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We study the effects of the coloured noise on the dynamics of three inter-
acting species, namely two preys and one predator, in a two-dimensional lat-
tice with N sites. The three species are affected by multiplicative time cor-
related noise, which accounts for the effects of environment on the species
evolution. Moreover, the interaction parameter between the two preys is
a dichotomous stochastic process, which determines two dynamical regimes
corresponding to different biological conditions. Preliminarily, we study the
noise effect on the three species dynamics in single site. Then, we use a
mean field approach to obtain, in Gaussian approximation, the moment
equations for the species densities. We find that the multiplicative noise
does not affect the time behaviour of the 1st order moments. Conversely,
the 2nd order moments are strongly dependent both on the intensity and
correlation time of the multiplicative noise. Finally, we compare our re-
sults with those obtained from a discrete time approach based on a model
of coupled map lattice.

PACS numbers: 05.40.–a, 02.50.–r, 87.23.Cc, 05.45.Ra

1. Introduction

It is known that noise can play a constructive role in nonlinear sys-
tems, and counterintuitive effects such as stochastic resonance [1–3], noise
enhanced stability [4] and noise delayed extinction [5, 6] can appear in bio-
logical systems, whose dynamics is governed by nonlinear interactions and
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noisy perturbations [7]. Noise can be the key to analyze phenomena that
are difficult to explain in a fully deterministic regime, such as fluctuations
of biological species in natural ecosystems [8–11], bacterial growth in food
products and role of molecular noise in the time behavior of a single bac-
terium [12], dynamics of disease connected with genetic mutations [13], geno-
typic, phenotypic and behavioural diversity [14–17]. In these systems and
more generally in biology and ecology, random fluctuations of temperature,
natural resources and other environmental parameters can be modeled by
sources of multiplicative noise [6, 18–22].

In particular, spatio-temporal behaviour and formation of spatial pat-
terns have recently attracted the interest of scientists in different research
fields, ranging from hydrodynamics systems, nonlinear optics, oscillatory
chemical reactions and excitable biological media [23], to nonlinear mod-
els for interacting populations [24], two-dimensional prey-predator systems
[25–27] and reaction-diffusion systems with pattern formation [28]. During
the last three decades an approach exploiting moments has been widely used
to analyse the spatio-temporal dynamics of different species [29, 30], quan-
tum systems in the context of nonlinear Schrödinger equations [31], and
kinetic models of polymer dynamics [32].

In this paper we study the spatio-temporal behaviour of three interacting
species, i.e. two preys and one predator, subjected to random fluctuations.
The system is described by generalized Lotka–Volterra equations [33, 34]
in the presence of two noise sources: (i) a time correlated multiplicative
noise, modeled as an Ornstein–Uhlenbeck process [35], which accounts for
the effects of environment fluctuations on the biological species; (ii) a noisy
interaction parameter which is a stochastic process, whose dynamics is given
by a periodic function in the presence of a correlated dichotomous noise. We
define a two-dimensional spatial domain considering in each site a system
of three Lotka–Volterra equations coupled by interaction terms [36]. After-
wards, using a mean field approach, we study the dynamics of the system
by the moment equations within the Gaussian approximation [37–39], ob-
taining the time behaviour of the 1st and 2nd order moments for the three
species concentrations. Finally, we analyse the system dynamics by using a
coupled map lattice model [40], and compare the results with those obtained
within the formalism of the moments.

2. The model

Our system is described by generalized Lotka–Volterra equations, within
the Ito scheme [35], with diffusive terms in a two-dimensional lattice with
N sites:
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ẋi,j = λxi,j(1− νxi,j − βyi,j − αzi,j) + xi,jζ
x
i,j +D(〈x〉 − xi,j) , (1)

ẏi,j = λyi,j(1− νyi,j − βxi,j − αzi,j) + yi,jζ
y
i,j +D(〈y〉 − yi,j) , (2)

żi,j = λzzi,j [−1 + γ(xi,j + yi,j)] + zi,jζ
z
i,j +D(〈z〉 − zi,j) , (3)

where the dot indicates the time derivative. The variables xi,j , yi,j and zi,j
are functions of the time t, and denote the densities of the two preys and
predator, respectively, in the lattice site (i, j). λ and λz are scale factors,
ν is the saturation parameter for the two preys, D is the diffusion coeffi-
cient, and 〈x〉, 〈y〉, 〈z〉 indicate the spatial mean, performed on the whole
lattice, of the three species densities. The coefficient β is the interaction
parameter between the two preys. The coefficients α and γ account for the
interaction between preys and predator. ζ li,j(t) (l = x, y, z) are statistically
independent coloured noises that model the interaction between species and
environment. The coloured noises are exponentially correlated sources given
by the Ornstein–Uhlenbeck process [35]

dζ li,j
dt

= − 1
τ lc
ζ li,j +

1
τ lc
ξli,j(t) , (l = x, y, z) (4)

and ξli,j(t) (l = x, y, z) are statistically independent Gaussian white noises,
within the Ito scheme,with zero mean and correlation function 〈ξli,j(t)ξl

′
i′,j′(t

′)〉
= σlδ(t−t′)δll′δii′δjj′ . The correlation function of the processes of Eq. (4) is〈

ζ li,j(t)ζ
l′
i′,j′(t

′)
〉

=
σl

2τ lc
e−|t−t

′|/τ l
c δll′δii′δjj′ (5)

and gives σlδ(t− t′)δll′δii′δjj′ in the limit τ lc → 0.

