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The idea of using a mathematical model to describe the behaviour of
a physical phenomenon is well established, but in many problems we have
to consider a time-dependent phenomenon for which it is not possible to
write a deterministic model; nevertheless, it may be possible to derive a
stochastic model. The models for time series that are needed for example
to achieve optimal forecasting and control are in fact stochastic models,
but the choice of a proper model is never straightforward. In particular,
this paper is concerned with the problem of forecasting a time series that
possibly exhibits long-memory features. It results that the fractionally
integrated ARMA processes may provide an adequate representation of
the actual process, but do not yield a satisfactory forecasting performance.

PACS numbers: 05.45.Tp, 88.50.gg

1. Introduction

The autocorrelation function (ac.f.) ρk of an ARMA process converges
rapidly (exponentially) to zero as the lag k →∞. Processes with this prop-
erty are often referred to as short-memory processes. Stationary processes
with much more slowly decreasing ac.f. do exist and they are known as long-
memory processes [1]. More precisely, a process is said to possess a long
memory if

lim
T→∞

T∑
k=−T

|ρk| (1)
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is nonfinite and that is tantamount to saying that the spectral density of a
long-memory process becomes unbounded at low frequencies. There is em-
pirical evidence that such long-memory processes occur frequently in fields as
diverse as hydrology, geophysics, meteorology and economics [1–3]. From a
practical modelling point of view, such processes may exhibit certain features
that could give the impression of the need for differencing to achieve station-
arity, although taking a first difference may be too extreme. A notable class
of long-memory processes are the autoregressive fractionally integrated mov-
ing average (ARFIMA) processes which have recently proved to be adequate
models in the analysis of time series with long-term dependence. However,
several doubts have been raised as for their forecasting performance [4–6]
and this paper, accordingly, tests their effectiveness upon a time series of
hourly average wind speed (HAWS) recorded in Italy during one month.
The series exhibits long-memory features but employing an ARFIMA model
to compute the future values of the underlying stochastic process resulted
in a poor prediction accuracy. The analysis of this kind of time series is of
the utmost importance for the exploitation of wind energy, mainly hindered
by stochastic wind speed fluctuations [7]. In order to compensate them and
to take decisions in the context of the electricity market, a reliable weather
forecast is necessary [8].

2. Time series analysis

Although it may be possible to increase the sample size by varying the
length of the observed time series, there will only be a single outcome of
the investigated stochastic process and time series analysis is essentially
concerned with evaluating the properties of this underlying data generating
process from the observed time series, even though this single realization is
the only one we will ever observe. Once a hypothetical probability model to
represent the data has been set up, it may be used to draw useful inferences
from the time series. Different sources of variation may occur and accord-
ingly different models have been developed in order to obtain an adequate
representation [9].

Many time series contain a seasonal periodic component which repeats
every s observations. We expect relationships to occur between adjacent
observations and between observations separated by s units of time.
A SARIMA(p,d,q) × (P ,D,Q)s process {Zt} is defined by the relation

φp(B)ΦP (Bs)(1−B)d(1−Bs)DZt = θq(B)ΘQ(Bs)Wt , (2)

where B is the backward shift operator, φp(B) and θq(B) are polynomi-
als in B of degree p and q, respectively, satisfying stationary and invert-
ibility conditions, ΦP (Bs) and ΘQ(Bs) are polynomials in Bs of degree P
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and Q, respectively, satisfying stationary and invertibility conditions, and
{Wt} are independent and identically distributed normal random variables
having mean zero and variance σ2

w.
If there is no cyclic variation, but the underlying data generating pro-

cess is still supposed nonstationary, then the ARIMA(p,d,q) process {Zt},
defined by

φ(B)(1−B)dZt = θ(B)Wt (3)

may represent an appropriate model, while the stationary, short-memory
process provided by (3) by letting d = 0 (no trend) is called an ARMA(p,q)
process.

An ARFIMA(p,d,q) process {Zt} is defined, for 0 < |d| < 0.5, again
by the relation (3), where φ(B) = 1 − φ1B − φ2B

2 − · · · − φpB
p = 0 and

θ(B) = 1− θ1B − θ2B2 − · · · − θqB
q = 0 have all roots greater than one in

absolute value. For d > −1, the operator (1 − B)d in (3) is defined by the
binomial expansion

(1−B)d = 1 +
∞∑

j=1

πjB
j , (4)

where

πj =
Γ (j − d)

Γ (j + 1)Γ (−d)
(5)

Γ (x) being the gamma function. Hence the πj follow the simple recursion

πj =
(
j − 1− d

j

)
πj−1 (6)

with π0 = 1.
A particular special case is the fractionally integrated white noise process

{Ft}, defined by
(1−B)dFt = Wt . (7)

From the above definitions, an ARFIMA process {Zt} can be interpreted
as an ARMA process driven by fractionally integrated white noise or as a
process whose fractional difference is an ARMA process.

