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A model of cardiorespiratory synchronization, i.e. the synchroniza-
tion between the heart rate and the breathing rate, is proposed. From a
mathematical point of view it is a delayed nonlinear system — a pair of
pulse coupled rotators. The model is studied theoretically and numerically.
Classification of synchronization states is supplied by theoretical analysis
and verified by numerical experiment. The constitutive role of phase re-
setting and refraction in synchronization is discussed. As the model is
minimalistic it is discussed how well can it mimic the original physiological
phenomena.

PACS numbers: 05.45.–a, 05.45.Xt

1. Introduction

In a living organism, such as a human body, there exists a great variety of
complex biological rhythms [1]. They govern various aspects of biological life
in order to maintain homeostasis: the state of optimum internal conditions
against external forces. On the other hand the homeostasis is a result of
a compromise between different regulatory feedback loops active within the
human body.

Probably the most important example of a cooperative behavior is the
phenomenon of cardiorespiratory synchronization (CRS) [9]: the synchro-
nization between the heart rhythm and the breathing rhythm. These two
separate vital rhythms having different generators do not compete but syn-
chronize with each other to optimize the cardiorespiratory dynamics.
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In physical terms the phenomenon of CRS may be described as either
phase synchronization or frequency synchronization. By formal definition
two systems described by phases Φ and ϕ are in the state of frequency
synchronization if for any values of integer parameters n andm the following
relation is fulfilled.

|nΦ(t)−mϕ(t)| < const. (1)

Equation (1) requires that for some integers n and m the phase difference
is bounded, although the difference in phases may be the function of time.
Therefore, in such a state two phases are not guaranteed to have the same
difference at any instant in time. State of phase synchronization, also known
as phase locking or phase entrainment, is obtained if:

|nΦ(t)−mϕ(t)| = const. (2)

In such a state one of phases strictly follows the other one with some constant
phase shift. For some systems the condition defined by Eq. (2) cannot be
reached: see e.g. [24]. In such cases equation (1) is used as definition of
phase locking. In well trained athletes, in infants and in normal subjects
during sleep, regions of phase synchronization between breathing and heart
rate occur: most often 3:1 (three heartbeats per single breath) and 5:2 [9].

One problem which is often considered in regards to the CRS is the direc-
tionality of the coupling. There are many papers in physiological and cardi-
ological literature treating the heart rhythm as subordinate to the breathing
rhythm [4,8]. It is a well known fact that the respiratory-related activity of
efferent cardiac vagal nerves has a strong influence both on the mean value of
the heart rate [2] and on its standard deviation [3]. This coupling introduces
the Respiratory Sinus Arrhythmia (RSA): a sinusoidal frequency modulation
of the heart rate [4, 8]. Various aspects of the CRS, including experimental
methods to measure the directionality of the coupling are summarized in the
review paper [10].

The fact that is not so widely acknowledged is that breathing has also
a vivid response to the blood pressure and its oxygenation. The breath-
ing rate is as sensitive to the heart rate as the heart rate is to breathing
[14–16] More importantly, this response is phase-sensitive: it depends on
the instantaneous phase of the respiratory rhythm [15].

There seems to exist experimental evidence [7] based on statistical physics
approach [13] that the coupling is not only bidirectional, but that there is
no clear dominance of any of the rhythms and each of them seems to be far
from its intrinsic frequency.
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1.1. Models of cardiorespiratory synchronization

The experimental findings described above have their counterpart in the
modelling. The relation between the rhythms has been modelled using two
approaches.

In the first approach relation between the rhythms is described in terms
of phases. Both rhythms [20] or only one of them [15] are represented by a
phase variable which is either described by the ordinary differential equation
[20] or by the integrate and fire type of dynamics [15]. As the output has a
form of the spike train (with spikes at the moments of heart beats: i.e. when
the phase exceeds 2π) such a system may be considered a point process. In
these models the dominant direction of the coupling is either from the heart
to breathing [15] or the opposite [20], although the theoretical framework is
symmetric with respect to the direction of the coupling [20]. The integrate
and fire model [15] was also converted to a discrete map [11]. Still, however,
the coupling considered in this model is unidirectional. Probably following
the method used in chronobiology [22] the authors try to introduce the RSA
by introducing a modulation of the firing threshold. This, however, does not
have a direct physiological bearing. The integrate and fire approach is also
used in another model of RSA [5] where an input to the integrate and fire
model is an Ornstein–Uhlenbeck process.