2.1. Single site dynamics
2.1.1. Stationary states and dynamical regimes

Depending on the value of the interaction parameter, coexistence or ex-
clusion regime takes place. In the absence of diffusion terms (D = 0),
Eqs. (1)–(3) become

ẋ = λx(1− νx− βy − αz) + xζx , (6)
ẏ = λy(1− νy − βx− αz) + yζy , (7)
ż = λzz [−1 + γ(x+ y)] + zi,jζ

z , (8)

where the indices i, j were suppressed. Eqs. (6)–(8) describe the dynamics of
a single site ecosystem. In these conditions, setting at zero the multiplicative
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noise (ζx(0) = ζy(0) = ζz(0) = 0, σx = σy = σz = 0), for the generic site of
lattice the stationary values of the three species densities are given by

xstat = ystat =
1

2γ
, (9)

zstat =
2γ − (β + ν)

2αγ
. (10)

From Eq. (9) one can see that the two prey densities have stationary val-
ues that are independent of the interaction parameter β. Conversely, the
stationary value of the predator density (Eq. (10)) is connected with the
value of β. This indicates that the interaction parameter between the two
preys determines the coexistence or exclusion regime for the whole system
through the stationary value zstat. From Eq. (10) the survival condition for
the predator is zstat > 0, which allows to get the coexistence condition for
the three species as a function of β

β < 2γ − ν . (11)

The inequality (11) indicates that the system is characterized by two sta-
tionary states, which become stable or unstable depending on the values
that β, γ and ν take on.

In order to determine the conditions for which the stationary values given
in Eqs. (9), (10) correspond to a point of stable equilibrium in the phase
space, we perform a stability analysis for the deterministic dynamics in single
site. Therefore, in Eqs. (6)–(8) we neglect the noise terms and consider the
generic site of lattice. Afterwards, we obtain the equations for the variations
δx, δy, δz around the stationary values xstat, ystat, zstat. This is a linear
system of three algebraic equations that can be easily solved [39], finding the
expressions for the eigenvalues and corresponding eigenvectors. Obviously,
the stability of the equilibrium point given by Eqs. (9), (10) depends on the
values of the system parameters. Setting λ = 3, λz = 0.06, ν = 1, α = 0.02,
γ = 1, we calculate the eigenvalues and eigenvectors for two different values
of the interaction parameter β, i.e. β = βdown = 0.94 and β = βup = 1.04,
corresponding to coexistence and exclusion regime, respectively. The results
reported in Ref. [39] show that the equilibrium point given by Eqs. (9), (10)
is stable for β = βdown and unstable for β = βup. Finally, setting D = 0,
we calculate the numerical solution for single site dynamics by integrating
Eqs. (6)–(8), using β = βdown and β = βup and the same parameter values as
in the stability analysis. Here, initial conditions, intensities and correlation
times of the multiplicative noise sources are the same for the three species,
that is ζ(0) = ζx(0) = ζy(0) = ζz(0), σ = σx = σy = σz, τc = τxc = τyc = τ zc .
The initial conditions for the species are x(0) = y(0) = 0.1, z(0) = 2.0.
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According to the stability analysis, the results obtained (see Fig. 1) in the
absence of noise (ζ(0) = 0, σ = 0) and under the influence of white noise
(ζ(0) = 0, σ = 10−16, τc = 0) indicate clearly that the system is stable for
β = βdown and unstable for β = βup (see discussion in Ref. [39]). In panels
(a), (b) and (c) of Fig. 1, the densities of the two preys overlap and the time
series of species x (blue line) is not visible.

Fig. 1. Time evolution of the three species. Deterministic dynamics in (a) coexis-
tence and (b) exclusion regime. Stochastic dynamics, for ζ(0) = 0, σ = 10−16 in
(c) coexistence and (d) exclusion regime. In panels (a), (b) and (c), the densities
of the two preys overlap maintaining the constant value 0.5 and the time series of
species x (blue line) are not visible. In panel (d) prey x maintains the constant
value 1.0, while prey y disappears after few time steps. Values of the parameters
and initial conditions are λ = 3, λz = 0.06, ν = 1, α = 0.02, γ = 1, x(0) = y(0) =
0.1, z(0) = 2.0.

