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Diffusion of an overdamped Brownian particle on a symmetric peri-
odic substrate is investigated in the presence of pulsated perturbations
of two kinds: (i) stepwise lateral displacements (flashing substrate), and
(ii) instantaneous tilts (shot noise). Pulses are applied in either periodic
or random sequences with assigned mean (bias) and average waiting time
(time constant). At zero bias, the diffusion coefficient of the particle can be
greatly enhanced by tuning the time constant. Such a diffusion resonance
should not be mistaken for the excess diffusion peaks earlier reported for
finite biases.

PACS numbers: 05.60.–k, 66.10.C–, 82.75.–z

1. Introduction

Brownian diffusion on a periodic substrate is often affected by (i) modelA:
instantaneous lateral shifts of the substrate (flashing substrate) and
(ii) model B: external kicks corresponding to instantaneous substrate tilts
(shot noise). Both jittering mechanisms have been advocated to model trans-
port at the micro- and nanoscales [1,2]. Historically, models of type B were
introduced first, originally, to interpret the output of classical electronic de-
vices [3], and more recently, to engineer quantum devices subject to shot
noise of either electronic [4] or photonic nature [5]. Prominent applications
of model A include molecular motors at the cellular level [2,6], where flashing
is caused by power strokes from the chemical energy source (like the hydrol-
ysis of a single ATP molecule), tunable optical lattices for cold atoms [7],
where substrate shifts are associated to degenerate atomic levels, and elec-
tromechanical sieves, e.g., for the electrophoresis of DNA strands [8].
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In this paper we elaborate on the results first obtained in Ref. [9] by
numerically simulating simple realizations of models A and B with particular
attention to spatial diffusion.

2. Two models

Let x be the coordinate of an overdamped Brownian particle of unit mass
diffusing on the cosine potential V (x) = d[1− cos(2πx/L)]. In the following
we set, for convenience, d = 1 and L = 2π.

In model A the substrate shifts sidewise over time (see Fig. 1), i.e.
V (x)→ V [x− x0(t)], where the drift x0(t) is either a squarewave,

x0(t) = 2x0

∑
i

(−1)iΘ(t− ti) (1)

(zero-bias drift), or a staircase,

x0(t) = x0

∑
i

Θ(t− ti) (2)

(unidirectional drift). Here Θ(x) is a Heaviside step function, {ti} is an
ordered sequence of the switch times with i = 0, 1, 2 . . . and t≥ t0, and x0>0
is the step length. We simulated both constant waiting times, ti+1−ti ≡ τ for

Fig. 1. (Color online) (a) Resonant diffusion. As the substrate switches between V−
(dashed curve) and V+ (solid curve), in model A a particle initially at rest in a V−
well (empty circle) gets instantaneously activated (gray circle) and then diffuses
either to the right or to the left (filled light gray circles) with probabilitiesπ±.
(b) Negative mobility (model A). As the substrate advances to the right with
average speed vs, the activated particle (gray circle) may happen to preferably roll
backwards with π− > π+.
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any i (periodic sequence), and exponentially distributed waiting times, with
time constant τ = 〈ti+1 − ti〉 (random sequence). In conclusion, model A is
summarized by the Langevin Equation (LE) [10]

ẋ = − sin[x− x0(t)] + ξ(t) , (3)

where ξ(t) is a Gaussian zero-mean noise with autocorrelation function
〈ξ(t)ξ(0)〉 = 2kTδ(t), which maintains the system at the equilibrium tem-
perature T .

Model B is defined by imposing the spatial variable transformation x→
x− x0(t) on the corresponding model A. Accordingly, the LE (3) becomes

ẏ = − sin y + FS(t) + ξ(t) , (4)

where FS(t) ≡ −ẋ0(t) can be regarded as a shot noise acting upon the
Brownian particle of coordinate y, diffusing in the static cosine potential
V (y). Correspondingly, the zero-bias, (1), and unidirectional drift, (2), are
mapped into a sequence of δ-like pulses with alternate,

FS(t) = −2x0

∑
i

(−1)iδ(t− ti) , (5)

or equal signs,
FS(t) = −x0

∑
i

δ(t− ti) . (6)

Moreover, due to the linear nature of the transformation x → y, models A
and B have the same diffusion coefficient D [10,11]. For numerical purposes
we computed D for model A, i.e., D ≡ limt→∞[〈x2(t)〉 − 〈x(t)〉2]/2t.

