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An introduction to the old controversy about a relativistic transforma-
tion of thermodynamical quantities is presented from a personal point of
view. New formulas, derived for an ideal gas, are advocated on the basis
of Clausius–Caratheodory axiomatic thermodynamics.
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1. Story

When I was a student, some day inspecting the popular exercise-book [1]
in hope of finding some solutions to my homework problems, I incidentally
came across the following one:

“148. T ′ =
∂E′

∂S′
= T

√
1− β2 , ρ′ = ρ(1− β2)−1.”

Then I went to the text of the exercise (free translation):
“148. How the thermodynamical quantities — density and temperature —
change if another, moving, inertial frame is used?”

My first impression was the second equation is incorrect. Namely, if
ρ = N/V and

V ′ = V
γ
, γ = (1− β2)−1/2 , (1)

changes according to the Lorentz contraction, and N remains invariant, the
density changes by ρ′ = γρ, rather then by ρ′ = γ2ρ. But maybe they consid-
ered a mass density? Then the mass transformation introduces the remain-
ing γ-factor and the second equation seems indeed correct. What about the
first one that T ′ = T/γ? Then I realized that although never thinking about
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that I always knew, perhaps due to the pre-established harmony, that the
temperature is a Lorentz invariant. In any case, I was surprised that the so-
lution was presented there without any explanation as something absolutely
straightforward.

When I returned to the problem many years later I was aware that some
other people had already had doubts about these formulas. Particularly,
Professor Staruszkiewicz told me that (at time after WW2) Einstein wrote
even a letter to his friend von Laue, indicating that some strange and rather
incorrect transformational formulas concerning thermodynamical quantities
were used in his textbooks without citing the sources. He got the answer
that the results came from the well-known old papers by Einstein and by
Planck, from the beginning of the century. The discontinuation suggests that
Einstein was convinced by the answer. These (so-called Einstein–Planck)
formulas [2]

T ′=
T

γ
, S′=S , P ′=P , (and roughly speaking) U ′=

U

γ
, (2)

were explicitly questioned in early sixties by Ott [3], who claimed a different
(internal) energy and temperature transformation rule

U ′ = γU , T ′ = γT , (3)

remaining the entropy and pressure still invariant. Ott’s paper begun a
storm — “a bomb exploded” [4] — and, together with the important Lands-
berg [5] claim that the temperature is invariant

T ′ = T , (4)

divided the community into a few desperately fighting groups, advocating
their “own” formulas against those believed by others [6]. A collection of
different approaches may be found in a table, Fig. 1, reprinted from Balescu
paper [4]. Omitting details, let us say that the entropy transformation rule
— on a basis of that as a logarithm from a number of states it must be a
Lorentz invariant — was commonly accepted. Similarly, the invariance of
pressure was also accepted, supported by certain hydrodynamical consid-
eration. For instance, the averaged energy-momentum tensor for the ideal
gas

T ik = N

〈
pipk

Vε

〉
= diag

{
U

V
,P,P,P

}
, (5)

in the rest frame suggests to consider both the pressure and the energy-
density to be invariant as certain eigenvalues, Eqs. (2). Note that a different
rule

P ′ = γ2P , (6)
was exceptionally mentioned by Sutcliffe [7].
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Fig. 1. The transformation rules for thermodynamical quantities according to dif-
ferent authors. Reprint from Ref. [4].
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It was confusing for me that, despite some preferences concerning par-
ticular formulas, all these considerations did not care about the consistency
of the basic thermodynamical equation1

dU ′ = T ′dS′ − P ′dV ′ . (7)

Using for instance Ott’s formulas one has a “good looking” energy trans-
formation dU ′ = γdU , a consistent heat term (TdS)′ = γ(TdS), but an
inconsistent work term (PdV)′ = (PdV)/γ, etc. Under such circumstances
I decided to verify personally what is the truth and I found my own

T ′ = T , S′ = γS , P ′ = γ2P , U ′ = γU . (8)

Inspired by:

“. . . will ich an alle Wände schreiben, wo es nur Wände gibt,
— ich habe Buchstaben, um auch Blinde sehend zu machen . . .”
(F. Nietzsche)2

I used them as a title of a prepared paper [9] . . . My Buchstaben did not.

2. Derivation of equations (8)

The old problem of transformational properties of the thermodynami-
cal quantities, which enter to the basic equation (7), in the moving (along
x-axis with a constant velocity V ) reference frame, is considered for the ideal
relativistic gas.