2.2. The interaction parameter

The value of the interaction parameter β is crucial for the dynamical
regime of the ecosystem investigated. In fact, for β < 1 both species sur-
vive and a coexistence regime takes place, while for β > 1 at least one of
the species extinguishes after a certain time, and exclusion occurs. These
two regimes correspond to stable states of the Lotka–Volterra’s deterministic
model [39]. From a biological point of view it is reasonable to consider that,
in a real ecosystem, environmental and climatic variables, such as temper-
ature, can be subjected to periodical and random forces, which modify the
dynamics of the biological species, driving the system alternatively between
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the coexistence (β < 1) and exclusion (β > 1) regimes. To describe this
dynamical behaviour we consider, as interaction parameter β(t), a dichoto-
mous stochastic process, whose jump rate is a periodic function with period
T = (2π)/ω

χ(t) =
{

0 , ∆t ≤ τd ,
χ0 (1 +A | cosωt|) , ∆t > τd .

(12)

Here ∆t is the time interval between two consecutive switches, and τd is the
delay between two jumps, that is the time interval after a switch, before
another jump can occur. In Eq. (12), A and ω are amplitude and angular
frequency, respectively, of the periodic term, and χ0 is the jump rate in the
absence of periodic term. Setting βdown = 0.94 < 1 and βup = 1.04 > 1, the
dichotomous noise causes the system to jump between coexistence and exclu-
sion regime. For τd = 435 this behaviour becomes quasi-periodical. In these

Fig. 2. Time evolution of the interaction parameter β(t) with initial value β(0) =
1.04 and delay time τd = 435. The interaction parameter β(t) switches quasi-
periodically between βdown = 0.94 and βup = 1.04. The values of the other param-
eters are A = 9.0, ω/(2π) = 10−3, χ0 = 2× 10−2.

conditions, a competition regime is established with the system switching
quasi-periodically from coexistence to exclusion regime [6] (see Fig. 2 and
discussion in Ref. [30]). This synchronization effect can be considered as a
signature of the stochastic resonance phenomenon [1].

2.2.1. Time behaviour of the species in a single site

In this section we analyse the time behaviour of the three interacting
species in a single site of the lattice in the presence of coloured noise. Setting
σ = σx = σy = σz and τc = τxc = τyc = τ zc , we get three statistically
independent Ornstein–Uhlenbeck processes ζx(t), ζy(t), ζz(t) with the same
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intensity and correlation time. By choosing β(0) = 1.04 and τd = 435, we
obtain for β(t) the time behaviour shown in Fig. 2. By numerically solving
Eqs. (6)–(8), we calculate the time series of x, y and z for two different
values of the multiplicative noise intensity, namely σ = 10−6, 10−3, and
three values of correlation time, i.e. τc = 0 (white noise), 100, 1000. The
values of the other parameters are the same used in the previous section,
that is λ = 3, λz = 0.06, ν = 1, α = 0.02, γ = 1, βdown = 0.94, βup = 1.04.
The initial values of the species densities are x(0) = y(0) = 0.1, z(0) = 2.0.
Here and throughout the paper, the initial values of the Ornstein–Uhlenbeck
processes are ζx(0) = ζy(0) = ζz(0) = 0. The time series for σ = 10−6 are
shown in Fig. 3 (a), (b), (c). Here, an anticorrelated oscillating behaviour
of x(t) and y(t) (preys) appears for white noise (panel a), with the two prey
densities oscillating, around the stationary values xstat = ystat = 0.5, at the
same frequency of the external driving force. We observe that the predator
density also shows an oscillating behaviour, with the same frequency, around
a value much smaller than zstat = 1.5, because of the dependence of zstat

on the parameter β. However, the oscillations of z(t) are characterized by a
smaller amplitude with respect to x(t) and y(t). For σ = 10−6 no difference
appears in the presence of coloured noise with respect to the case of white
noise (compare in Fig. 3 panel (a) with panels (b), (c)).

A different behaviour is observed for σ = 10−3: in this case the role
played by the coloured noise becomes visible (compare in Fig. 3 panel (d)
with panels (e), (f)). In particular, a reduction of the noise effects is observed
as the correlation time increases: the predator disappears in the presence of
white noise (see panel (d)), while survives under the action of coloured noise
(see panels (e), (f)).