3. Outline

In the current literature [3], the unidirectional drifts of model A and
the unidirectional shot noises of model B are often characterized in terms
of their time averages, respectively, the net drift velocity of the substrate,
vs = x0/τ , and the net driving force, fs = −x0/τ , felt by the particle. In
fact, this approach typically holds good for macroscopic devices, where τ is
negligible with respect to the device response times. On the contrary, we
show below that the interplay of time-pulsated perturbations and spatial pe-
riodicity may strongly affect particle transport in a small device. By tuning
τ at constant bias, vs or fs, we observed (a) Model A: negative mobility dips
with µA ≡ 〈ẋ〉/vs < 0, indicating particles that drift with average veloc-
ity opposite to the substrate drift; (b) Model B: excess mobility peaks with
µB ≡ 〈ẏ〉/fs > 1, implying that, for an appropriate τ , shot noise can push
particles faster than in the absence of substrate barriers (in which caseµB =1
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[12]), and correspondingly, (c) excess diffusion peaks with D > kT , which
appear to anticipate both the dips, (a), and the peaks, (b), of the mobility
curves. [In our notation the diffusion coefficient of a free Brownian particle
(i.e., for V ≡ 0) is kT ]. Finally, in both models, for zero bias (vs = fs = 0)
and an appropriate τ interval, we observed (d) a remarkable resonant dif-
fusion effect, also with D > kT . Properties (a)–(d) can be regarded as
manifestations of a resonant transport mechanism controlled by the time
constant of the pulse sequence.

4. Zero bias: Resonant diffusion

We start now analyzing the results of our simulations for the processes
(1) and (2) at zero-bias. In Fig. 2 we display D/kT versus τ at different
temperatures; the pulse sequences are periodic in panel (a) and random
in panel (b). The resonant nature of the curves D(τ) is apparent in both
panels, although more prominent for periodic sequences.
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Fig. 2. (Color online) (a) Resonant diffusion D/kT versus τ for an unbiased pul-
sated substrate (the same for model A and B). The squarewave x0(t) is periodic
in (a) and random in (b). The simulation parameters kT and x0 are reported in
the legend. Crosses and lozenges in (a) are the relevant analytical predictions for
τ → 0 and τ → ∞, respectively (see text). The dashed line in (a) is the optimal
diffusion law (7) for x0 = π/2. Two data sets from (a) (blue symbols) have been
reported in (b) (empty symbols) for reader’s convenience.
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We interpret such an effect as a new instance of the so-called resonant ac-
tivation phenomenon, originally demonstrated in bistable systems [13]. For
exceedingly large τ , say, τ →∞, Brownian diffusion achieves its asymptotic
regime, 〈x2(t)〉 − 〈x(t)〉2 = 2D(∞)t, irrespective of the applied perturba-
tion x0(t). The coefficient D(∞) thus coincides with the diffusion coefficient
in the static, unbiased cosine potential V (x), namely, D(∞) = kTµ(d),
where µ(d) = [I0(d/kT )]2 is the relevant mobility, expressed in terms of the
modified Bessel function I0(x) [12]. In the opposite limit, τ → 0, the dif-
fusion process takes place in the effective potential V (x), obtained by time
averaging either the sidewise switches x0(t) (model A) or the kicks FS(t)
(model B). Upon implementing the vibrational mechanics scheme utilized
in Refs. [14], one concludes that V (x) is still a cosine potential, but with
rescaled amplitude d→ d cosx0. As a consequence, for vanishingly small τ ,
D(0) = kTµ(d cosx0). Our analytical estimates for D(0) and D(∞) are
also reported in Fig. 2 (a). Note that, at variance with D(∞), D(0) sharply
depends on x0. In particular, D(0) ≥ D(∞) for any x0 and D(0) = kT (free
diffusion) for x0 = π/2. Moreover, the unbiased LE (3) and (4) are invariant
for x0 → x0 + π, as explicitly shown in Fig. 3.

Fig. 3. (Color online) Diffusion coefficient D versus x0 for kT = 0.12, vanishing bias
and different τ (model A). The D peaks are symmetric and periodic with period
x0 = π.