The classical approach for detecting the presence of long memory in a
time series {zt} traces back to Hurst’s work [1], where the rescaled range
statistic (R/S) is introduced:

R

SN
=

max
1≤k≤N

∑k
t=1(zt − z̄N )− min

1≤k≤N

∑k
t=1(zt − z̄N )

SN
(8)



1086 S. Bivona et al.

with

z̄N =
∑N

t=1 zt
N

(9)

and

SN =

√∑N
t=1(zt − z̄N )2

N
. (10)

Hurst showed that for large values of N

N−H × R

SN
→ const. , (11)

where H is known as the Hurst exponent. It is also referred to as the
scaling exponent because self-similar processes and long-memory processes
are highly connected. For any stationary process with short-range depen-
dence, H is expected to be 1/2. Therefore in this case, for large values
of N , log(R/SN ) should be scattered around a straight line with slope 1/2.
Instead, an estimated slope greater than 1/2 is taken as an indication of
long-term memory and in this last case the differencing parameter is esti-
mated as

d = H − 1/2 . (12)

Forecasting for ARFIMA processes is not as straightforward as for non-
fractionally integrated processes because forecasts cannot be obtained di-
rectly from a finite order difference equation form. For the ARFIMA model,
forecasts are derived using the infinite AR form of the process, i.e.

π∗(B)Zt = Wt , (13)

where

π∗(B) = 1−
∞∑

j=1

π∗jB
j = θ−1(B)φ(B)(1−B)d . (14)

Multiplying both sides of this relation by θ(B), it is possible to obtain
the π∗j coefficients necessary for the AR form (13) of the general ARFIMA
process (3). In fact,

θ(B)π∗(B) = φ(B)(1−B)d (15)

that is to say, using (14) and (4)

θ(B)

1−
∞∑

j=1

π∗jB
j

 = φ(B)

1 +
∞∑

j=1

πjB
j

 . (16)
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Now, recalling the expressions for the polynomials φ(B) and θ(B), the π∗j
coefficients may be obtained recursively by

π∗j − θ1π∗j−1 − · · · − θqπ
∗
j−q = −πj + φ1πj−1 + · · ·+ φpπj−p , (17)

where

π0 = 1 ,
π∗0 = −1 . (18)

The l steps ahead forecast of Zt+l based on the infinite past observations
starting at time t is

ẑt(l) =
∞∑

j=1

π∗j ẑt(l − j) . (19)

3. A comparative study

In order to make clear the difficulties encountered in setting up a proper
class of models for the stochastic process considered in this paper, hourly
average wind speed, a particular time series will be examined in detail. It
has been selected because there seems to be no clear generating model for
it and series with such a characteristic are not rare in the examined sample
consisting of 96 time series. Fig. 1 shows the HAWS time series recorded in
Cammarata (Italy) in February 2005, while Fig. 2 displays the series trans-
formed in order to adjust for the non-Gaussian distribution, along with its
ac.f. and smoothed spectrum, the latter obtained using an opportune au-
toregressive model fitted to the data. The estimated spectrum does not
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Fig. 1. HAWS (m/s) at 10 metres above ground in Cammarata, February 2005.
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Fig. 2. Top — the time series shown in Fig. 1 after a nonlinear transformation.
Bottom — autocorrelation function and smoothed spectrum of the series shown
above.

reveal any periodicity. The autoregressive model selected for the estimation
is simply an AR(1) model and this could be an indication that the investi-
gated process is stationary. This hypothesis could be reinforced by looking
at the time plot from which some qualitative features may be drawn. When
one looks only at short time periods, then there seem to be cycles or local
trends. However, looking at the whole series, there is no apparent persisting
trend or cycle. It rather seems that cycles of different frequencies occur,
superimposed and in random sequence. Overall, the series looks stationary.
The interpretation of the ac.f. is much more difficult. The only clear feature
is that the correlations do not die out quickly and this contradicts the hy-
pothesis of stationarity unless a particular kind of stationary models — the
long-memory models — is invoked. Moreover, looking at the correlations
up to 2 days, a weak daily cycle could be detected, but for higher lags this
possibility is not confirmed. Anticipating the results given below, it comes
out that the examined process shares features common to different kinds of
models. In particular, it could be considered a stationary process and a non-
stationary process. Moreover, it could be a stationary short-memory process
and a stationary long-memory process. Finally, it could be modelled by a
nonstationary nonseasonal model and by a nonstationary seasonal model.
Among all these fairly good candidates, there is only one clear winner, both
in terms of modelling and forecasting.
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This difficult selection of an appropriate data generating model for the
observed time series must not surprise since not rarely it happens to be the
case for other series. Support to this notion, that it is very difficult to de-
termine the kind of stochastic process (stationary or not) on the basis of
only one realization of its, is given in [9]. For a time series consisting of
chemical process concentration readings, the Authors propose two possible
ARMA/ARIMA models. Beran [1] also examined the same data and found
that an ARFIMA model fits the series well. In the following, the four dis-
cussed kinds of models for the series shown in Fig. 2 will be given and used
to forecast 24 hours ahead the original series in Fig. 1.