2.3. Spatially extended system: mean field approach

In this section we analyse the time behaviour of three interacting species
in a spatially extended system by using a mean field approach. The system
dynamics is described by Eqs. (1)–(3) in the presence of diffusive terms
(D 6= 0). In order to use a mean field approach we derive the moment
equations for this system. Assuming N → ∞, we write Eqs. (1)–(3) in
a mean field form

ẋ = fx(x, y, z) + gx(x)ζx(t) +D(〈x〉 − x) , (13)
ẏ = fy(x, y, z) + gy(y)ζy(t) +D(〈y〉 − y) , (14)
ż = fz(x, y, z) + gz(y)ζz(t) +D(〈z〉 − z) , (15)

where 〈x〉, 〈y〉 and 〈z〉 are average values on the spatial lattice considered
(ensemble averages in the thermodynamic limit) and we set fx(x, y, z) =
λx(1 − νx − βy − αz), gx(x) = x, fy(x, y, z) = λy(1 − νy − βx − αz),
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Fig. 3. Time evolution of the three species densities in a single site of the lattice
for two different values of the multiplicative noise intensity (σ = 10−6, 10−3). The
values of the correlation time are: τc = 0 (white noise), 100, 1000. Here λ = 3,
λz = 0.06, ν = 1, α = 0.02, γ = 1. The values of the other parameters are the
same as of Fig. 2. The initial values are x(0)=y(0) = 0.1, z(0)=2.0, and ζ(0)=0.
In all panels the two preys (x and y) show anticorrelated oscillations around 0.5.
For σ = 10−3 different behaviour appears due to the coloured noise: the time
correlation (see panels (e), (f)) tends to reduce the effects observed in the presence
of white noise (see panels (a), (d)), allowing the predator to survive also in the
presence of higher noise intensities.

gy(y) = y, fz(x, y, z) = λzz[−1 + γ(x + y)], gz(z) = z. By site averaging
Eqs. (13)–(15), we obtain

〈ẋ〉 = 〈fx(x, y, z)〉 ,
〈ẏ〉 = 〈fy(x, y, z)〉 ,
〈ż〉 = 〈fz(x, y, z)〉 . (16)

By expanding the functions fx(x, y, z), gx(x), fy(x, y, z), gy(y), fz(x, y, z),
gz(z) around the 1st order moments 〈x(t)〉, 〈y(t)〉 and 〈z(t)〉, we get an
infinite set of simultaneous ordinary differential equations for all the mo-
ments [37]. To truncate this set we apply a Gaussian approximation, for
which the cumulants above the 2nd order vanish. Therefore we obtain

〈ẋ〉 = λ〈x〉(1− ν〈x〉 − β〈y〉 − α〈z〉)− λ(νµ200 + βµ110 + αµ101) , (17)

〈ẏ〉 = λ〈y〉(1− ν〈y〉 − β〈x〉 − α〈z〉)− λ(νµ020 + βµ110 + αµ011) , (18)

〈ż〉 = λz〈z〉(−1 + γ〈x〉+ γ〈y〉) + λzγ(µ101 + µ011) , (19)
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µ̇200 = 2λ(1− 2ν〈x〉 − β〈y〉 − α〈z〉)µ200 − 2λ〈x〉(βµ110 + αµ101)

+ 2σx(µ200 + 〈x〉2)(1− e−t/τc
x)− 2Dµ200 , (20)

µ̇020 = 2λ(1− 2ν〈y〉 − β〈x〉 − α〈z〉)µ020 − 2λ〈y〉(βµ110 + αµ011)

+ 2σy(µ020 + 〈y〉2)(1− e−t/τc
y )− 2Dµ020 , (21)

µ̇002 = 2λz(−1 + γ〈x〉+ γ〈y〉)µ002 + 2λzγ〈z〉(µ101 + µ011)

+ 2σz(µ002 + 〈z〉2)(1− e−t/τc
z )− 2Dµ002 , (22)

µ̇110 = λ[2− (2ν + β)(〈x〉+ 〈y〉)− 2α〈z〉]µ110 − λβ(〈x〉µ020 + 〈y〉µ200)
−λα(〈x〉µ011 + 〈y〉µ101)− 2Dµ110 , (23)

µ̇101 = λ(1− 2ν〈x〉 − β〈y〉 − α〈z〉)µ101 + λz(−1 + γ〈x〉+ γ〈y〉)µ101

−λ〈x〉(αµ002 + βµ011) + λzγ〈z〉(µ110 + µ200)− 2Dµ101 , (24)
µ̇011 = λ(1− 2ν〈y〉 − β〈x〉 − α〈z〉)µ011 + λz(−1 + γ〈x〉+ γ〈y〉)µ011

−λ〈y〉(αµ002 + βµ101) + λzγ〈z〉(µ110 + µ020)− 2Dµ011 , (25)

where µ200, µ020, µ002, µ110, µ101, µ011 are the 2nd order central moments
defined on the lattice

µ200(t) = 〈x2〉 − 〈x〉2 , µ110(t) = 〈xy〉 − 〈x〉〈y〉,
µ020(t) = 〈y2〉 − 〈y〉2 , µ101(t) = 〈xz〉 − 〈x〉〈z〉,
µ002(t) = 〈z2〉 − 〈z〉2 , µ011(t) = 〈yz〉 − 〈y〉〈z〉 . (26)