The D(τ) curves bridge the two limits D(0) and D(∞) by going through
a broad resonance peak. Such excess diffusion peaks can be explained also
by means of a simple argument. Let us consider, for instance, a substrate
switch from V−(x) ≡ V (x+x0) to V+(x) ≡ V (x−x0) in model A. A particle
initially sitting at a minimum of V−(x), now finds itself kicked a distance 2x0

to the left from the corresponding minimum of the shifted V+(x), as sketched
in Fig. 1 (a). In the overdamped regime, one can then introduce the splitting
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probabilities for the particle to relax toward the nearest V+(x) minimum to
either the right, π+(x0), or the left, π−(x0) = 1 − π+(x0). The continuous
particle dynamics (3) is thus mapped into a discrete random-walker process
with [3]

D(τ) =
L2

2τ
π+(x0)[1− π+(x0)] , (7)

where L = 2π and analytical expressions for π+(x0) are derived in Sec. 9.1
of Ref. [3]. This law fits well the decaying branch of our D(τ) curves [15]. In
Fig. 2 (a) an explicit comparison is shown for the optimal choice x0 = π/2,
corresponding to π±(x0) = 1/2. Note that the resonant D peaks get sharper
and sharper as one lowers T .

Finally, as to be expected, the resonant D peak occurs at around the
smallest time constant, τR, for which the optimal diffusion law (7) applies.
Indeed, the random walker scheme leading to that law assumes implicitly
that τ is no smaller than the relaxation time of a kicked particle towards the
nearest potential minimum, so that, in our notation, τR ∼ L/d = 2π [12].

The phenomenon of resonant diffusion can be related to the observation
that the stochastic response of a Brownian particle gets hypersensitive to an
external drive, if the particle is subjected to an additional dichotomic noise
that drives it across the unstable fixed points of the underlying dynamics
[16]. Indeed, as mentioned above, in the zero bias limit the particle mobility
is proportional to its diffusion coefficient. However, the resonant diffusion
effect of Figs. 2 and 3 should not be mistaken for the damped D oscillations
induced by periodic bimodal [17] or trimodal additive symmetric forces [18]
applied to a Brownian particle in a periodic potential. In Ref. [18] D/kT
oscillations are reported for constant tilt amplitudes, F0, as a function of the
tilting time, tt. In the notation of model B, (4), such finite-time tilting pulses
are replaced by instantaneous kicks of strength x0 = F0tt. As a consequence,
the damped D oscillations reported in Ref. [18] must be regarded as the
counterpart of the periodic oscillations of D versus x0 displayed in Fig. 3
(damping being due to the finiteness of tt). In this case, as well as in Ref. [17],
we are in the presence of a commensuration effect between pulse strength x0

and spatial periodicity of the substrate, whereas resonant diffusion is rather
controlled by the waiting time between consecutive kicks.

5. Zero bias: asymmetric sequences

Asymmetric variations of the zero-bias sequences (1) and (5) were also
simulated by assuming different average waiting times of x0(t) in the ± state,
τ±, with

τ = 1
2 (τ+ + τ−) (8)
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and

R = τ+/τ− . (9)

The asymmetric character of the pulsated sequence becomes apparent as
R decreases, with 0 < R ≤ 1. The corresponding plots of D versus τ as
displayed in Fig. 4 for periodic sequences with different R.

Fig. 4. (Color online) (a) Resonant diffusion D/kT versus τ for pulsated sequences
with different asymmetry ratios R. The squarewave x0(t) is periodic with τ±
expressed in terms of τ and R as in Eqs. (8) and (9). The simulation parameters kT
and x0 are reported in the legend. Crosses are the relevant vibrational mechanical
predictions for τ → 0 at kT = 0.12.

As expected, for τ → ∞ the spatial diffusion grows insensitive to the
pulsated perturbation, whereas for τ → 0 the coefficient D gets strongly
suppressed at small R. As for the symmetric case, R = 1, here too vibra-
tional mechanics provides an analytical approximation for the amplitude of
the effective potential V (x), i.e.,

d→ d

√
1− 4R

(1 +R)2
sin2 x0 .

The corresponding values of D(0), marked by a cross in Fig. 4, closely agree
with our simulation results for τ → 0. In conclusion, asymmetry tends to
suppress resonant diffusion and to shift the diffusion peak to higher τ . This
statement applies to random sequences, as well.
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6. Finite bias: mobility oscillations and diffusion peaks

We investigate now models A and B under the action of a unidirectional
pulse sequence (2). In model A, the substrate drifts to the right with aver-
age speed vs = x0/τ , while in model B, the shot noise has negative mean,
fs = −vs. Owing to the transformation, y = x − x0(t), connecting the two
processes (3) and (4), the relevant mobility functions, µA,B, obey the iden-
tity µA = 1−µB (whereas, as mentioned above, D is the same). This means
that excess peaks of µB correspond to negative dips of µA. Of course, in the
absence of a substrate µB = 1 and µA = 0 for any choice of x0(t) [12].

