 are 5.93δt for closed (low-current)
and 3.31δt for open (high-current) states. The values of 〈τ〉 depend even
more strongly on the choice of threshold and on δt.

5.2. Multifractal analysis of the BION signal

The length of the signal provides enough points to calculate the partition
functions up to the scale of about n = 30 000, see Fig. 11. It is evident
that these partition functions depend on the scale. The scaling changes
rapidly at about log n ≈ 4 in both BION and integrated BION signals.
However, this switch is evident only if q < −1.3, so, in the region which
is numerically unstable. For positive qs the partition functions presents
smooth behavior. Furthermore, the partition functions of the integrated

Fig. 11. Partition functions for BION series (left) and integrated BION series
(right). Shadowed rectangles point at scaling intervals used in analysis. The scaling
features of the partition function of increments of BION are similar to the direct
signal features.
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signal exhibit additional differences in the scaling when log n is about 2.3.
Notice that this change is also evident only if q < −1.3. Therefore, we cannot
conjecture if any of these changes is signs of some switch in mechanisms
producing currents in the observed ion channel.

In Fig. 12 the multifractal spectra are presented when the scaling is
performed in 2.5 < log n < 4 region in the case of BION and increments
of BION. In the case of integrated BION signal the two intervals: 2.5 <
log n < 3 (mid) and 3.3 < log n < 3.8 (large) are used.

The conclusion of the previous section indicates (BION as an uncor-
related Lévy motion) that a two-point multifractal spectrum at (0, 0) and
(1/1.58 ≈ 0.63, 0) should be received for the BION integrated signal. How-
ever, both spectra in Fig. 12, left top and left bottom are different from
expected ones. Moreover, application of values of τ(2) directly leads to H
value close to 0 for BION. This suggests that LRD is not present among
increments of BION. In the case of BION integrated H is close 1 what
indicates a deterministic like correlations in BION.

Fig. 12. Results of the multifractal analysis for BION, increments of BION and
integrated BION.



Multifractal Detrended Fluctuation Analysis as the Estimator . . . 1043

Analysis of shuffled data, according to [5], provides a simple and efficient
test for the presence of correlations. It appears that the multifractal spectra
of the BION series shuffled at random are identical to fGn0.5. Namely, the
shuffled BION signal provides a very sharp spectrum at a point (0, 1) (with
Pr(hacc = 0) = 1 for |q| < 10). For the integrated signal, the multifractal
spectrum appears at the point (0.5, 1) (with Pr(hacc = 0.5) = 1 for |q| < 3).

The BION signal is a bimodal one with rather fixed dwell-times, so one
can think whether its multifractal properties are similar to properties re-
ceived from a on–off process with exponentially distributed on and off pe-
riods. Tests were performed to check whether where the random on–off
signals perturbed by fGnH gave multifractal indices similar to BION. How-
ever, independently of H, the multifractal spectra received were of fGn0.5-
type. Hence the dynamics of the switches is not the source for the observed
multifractality of BION.

Thorough observations of plots in Fig. 12 reveals that multifractality of
the BION signal can be described by two spectrum accumulation points:
h′acc ≈ 0.03 and h′acc ≈ 0.25, both attributed with D � 0. The spectrum of
the integrated signal obtained in large scales gives also the two accumulation
points which are located at about 1 and 1.35. Notice that these values are
close to the exponent received from the ordinary power-spectrum analysis
B = 1.1± 0.1. Therefore, the multifractal features of BION can be consid-
ered as similar to results received when two anticorrelated fBm signals were
discussed. If our observation is true then, following the conjecture (10), on
the large scales H = −τ(−2) − 1 ≈ 0.48 describes the larger self-similarity
exponent of the two processes which form the BION signal. The justification
for the appearance of such a mixture can be easily found in the biology of
ionic currents — diffusion of potassium ions regulated strongly by both the
channel shape and the electrostatic forces.

The interval where the different scaling in the integrated BION signal
is observed (namely, mid scales) provides a rather distinct description to
the BION series. The presence of a strong accumulation point at h = 0.8
indicates that BION itself seems to be dominated by a persistent noise. Since
the BION signal is long enough we were able to investigate this property
in detail by studying multifractal properties in parts of the BION signal
separately. We divide the series into five parts: (a), . . . , (e), consisting of
subsequent 50 000 points each. The results are collected in Table I.