In order to get the dynamics of the three species, we analyse the time
evolution of the 1st and 2nd order moments according to Eqs. (17)–(25).
As initial conditions we consider each species uniformly distributed on the
spatial domain, setting 〈x(0)〉 = 〈y(0)〉 = 0.1, 〈z(0)〉 = 2.0, µ200(0) =
µ020(0) = µ002(0) = µ110(0) = µ101(0) = µ011(0) = 0. Afterwards, from
Eqs. (17)–(25) we obtain, in the deterministic case, the stationary values for
〈x〉, 〈y〉 and 〈z〉

〈x〉stat = 〈y〉stat =
1

2γ
, 〈z〉stat =

2γ − (βdown + ν)
2αγ

. (27)

Using for the parameters the same values as in the single site analysis, we
find

〈x〉stat = 〈y〉stat = 0.5 , 〈z〉stat = 1.5 . (28)

Finally, using for the diffusion constant D = 10−1, and setting the delay
time at the same value, τd = 435, used in the single site analysis, by nu-
merical integration of Eqs. (17)–(25), we calculate the time series of the 1st
and 2nd order moments for the same values of multiplicative noise intensity
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Fig. 4. Time evolution of the 1st and 2nd order moments in the mean field ap-
proach, for σ = 10−6 and three values of correlation time, τc = 0 (white noise),
100, 1000. The mean value of the predator, 〈z(t)〉, shows a behaviour correlated
with those of both preys, 〈x(t)〉 and 〈y(t)〉, that are completely overlapped os-
cillating around 0.5 (panels (a)–(c)). In panels (d)–(f) the moments µ200 and
µ020 are completely overlapped and oscillate between 0 and 2.5 × 10−6. Replac-
ing white noise with coloured one affects the 2nd order moments, introducing a
delay: the maximum amplitude of the oscillations in the time series of the 2nd
order moments is reached after a time interval that increases as τc becomes larger.
In panels (a)–(f), the time series of mean values and variances of the two prey
densities overlap and those of species x (blue line) are not visible. In panels
(g)–(i), the covariances µ101 and µ011 overlap at the constant value 0, being µ101

(red line) not visible. The initial values are 〈x(0)〉 = 〈y(0)〉 = 0.1, 〈z(0)〉 = 2.0,
µ200(0) = µ020(0) = µ002(0) = µ110(0) = µ101(0) = 0 = µ011(0) = 0, and ζ(0) = 0.
The diffusion coefficient is D = 10−1. The values of the other parameters are the
same used in Fig. 3.

and correlation time used in the single site analysis. The results are shown
in Figs. 4, 5. Here we note that, after a transient, the mean values of the
two prey densities (see panels (a), (b), (c) of Figs. 4, 5) oscillate around
the stationary values 〈x〉stat, 〈y〉stat, while the predator shows a periodical
behavior around a value much smaller than 〈z〉stat (see Eqs. (28)). Different
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Fig. 5. Time evolution of the 1st and 2nd order moments in the mean field approach,
for σ= 10−3 and three values of correlation time, τc = 0 (white noise), 100, 1000.
The time series of the mean values (panels a, b, c) are identical to those shown in
panels (a), (b), (c) of Fig. 4. However, the larger value of noise intensity (σ = 10−3)
affects the 2nd order moments, causing the amplitude of the oscillations to be
enhanced (compare panels (d)–(i), with the same panels in Fig. 4). The oscillations
reach the maximum amplitude after a time interval that increases as τc becomes
larger. In panels (a)–(f), the time series of mean values and variances of the two
prey densities overlap and those of species x (blue line) are not visible. In panels
(g)–(i), the covariances µ101 and µ011 overlap, being µ101 (red line) not visible.
The initial conditions and parameter values are the same as in Fig. 4.

intensities of the multiplicative noise do not produce any changes in the be-
haviour of the mean values (see panels (a), (b), (c) of Figs. 4, 5). Conversely,
the amplitude of the oscillations of the 2nd order moments is enhanced as
the noise intensity increases and scales with the order of magnitude of σ. As
a consequence we observe an enhancement of: (i) anticorrelated behaviour
between the two preys; (ii) uncorrelated behaviour between the predator
and each prey; (iii) correlated behaviour between the predator and the total
prey density (a global increase of food availability improves the life condi-
tions of the predator). This dependence of the 2nd order moments on the
noise intensity is not strange. In fact, the 2nd order moments account for
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the spatial dispersion of the species. Therefore, as one can expects, higher
values of the noise intensity cause the species densities to spread out in the
lattice.

In the present work we intend to study the role of the coloured noise
and the differences with respect to the white noise case (see Ref. [39] for
a complete discussion on the effects induced by the white noise). We note
that in Figs. 4, 5 the 1st order moments undergo correlated oscillations
and this behaviour is independent on the correlation time (see panels (a),
(b), (c)). Conversely, the presence of coloured noise affects the dynamics
of the 2nd order moments, reducing the effects of the random fluctuations
respect to the white noise case. In panels (e)–(i) of the same figures, we
note that the amplitude of the oscillations of the 2nd order moments of the
two prey densities reaches its highest value after a time interval whose length
increases as τc becomes bigger. In panels (a)–(f) of Figs. 4, 5, the time series
of mean values and variances of the two prey densities overlap and those of
species x (blue line) are not visible. In panels (g)–(i) of the same figures,
the covariances µ101 and µ011 overlap, being µ101 (red line) not visible.