The description (7) — thermodynamics — requires the following:

(i) all three terms of Eq. (7) transform according to the same rule;

(ii) the volume of the box transforms according to Eq. (1);

(iii) the energy transforms like

U ′ =
∑
i

〈ε′i〉 =
∑
i

〈γ[εi − (px)iV ]〉 =
∑
i

γ〈εi〉 = γU , (9)

where 〈(px)i〉 = 0 in the common resting reference frame of a system
(as a whole) and thermal bath;

1 In fact the pioneering investigators [2] did use rather a “manifestly incovariant” form
dQ = dU + PdV − V dG, see also [8], leading to a strange energy transformation
formula in Fig. 1. For the reasons of this presentation it was intentionally simplified
in Eqs. (2).

2 . . . I shall write upon all walls, wherever walls are to be found — I have letters that
even the blind will be able to see . . . (L.H. Mecken translation).
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(iv) the entropy is known (as well as the other thermodynamical quanti-
ties) explicitly in the resting reference frame from Gibbs–Boltzmann
(Juettner) equilibrium distribution, particularly

dS = φ1(T )dT + φ2(V)dV , (10)

where φ1[= cV/T ] and φ2[= (∂P/∂T )V ] is a (known in terms of modi-
fied Bessel functions) nonhomogeneous and homogeneous (of the order
of −1, which is going to appear crucial) function of the single argu-
ment, respectively.

The rule for the pressure, Eq. (6), follows from (i)–(iii) as a necessary
condition for the selfconsistency. It is particularly important that the same
result may be obtained independently from the mechanical consideration.
In fact, considering the point particles we can neglect the collisions between
particles. Then each particle undergoes successive collisions with the certain
wall of the box (LxLyLz = V) with a certain constant period τu = 2Luε/pu,
u = x, y, z, respectively in each direction. In the moving reference frame all
τu change according to the Lorentz dilatation τ ′u = τu/γ. The momentum
transfer associated with the single collision in y and z direction is the same
2p′y = 2py, 2p′z = 2pz in the moving reference frame and the areas change
according to σ′y = σy/γ, σ′z = σz/γ. The energy-momentum transfer in
x-direction (0, 2px, 0, 0) corresponds to (−2V γpx, 2γpx, 0, 0) in the moving
reference frame and σ′x = σx. Consequently, each of the ratios 2pu/τuσu
[= p2

u/Vε] changes by the factor γ2 and thus P ′ = γ2P.
Comparing

dU ′ = T ′dS′ − P ′dV ′ = γ(TdS − PdV) = γdU (11)

and using the pressure transformation formula (6) one obtains(
T ′

γT

)
dS′

(
T ′,
V
γ

)
= dS(T,V) . (12)

Consequently, see Eq. (10), (T ′/γT )∂S′/∂T ′ ≡ (T ′/γT )ψ1(T ′) cannot de-
pend on V ′. Because 0 = ∂ψ1/∂V ′ = ∂2S′/∂V ′∂T ′ one obtains ∂S′/∂V ′ ≡
ψ2(V ′) depending only on V ′. The equality(

T ′

γ2T

)
ψ2

(
V
γ

)
= φ2(V) (13)

can only be satisfied (identically with respect to V) if

T ′ = α(V )T (14)
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and both ψ2 and φ2 are homogeneous functions (of the same order) of the
argument. Supposing for a moment that φ2 ∝ Vk is a homogeneous of the
order k [for the relativistic ideal gas φ2(V) = NkB/V, so k = −1] one obtains

ψ2(·) =
(
γk+2

α

)
φ2(·) . (15)

The resulting, by the use of Eq. (14) and the remaining temperature part of
Eq. (12), second equality (

α2

γ

)
ψ1(αT ) = φ1(T ) , (16)

because φ1 for the relativistic ideal gas is explicitly a nonhomogeneous func-
tion, can only be satisfied if identically

α(V ) ≡ 1 , (17)

and
ψ1(·) = γφ1(·) . (18)

Thus the Lorentz invariant temperature (4) is obtained as a necessary con-
dition for the selfconsistence of thermodynamics.

Simultaneously, the entropy transforms, like the energy,

dS′ = γφ1 dT
′ + γk+2φ2 dV ′ (19)

and k = −1, φ2(V ′) = NkB/V ′, are obtained as a necessary and sufficient
condition for the selfconsistence of thermodynamics.