It appears that hacc ≈ 0.80 is found in each part of BIONint, and, more-
over, the same value is found for H calculated from τ(2) what shows that
at scales of hundreds of observation step, here 0.1 msec the persistent cor-
relations are present among the BION data. On the other hand, the value
H = 0.80 can be also thought as closely related to the exponent which de-
scribes the decay of tails of the distribution fit to α-stable distribution. This
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similarity would rather indicate that LRD is not present in the BION signal.
However, since the value of the second spectrum accumulation point is less
fixed or even the second point is absent, then the direct conclusion is not
clear. Having in mind that this property is not observed on large scales,
therefore the property has transient character only. This property can be
an evidence of either the presence of non-Gaussian distributions or persis-
tency among BION data. From Table I one can read also about multifractal
features of the parts of the BION signal itself. The results are similar to
those obtained for the whole signal with the exception for the value of the
self-similarity parameter H of the contributing process — the short data
analysis shows at H = 0.30.

TABLE I

Results of the multifractal analysis applied to fragments of the BION series.

BION: BIONint:
Part name 2 < log(n) < 3.11 2.4 < log(n) < 3.0

hacc H from τ(2) hacc H from τ(2)
H from τ(−2)

(a) 0.03 0.05 0.80 0.80
0.40 0.55 1.09

(b) 0.02 . . . 0.08 0.05 0.80 0.80
uniform 0.18 0.36

(c) 0.04 0.04 0.77 . . . 0.81 0.77
0.26 0.36 uniform

(d) 0.03 0.05 0.85 0.85
0.16 0.26 0.26

(e) 0.04 . . . 0.08 0.05 0.83 0.83
uniform 0.17 0.61

6. Conclusions

Multifractal analysis needs a special care to avoid possible traps. There-
fore much attention has to be put to proceed. The method of estimation
of multifractality proposed here arises from the straightforward relationship
between LRD and fBmH .

Our results show that the multifractal analysis of long series is able
to detect the presence of two different signals. The fact that the currents
through biological nano-channels correspond to two different states (open
and closed) of the channel, is now well-known. However, the multifractal
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analysis was able to say more about the properties of this mixture — at
least that both signals are antipersistent. Features such as non-markovianity,
long tails of dwell-time distributions fitting to stretched exponential func-
tions, non-Gaussian long-tailed current distributions, persistence and multi-
fractal spectra suggest strongly that the analyzed series is self-similar (direct
proof would need the measurements on a few different time-scales), and that
the underlying physical processes may have chaotic components, leading to
anomalous kinetics. It is well-known that due to the narrowness of the bio-
logical channels, the ions move collectively in a single file [31], what implies
the subdiffusional character of the transport.

The results presented in Fig. 9 and Fig. 10 show that these distributions
are non-classical, i.e., non-exponential, long-tailed ones contrary to popu-
lar beliefs expressed in the literature. As we mentioned earlier, a linear
combination of sufficient number of appropriately chosen functions is able
to reproduce any other function, especially when that function contains ex-
perimental errors. However, without any good physical reason for choosing
both such functions and distributions of their weights (i.e., when a number
of functions entering into the combination is greater than two — three) such
a procedure gives little insight into the properties and mechanisms of the
processes underlying the examined data.

It was found earlier for BION series [28] that the Hurst exponent H =
0.84 ± 0.08, i.e., the fractal dimension D = 2 − H = 1.16 ± 0.08. This
led to the conclusion “that the transport of ions through a single-membrane
channel is Gaussian, i.e., the ionic current process finite-dimensional dis-
tributions are Gaussian. Because the self-similarity index H 6= 1/2, we
claim that the process can be identified with a fractional Brownian motion
(fBm)”. However, this result seems to be in contradiction with the value of
the power spectrum exponent B = 1.1± 0.1 [25,26] which was also detected
by multifractal tools. The possible persistence was found to be related to
the transient scaling property, and therefore could lead to the misleading
interpretation.

D.M. thanks the Polish Ministry of Science and Higher Education —
PB: 1921/B/H03/2008/34 — for the financial support. Authors are grateful
to Dr. Marceli Krogulec for his careful reading of the manuscript.