3. Coupled map lattice model

In this section we use a different method to study the time evolution
of the three interacting species on the spatial domain defined in Section 2.
We analyse the system dynamics by using a coupled map lattice (CML)
model [40]

x
(n+1)
i,j = λx

(n)
i,j

(
1− νx(n)

i,j − β
(n)y

(n)
i,j − αz

(n)
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)
+ x
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i,j ζ
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)
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(n)
i,j − αz

(n)
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ρ − y(n)

i,j

)
, (30)

z
(n+1)
i,j = λzz

(n)
i,j

(
−1 + γx

(n)
i,j + γy

(n)
i,j

)
+ ξ

z(n)
i,j ζ

z(n)
i,j

+D
∑
ρ

(
z(n)
ρ − z(n)

i,j

)
, (31)

which represents a time discrete version of the Lotka–Volterra equations.
The results obtained by the two different methods, i.e. formalism of the
moments and CML model, are compared in section 4 in view of using them
to reproduce some properties of real ecosystems. Here x(n)

i,j , y
(n)
i,j and z

(n)
i,j
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denote respectively the densities of prey x, prey y and predator z in the site
(i, j) at the time step n. According to the notation used for the mean field
approach, λ, λz, ν, β, α, γ and D represent the same quantities defined in
Section 2. The interaction parameter β(n) corresponds to the value of β(t)
taken at the time step n, according to Eq. (12). ζx(n)

i,j , ζy(n)
i,j and ζz(n)

i,j are
the Gaussian coloured noise sources defined in Eq. (4). Here,

∑
ρ indicates

the sum over the four nearest neighbours.
Using this CML model, both correlated and anticorrelated spatial pat-

terns of three interacting species have been found [41]. In this work, we
obtain from Eqs. (29)–(31) the time evolution of the three species concen-
trations and calculate, at each time step, the corresponding mean values (1st
order moments), variances and covariances (2nd order central moments).

3.1. Stationary states of the CML model

In the absence both of noise sources and diffusion terms (D = 0), by
setting x(n+1)

i,j = x
(n)
i,j , y

(n+1)
i,j = y

(n)
i,j , z

(n+1)
i,j = z

(n)
i,j , from Eqs. (29)–(31) we

obtain

xstat
CML

= ystat
CML

=
1

2γ

[
λz + 1
λz

]
, (32)

zstat
CML

=
2γ
[
λ−1
λ

]
− (β + ν)

[
λz+1
λz

]
2αγ

, (33)

where the indices i, j were suppressed. In agreement with Eq. (9), we note
that, also in the CML model, the stationary values of the two prey densi-
ties do not depend on the interaction parameter β. By using the existence
condition for the predator

zstat
CML

=
2γ
[
λ−1
λ

]
− (β + ν)

[
λz+1
λz

]
2αγ

> 0 , (34)

we get

β < 2γ

[
λ−1
λ

][
λz+1
λz

] − ν . (35)

According to the analysis of Section 2.1, the inequality (35) indicates that
in the CML model two stationary states, corresponding to coexistence and
exclusion regime, are present. We note that the coexistence condition (35)
depends also on the scale factors λ and λz (see discussion in Ref. [39]).
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3.2. Time series in the CML model

To evaluate the 1st and 2nd order moments we define on the lattice, at
the time step n, the mean values

〈u〉(n) =

∑
i,j u

(n)
i,j

N
, (u = x, y, z) , (36)

the variances

var(n)
u =

∑
i,j

(
u

(n)
i,j − 〈u〉(n)

)2

N
, (u = x, y, z) , (37)

and the covariances

cov(n)
uw =

∑
i,j

(
u

(n)
i,j −〈u〉(n)

)
(w(n)

i,j −〈w〉(n))

N
, (u,w=x, y, z, u 6= w) . (38)

To compare the mean field approach with the CML model, we must have
β = 1 as critical value for the coexistence/exclusion regimes. Therefore,
setting all parameters, except γ, at the same values of Section 2, i.e. λ = 3,
λz = 0.06, ν = 1, α = 0.02, and γ = 26.5, from Eqs. (34), (35) we obtain, for
β < 1, survivance of the species z and, as a consequence, coexistence of the
three species. Conversely, for β > 1 exclusion regime takes place. Therefore,
for γ = 26.5 a coexistence/exclusion dynamical regime is obtained, with the
system driven by the same time behaviour of β(t) used in the approach of
the moments (see Eq. (12) and Fig. 2).