In Fig. 5 we illustrate the bias dependence of D for different step lengths
x0. The process (3) is symmetric under the transformation x0 → −x0 (mir-
ror reflection) and x0 → x0 + L, with L = 2π (step-substrate commensu-
ration), as apparent on displaying our data versus the reduced bias [x0]/τ ,
with [x0] = x0 mod(2π). All diffusion curves peak for [x0]/τ in the vicin-
ity of the substrate depinning threshold d (namely, the least force required
to drag a noiseless particle over a substrate barrier). Being a threshold ef-
fect [19], diffusion enhancement peaks are associated to steps in the mobility
curves (also shown in Fig. 5). (In the notation of model B the connection
with the earlier literature is more apparent.) However, decreasing [x0]/τ

Fig. 5. (Color online) Transport on a sinusoidal substrate traveling with velocity
vs = [x0]/τ , where [x0] = x0 mod(2π) (model A). The unidirectional step sequence
is periodic in the main panel and random in the inset; x0 was chosen to demonstrate
the symmetry and under transformations x0 → −x0 and x0 → x0 + 2π (see text).
The relative diffusion coefficient is represented by circles and the mobility µA =
〈ẋ〉/vs by dashed curves. For x0 = π the mobility is zero within our numerical
accuracy. The color code in the inset is the same as in the main panel.
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at constant x0 means increasing τ , so that, at variance with the setup of
Refs. [19], the pulsated nature of the drive now starts playing a role. Indeed,
the linear tails, D ∝ [x0]/τ , of Fig. 5 correspond to the linearly decaying
branches (7) displayed in Fig. 2 (a). For [x0]/τ → 0 (not shown) all numerical
curves eventually approach the asymptotic limitD(∞) for the zero-bias case.
Finally, we stress that all the above applies both to periodic (main panel)
and random pulse sequences (inset), alike.

To illustrate the role of the drift time constant, in Fig. 6 we display
our data for µB [panel (a)] and D [panel (b)] versus τ at constant bias fs.
The curves µB(τ) exhibit damped oscillations with maxima exceeding unity.
This result may sound surprising as it implies that, for appropriate τ , shot
noise can push particles faster than in the absence of a substrate (in which
case µB = 1 [12]). However, when kicked by a δ-like pulse with strength
x0 ∼ π, a particle initially at rest may reach the top of one confining barrier,

s
Fig. 6. (Color online) Transport enhancement induced by a period pulse sequence
with fixed bias vs = x0/τ (model A) and varying τ . The mobility drops in (a)
correspond to sharp diffusion peaks in (b). The dashed curve in (b) locates the
maxima π2/2τ of the resonant D.
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either to the left or to the right, and then cross into the neighboring well,
thus advancing by up to twice the distance of a free particle; hence the
excess mobility peaks µB > 1. This mechanism applies for x0 close to
(2m+1)π, m = 0, 1, 2 . . ., so that excess mobility peaks are expected for τ '
(2m + 1)π/|fs|, in agreement with our numerics. Extending this argument
to model A also explains the negative µA dips reported in Ref. [15].

In Fig. 6 (b) we displayed the corresponding curves D(τ) for the same
τ range as in Fig. 6 (a): The correlation between D peaks and µA drops
is apparent. Most remarkably, the peaks for relatively large τ fall on the
envelope curve L2/8τ , with L = 2π, as one guesses by inspecting the linear
D tails in Fig. 5. Such tails shift upwards on increasing x0 from 2mπ to
(2m + 1)π, so that the diffusion maxima in Fig. 6 (b) must occur for x0 =
(2m+ 1)π. The envelope curve drawn there is simply the optimal diffusion
law (7) with π+[(2m+ 1)π] = 1/2.

7. Conclusions

In summary, a particle diffusing on a pulsated periodic substrate, for
appropriate combinations of the amplitude and frequency of the pulses, can
synchronize its dynamics with the pulse sequence, which allows an effective
control of the particle delivery (i.e., of both its speed and dispersion) [20].
When utilized in particle separation, such delivery control technique can be
exploited to increase the separation speed and selectivity. Preliminary esti-
mates indicate that ideal experimental set-ups to demonstrate the resonant
diffusion mechanisms introduced here, are the optical potentials for colloidal
particles investigated in Refs. [21,22].
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