Appendix A

Local slopes of the partition function FfBm0.2
(n, q) calculated for a sam-

ple path of fBm0.2 are analyzed as follows. For fixed q the best linear fit
for the subsequent 30 points of logFfBm0.2

(n, q) vs. log n plot was found.
Then, the starting point along the partition function was moved. This way a
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Fig. 13. Left column: Multifractal spectra received for different scaling intervals for
a sample path of fBm0.2: from fine scales 20 < n < 50 to large scales 2500 < n <

5000. Right column: Self-similarity exponent H found for different fBmH following
the proposed protocol, for 300 < n < 3000 (namely, large scales): hacc together
with the spectra widths, and H from (9).



Multifractal Detrended Fluctuation Analysis as the Estimator . . . 1047

collection of possible approximations to τ(q) is received. The corresponding
multifractal spectra are shown in Fig. 13, left column. Curves labeled first
(red plots) describe scales 1.3 < log n < 1.7. Plots labeled last correspond
to scales of 3.4 < log n < 3.7. Remembering that the spectra should appear
in the points (0.2, 1), (1.2, 1) (0, 1) for fBm0.2, fBmint

0.2, fGn0.2 respectively,
we see that using the MDFA method the proper values might be received
only in large scales (see [6] for discussion).

In the case of fBmH that crossover property is caused only by deficiency
of the method. Hence, the MDFA method can be validated through its
representation of a point spectrum of fBmH and signals related to a given
fBmH such as fBmint

H and fGnH . In particular, the method’s accuracy was
assessed by testing: (i) the distance between the expected value and the
value at which the maximum of a multifractal spectrum is attained, and
(ii) the width of the multifractal spectrum.

Appendix B

The other problems with multifractal results classification are related
to the shapes of the multifractal spectra found numerically — compare,
e.g., shapes of spectra received for fBmint

0.2. It appears that the Legendre
transform (6) provides a convenient way to encode the scaling exponent
function if τ(q) is strictly convex. It means that not only the first derivative
of τ is important, as it provides the h values, but also h(q) has to be a strictly
monotonic function [33]. However, it happens often that τ(q) is not a convex
function, so that the corresponding multifractal spectrum is a multivalued
function.

Fortunately, the multifractal spectrum shapes can be considered as sys-
tematic modifications of the parabola-like shape, see Fig. 14 as the example.
We believe that these modifications are mainly caused by numerics. Namely,

Fig. 14. Illustration of a multifractal spectrum analysis if the spectrum is a non-
symmetrical and multivalued function.
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when a partition function is calculated for q < 0, one takes into account the
influence of small fluctuations which practically means dealing with numbers
close to zero. Most of numerical methods do not cope properly with this
problem. In the case of MDFA a nonsymmetric parabola was often obtained
where the right wing of a spectrum (i.e., a part which corresponds to nega-
tive qs) is significantly larger than the left one. The multivalued spectrum
is always due to the switch in the convexity of τ(q).

Appendix C

In the case of self-similar signals with self-similarity exponent H, search-
ing for the maximum of a multifractal spectrum, we expect that a set of
{hi}:

hi =
∆τ(qi)

∆q
=

[τ(qi + ∆q) ,−τ(qi)]
∆q

, (14)

where qi = q0 + i∆q and ∆q > 0 is small enough should consist of values
which are scattered close to H. Moreover hi = H should have the highest
count in the set {hi}. We will call hi with the highest count a spectrum ac-
cumulation point. However, each local peak in {hi} will be called a spectrum
accumulation point, too, and denoted hacc. It is expected that in the case
of fBmH , fBmint

H and fGnH signals, a single spectrum accumulation point is
obtained and its value coincides with the maximum in a multifractal spec-
trum. Thus, a spectrum accumulation point for the fBmH series is H, for
fBmint

H , is 1 +H and in case of fGnH is zero.
It appears that the values of spectrum accumulation points could depend

on the interval of q for which the partition function is calculated [32]. If |q|
is large then both negative (q < 0) and positive (q > 0) parts of τ(q) can
be fitted separately by different linear functions. Therefore formula (14)
provides two spectrum accumulation points which are located at the limits
of the spectrum rather than at its maximum, see [7] for details. The values
of these accumulation points are weakly dependent on the expected value
and they vary from sample to sample. However, when |q|-interval becomes
narrower, these two limiting accumulation points disappear, and a single
hacc emerges.
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