Consequently, the Gibbs–Boltzmann thermodynamics of the ideal rela-
tivistic gas is consistent, and

T ′ = T , S′ = γS , P ′ = γ2P , U ′ = γU (20)

are the resulting Lorentz transformation formulas.
Let us note that still the most popular Einstein–Planck relations (2) are

consistent with the condition (i), however they adopt (rather) incorrect en-
ergy and (consequently) pressure transformation rule. The Eqs. (9), leading
to Ott’s rule for energy, cannot be — at least for the ideal gas — ques-
tioned, because except the statement that the average is a linear operation,
these are the definitions of the successive terms. Similarly, the pressure
transformation formula (6) has been proven independently by mechanical
consideration. The black body radiation thermodynamics is not of the form
(10), but otherwise has the property that all functions are homogeneous.
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This explains why the consideration of the gas of photons cannot lead to
unambiguous conclusions. In fact, because U = aVT 4, P = aT 4/3, and
S = 4aVT 3/3, then the assumption of arbitrary transformational rules of
the form

V ′ = V/γ , T ′ = γτT ,

S′(V ′, T ′) = γσS(V, T ) = γσ+1−3τ 4aV ′T ′3

3
,

P ′ = γπP = γπ−4τ aT
′4

3
,

U ′ = γuU = γu+1−4τaV ′T ′4 , (21)

results with only two equations for the four variables

u+ 1 = π , u = σ + τ (22)

in order to satisfy Eq. (7). Two arbitrary assumptions, π = 0 and σ = 0,
leading to Eqs. (2) were incorrect. The proper choice, u = 1 results with
π = 2, however τ and σ = 1 − τ remain undetermined. The consideration
of ideal gas results with τ = 0 and σ = 1.

3. Final remarks

There is a question to which extent particular results concerning the
simple model systems, Eq. (7), may be considered as some general rules.
Recall the promise of Clausius–Caratheodory axiomatic thermodynamics
that a macroscopic system in equilibrium can be described by a relatively
small number of relevant variables in such a way that counting all the “works”
related to the quasistatic changes of these variables and subtracting them
from the caused internal energy change, an integrable Pfaff form is obtained.
By definition, the inverse of temperature 1/T is an integrating factor of this
differential form and the entropy S is a resulting function of state. From this
point of view the transformation rules for volume (1) and pressure (6) are
not particularly important — the other systems (magnetics, trapped atoms
[10], etc.) have their own, different, relevant variables — except one thing.
These rules follow directly from basic consideration which constitute our
thinking about special relativity, from contraction of measuring rods and
dilatation of clocks (note that a free particle moving in a box is a perfect
clock, three clocks usually!) and convince us that the natural choice that
the internal energy is simply a zeroth component of an energy-momentum
of a system as a whole, is just what we generally need. In fact the Lorentz
transformation of (U, 0, 0, 0) in the rest frame gives (γU, −γV U, 0, 0) and
leads to U ′ = γU , which is consistent with the rule for the product PdV.
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The heat term TdS is universal. Therefore, the derivation presented in
Sec. 2 means that, say, if some transformational formulas for thermodynam-
ical quantities exist, then the entropy changes like the energy

S′ = γS , (23)

and the temperature is invariant (4). Nowadays there is a growing ten-
dency to treat all thermodynamical concepts to be immanently related to
the preferred (rest) reference frame of a considered system. Within this
approach the “covariant” formulation of thermodynamical laws is not ex-
pected and the thermodynamical functions are considered non-transforming
in a sense that the universal rules cannot be established [11–13]. Note that
such thinking do not contradict a “weak” conclusion of my paper. Also note
that many discrepancies result from possible different definitions of quan-
tities, e.g., temperature — as a parameter of a partition function, entropy
— as a Shannon entropy constructed for instance in an explicitly invariant
manner, and pressure — as the already mentioned eigenvalue of the energy-
momentum tensor, etc.

Since Ott article [3] the related papers were mainly focused on temper-
ature. Is a moving body cooler (Einstein–Planck), or hotter (Ott), or is its
temperature the same (Landsberg)? There was no controversy about en-
tropy. However our formula, Eq. (23), differs from the previous one. So let
us consider the entropy. This is an additive quantity, so it may be considered
also for a nonequilibrium case. Imagine a system consisting of several rest-
ing (in some common inertial frame) boxes containing gases of a generally
different temperatures. Collecting the entropies of successive components
we obtain the total entropy of the system S =

∑
i Si. Imagine a similar sys-

tem, consisting of the same components, however let the boxes have some
constant but mutually different velocities Vi (for simplicity, in a CM-frame).
What is the total entropy S̄ of the second system, compared to the former
one? According to the table, Fig. 1, the entropy of each component is still
the same, so S̄ = S. According to Eq. (23) S̄ =

∑
i γ(Vi)Si > S.

Which choice should we prefer?
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