In order to assess the presence of long memory in the transformed se-
ries, the sample spectrum and the plot of the rescaled range statistic are
displayed, respectively, in Fig. 3 and Fig. 4. Both tend to suggest that
an ARFIMA model could be appropriate. More specifically, the spectrum
grows at low frequencies and the values of log(R/SN ) versus log(N) are
scattered around a straight line with slope greater than 1/2, as expected
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Fig. 3. Sample spectrum of the time series displayed in Fig. 2.

for long-memory processes (see Sec. 2). The slope of the estimated straight
line is H ≈ 0.65 and the derived differencing parameter is d ≈ 0.15. The
model selected by the AICc is ARFIMA(2,0.15,1) and the Ljung-Box-Pierce
statistic reveals that the independence assumption for the residuals of the
model fails beyond lag 35. Again upon a stationary assumption for the
process, a class of short-memory models has been tested too, namely the
class of ARMA models. The same information criterion provides in this
case an ARMA(3,2) model as a possible candidate with the independence
assumption for the residuals valid up to lag 30. Assuming instead that the
underlying process is nonstationary, the following different kinds of models
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Fig. 4. Rescaled range analysis for the time series displayed in Fig. 2. The slope
of the estimated straight line is H ≈ 0.65, while the slope of the reference broken
line is 1/2 (short-range dependence).

may be given, namely an ARIMA(1,1,1) and a SARIMA(2,1,2)×(0,1,2)24.
In the first case the model fails the independence requirement for the resid-
uals after lag 30, in the last case after lag 284. Fig. 5 displays the 24 hours
ahead predictions obtained using each of the four developed models, while
in Table I their quality is evaluated by four different indicators, namely
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Fig. 5. 24 hours forecast of the time series shown in Fig. 1 by the models reported
in Table I. Actual data displayed in the forecast window to assess forecasting accu-
racy have not been used to estimate the parameters of the models (out of sample
forecasting).
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TABLE I

The forecasting accuracy of the models developed for the considered case study.

Model MAE (m/s) RMSE (m/s) MAPE MASE

ARMA(3,2) 0.78 0.92 119.93 1.25
ARFIMA(2,0.15,1) 0.72 0.87 109.18 1.15
ARIMA(1,1,1) 0.93 1.06 144.43 1.49
SARIMA(2,1,2)×(0,1,2)24 0.43 0.53 52.42 0.69

the mean absolute error (MAE), the root mean square error (RMSE), the
mean absolute percentage error (MAPE) and the mean absolute scaled error
(MASE). The obtained results illustrate a fundamental point in time series
analysis. The more dependence there is among past observations, the better
a future observation can be predicted, provided that the existing depen-
dence structure is exploited appropriately. In other words, to obtain good
forecasts it is necessary to use good models. In the considered case study all
four indicators agree on the ranking of the employed models. The winner is
the SARIMA model, followed by the ARFIMA, then by the ARMA and fi-
nally by the ARIMA model. The predictions obtained by the last three look
very similar, in that they all pass in the middle of the actual data, but they
present different features. In fact, the forecast based on the ARIMA model
diverges for greater lead times, while the prediction by the ARMA process
converges very fast to the sample mean of the past observations and using
the sample mean corresponds to total ignorance about the future observa-
tions (except for their unconditional expected value). On the other hand,
the prediction based on the ARFIMA model converges more slowly and this
means that past observations influence the forecasts even far into the fu-
ture, as it is expected for a long-memory process. However, in view of the
obtained results, it is clear that the analysed process is properly described
only by the SARIMA model which has not been selected on a statistical
basis, but upon the knowledge of the physical properties of the investigated
phenomenon.

4. Conclusion

The predictions yielded by the ARFIMA models developed for the series
analysed in this work clash with their modelling performance, as demon-
strated by the reported case study. Given that predictions as that in Fig. 5
have been obtained also by Beran [1] and that many previous researches
have raised doubts on the effectiveness of the ARFIMA specification as a
forecasting tool, the validity of these models for HAWS should be further
investigated.
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