Finally, with these parameter values, from Eqs. (32), (33) we obtain, in
coexistence regime (β = βdown = 0.94), stationary values comparable with
those obtained in the mean field approach (see Eqs. (28))

〈x〉stat
CML = 〈y〉stat

CML = 0.3 , 〈z〉stat
CML = 1.0 . (39)

The CML model is based on the use of the time step ∆t = 1. Conversely,
Eqs. (17)–(25) have been solved by using the time step dt = 10−3, which is
a suitable value to obtain convergence of the solution. Because ∆t is much
larger than dt, the CML model causes the system to evolve more rapidly
with respect to dynamics obtained within the formalism of the moments.
To remove this discrepancy, in the discrete time equations we use a much
smaller value for the diffusion constant, namely D = 10−4 (see discussion
in Ref. [39]). Here we consider a square lattice with N = 100 × 100 and
calculate from Eqs. (29)–(31), the time series of x(n)

i,j , y
(n)
i,j , z

(n)
i,j . By this way,

according to Eqs. (36)–(38), we obtain the time behaviour of the moments
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Fig. 6. Time beahviour of the mean values (panels (a), (b), (c)), variances (panels
(d), (e), (f)) and covariances (panels (g), (h), (i)) of the three species concentra-
tions, for σ = 10−6 and three different values of τc. The time series are obtained
within the formalism of the CML model. The diffusion coefficient is D = 10−4,
and γ = 26.5. The initial values of the species concentrations are x(0)

i,j = y
(0)
i,j = 0.1,

z
(0)
i,j = 2.0 for all the sites (i, j). In panels (a)–(f), the time series of mean values
and variances of the two prey densities overlap (〈x〉 and 〈y〉 maintain the constant
value 0.3, while varx and vary oscilate between 0 and 0.11) and those of species x
(blue line) are not visible. In panels (g)–(i), the covariances covxz and covyz over-
lap at the constant value 0.005, being covxz (red line) not visible. The values of
the other parameters are the same as in Fig. 4: λ = 3, λz = 0.06, ν = 1, α = 0.02.

for two different values of multiplicative noise intensity and three values of
correlation time. The results are shown in Figs. 6, 7. Comparing the time
series of the mean values, variances and covariances obtained in the CML
model with the 1st and 2nd order moments calculated within the mean field
approach (see Figs. 4, 5), we note that the two set of time series are in a good
qualitative agreement.

In particular, we note that, as observed in the formalism of the moments,
the mean values of the three species are characterized by time oscillations,
whose amplitude is larger for the predator (panels (a), (b), (c) of Figs. 6, 7).
Moreover, we observe that the mean values 〈x〉(n), 〈y〉(n), 〈z〉(n) oscillate
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Fig. 7. Time beahviour of the mean values (panels (a), (b), (c)), variances (panels
(d), (e), (f)) and covariances (panels (g), (h), (i)) of the three species concentra-
tions, for σ = 10−6 and three different values of τc. The time series are obtained
within the formalism of the CML model. In panels (a)–(f), the time series of mean
values and variances of the two prey densities overlap and those of species x (blue
line) are not visible. In panels (g)–(i), the covariances covxz and covyz overlap,
being covxz (red line) not visible. The initial conditions and parameter values are
the same as in Fig. 6.

around different values with respect to 〈x〉(t), 〈y〉(t), 〈z〉(t), and variances
and covariances in the CML model show oscillations with significantly larger
amplitude with respect to the results obtained in the mean field approach.
Here, we recall the results reported in Ref. [39]: switching off the multi-
plicative noise sources (σ = 0), the 2nd order moments remain equal to
zero, recovering the conditions of homogeneous distributions obtained for
σ = 0 in the mean field approach. Introducing sources of multiplicative
noise, slight modifications occur in the mean values (see panels (a), (b), (c)
in Figs. 6, 7), and the system is subjected to a symmetry breaking, with
non-vanishing variances that indicate inhomogeneous distributions of the
three species (see panels (d), (e), (f) in Figs. 6, 7). In panels (a)–(f), the
time series of mean values and variances of the two prey densities overlap
and those of speciesx (blue line) are not visible. In panels (g)–(i) of the
same figures, the covariances covxz and covyz overlap, being covxz (red line)
not visible. To discuss the effects due to the coloured noise, we observe
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that the mean values, variances and covariances obtained in the presence
of coloured noise with σ = 10−6 do not show any differences with respect
to the case of white noise (see Fig. 6). For a higher level of the noise in-
tensity (σ = 10−3), the amplitude of the oscillations of 〈z〉CML increases
for larger values of the correlation time (see panels (a), (b), (c) in Fig. 7).
Moreover, the amplitude of the oscillations in the time series of varz becomes
smaller (see panels (d), (e), (f) in Fig. 7), which means that the spread out
of the species z decreases, approaching the value observed in the absence of
multiplicative noise. This indicates that the presence of a time correlation
in the noise source tends to reduce the effects of the noise. The previous
analysis shows that the presence of coloured noise produces different ef-
fects: (i) a delay in the time behaviour of the 2nd order moments obtained
within the formalism of the moments, (ii) an enhancement of the oscillation
amplitude of the mean value of the predator density in the CML model;
(iii) a decrease of the oscillation amplitude of the variance of the predator
density in the CML model. To explain these discrepancies in the results ob-
tained from the two approaches we recall that: (i) the stationary values in
the time discrete approach are different from those obtained in the moment
formalism (see Eqs. (27) and Eqs. (32), (33)); (ii) in the mean field approach
each site interacts with all other sites, conversely in the CML model the spa-
tial interaction involves exclusively the nearest neighbours; (iii) in the CML
model the time step is ∆t= 1, while in the formalism of the moments the
time step is set at dt=10−3.

4. Conclusions

We present the results of a study on the stochastic dynamics of three
interacting species, namely two preys and one predator, distributed in a two-
dimensional lattice. The system is described by generalized Lotka–Volterra
equations in the presence of multiplicative coloured noise with correlation
time τc, and diffusive terms with diffusion coefficient D. Moreover, the inter-
action parameter between the two preys, β(t), is a stochastic process driven
by a dichotomous noise, which is responsible for the dynamical regime (coex-
istence or exclusion) of the ecosystem. We find that the 1st order moments
of the three species concentrations undergo oscillations whose amplitude
does not depend on the multiplicative coloured noise. On the other side, in
the 2nd order moments the multiplicative coloured noise induces oscillations
whose amplitude is strongly dependent on the noise intensity. In particular,
the two preys show an anticorrelated behaviour, while the predator results
to be correlated with the total concentrations of the two preys. The effects
of the coloured noise is to introduce a delay in the transient dynamics of the
2nd order moments: the maximum amplitude of the oscillations in the time
series of variances and covariances of the prey densities is reached after a
time interval that increases as τc becomes larger.
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Finally, we compare the results obtained within the moment formalism
with those calculated by a coupled map lattice (CML) model. In particular,
we find that in the mean field approach the amplitude of the oscillations of
the 2nd order moments of the two prey densities reaches its highest value af-
ter a time interval whose length increases as τc becomes larger. This indicates
that the time correlation of the multiplicative noise delays the anticorrelated
behaviour of the two preys and, as a consequence, their dispersal in the spa-
tial domain. In a real ecosystem, characterized by a dynamical regime where
coexistence and exclusion appears alternatively, these results account for the
uncorrelated behaviour of two competing species which can coexist, even if
exclusion takes place. In fact, in the presence of delayed noise effects, the
symmetry which initially characterizes the dynamics of the two species is
conserved and the two preys undergo neither dispersal nor anticorrelation in
the spatial domain. Conversely, in the CML model this delay effect does not
appear. Here, for suitably high values of the multiplicative noise intensity,
the time correlation of the noise is responsible for an enhancement of the
oscillation amplitude in the time series of 〈z〉(n) (mean value of the predator
density) and a reduction of var(n)

z (variance of the predator density). This
results disagree with those obtained in the moment formalism and indicate
that in the CML model the time correlation in the multiplicative noise af-
fects the dynamics of the predator without causing any change in that of
the two preys. This remarkable discrepancy with the mean field approach
suggests that the dynamics of biological species in a real ecosystem can be
better modelled by the formalism of the moments, which accounts for the
anticorrelated behaviour observed in real populations [44,45].

We also recall that the time series of populations in real ecosystems are
noisy and specifically they can be “red”, that is they are dominated by low-
frequency, long term variations, or white, that is they present no prevailing
frequency [46–48]. In particular, “terrestrial populations exist in a white
noise atmosphere, whereas marine populations are embedded in a red noise
environment” (see Ref. [49]). Moreover, in the presence of red and blue
environmental noise, time series of populations in real ecosystems show, re-
spectively, more red or blue spectra than those subjected to white noise [50].
According to these findings, many ecologists have extensively accepted that
environmental noises can be described by auto-correlated stochastic pro-
cesses [51]. These experimental and theoretical studies indicate that a real-
istic choice is to use coloured noise sources in modelling population dynam-
ics. Specifically, the spatial distributions of benthic foraminifera in marine
environment [44] and the time behaviour of Listeria monocytogenes concen-
tration (bacterial dynamics) in a food product [12], reproduced applying
stochastic models based on Lotka–Volterra equations for fixed values of the
interaction parameter, could be better described modelling environmental
random fluctuations by auto-correlated noise sources and, eventually, intro-
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ducing a dynamical coexistence/exclusion regime. We conclude observing
that the theoretical results presented in this paper could be also useful to
explain the dynamics of other real ecosystems [9,10], where both determin-
istic and stochastic interactions can be present [42,43,52–54].

Authors are grateful to Prof. Lutz Schimansky-Geier for useful discus-
sions. Authors acknowledge the financial support by ESF (European Science
Foundation) STOCHDYN network and partially by MIUR.
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