The second approach is to construct an integrative physiological model
which describes many physiological variables, such as blood pressure, heart
rate and neural activities [23]. The dominating direction considered there
is from breathing to the heart. The other direction is also included but the
relation is much weaker.

The main finding in both approaches is the presence of the Arnol’d
tongues in which both rhythms are phase synchronized. We were able to
show the same result using a simplification of the second approach where
the natural heart pacemaker, the sinus node, was represented by the modi-
fied van der Pol relaxation oscillator [6].

A direct motivation for current work was the finding that in physiological
conditions both rhythms are coupled and their mean frequencies are far
away from their intrinsic frequencies [7]. Due to this, both rhythms show a
tendency to escape towards their intrinsic frequency. A natural consequence
of such a finding is to build up a basic model which would have such a
feature. The method we used was to express the model [15] in terms of
phase dynamics [20, 24] and generalize it. Another aim was to introduce
bidimensional coupling in such a way that the RSA could appear in the
model as a result of coupling which seems to be more physiologically relevant.
We also kept in mind that the model should (a) serve as a generic example
of mutually coupled rotators and (b) be as simple as possible to enable
analytical analysis.
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The paper is organized as follows: Section 2 introduces the model of
dynamics of two mutually coupled rotators delta-kicked with delay which
serves as a generalized model of the CRS. Section 3 summarizes the an-
alytical results: derivation of the condition for synchronization (3.1) and
calculation of the phase response curve (PRC) (3.2) which is important for
determination of the stability of the synchronization regions. The analytical
findings are supported by the numerical experiment described in Section 4,
in which the phase diagram of the system is obtained, together with syn-
chrograms and interspike interval plots that describe individual dynamical
states. Finally, the results are widely discussed (Section 5) and conclusions
are drawn (Section 6).

2. The model

The model equations define the dynamics of two phases:

ϕ̇ = r +mδ (t− tj − τ1) , (3)

Φ̇ = R+Mδ (t− ti − τ2) . (4)

Physiological interpretation would be such that ϕ denotes the phase of the
heart rhythm, whereas Φ the phase of the breathing rhythm. Both phases are
in 1/(2π) units so that phase difference 1 is equal to full rotation. Parameters
r and R define the angular velocity of each of rotators. As the motivation
for introducing such a system comes from physiology, we will assume r > R.
The ratio of velocities will be defined as:

ω =
r

R
. (5)

Here ω = 8 is used, as approximately such is the ratio of frequencies of
uncoupled breathing and uncoupled heart rate [7]. Therefore, the rotator
defined by Eq. (3) is referred to as fast, whereas the one defined by Eq. (4)
as slow. Phases of the fast and the slow rotator taken modulo 1 are denoted
by ϕ̃ and Φ̃, respectively.

The definition of firing times ti and tj is the following:

ti : ϕ (ti) = i , (6)
tj : Φ (tj) = j . (7)

Equations (6) and (7) define moments in time when a full cycle is complete
(relevant to “fire” in integrate and fire models or “spiking” in neural models).
This corresponds to an integer value of each of phases.



Dynamics of Two Coupled Rotators Kicked with Delay — a Model for . . . 1115

Both rotators are pulse-coupled: at certain delay after one of rotator
“fires” the other rotator is kicked by a delta pulse. Due to the delay, the
“fire” (cause) and the phase advance (effect) are separated in time. In spe-
cific conditions the cause and the effect may belong to different cycles, as
discussed below. Parameters m and M define the height of the delta kick
(pulse), which appears at time τ1 for the first rotator and τ2 for the second
rotator, after the other rotator has fired (tj and ti, respectively).

The model is generic: taken directly it describes the dynamics of two
mutually coupled overdamped oscillators. The list of resemblances is, how-
ever, longer, including the standard map [17], the circle map-based cardiac
oscillator [18,19] and the pulse-coupled oscillators intensively studied in neu-
roscience [12].

An example of the model output is shown in Fig. 1. Note the discontinu-
ities of phase at the moments in time in which the rotator has been kicked.

Fig. 1. Example output from the model for parameters. The discontinuities of both
curves occurring at phase smaller than 1 are caused by kicks and are located at
respective delay after the other rotator “fires”.

2.1. Variant of the model

During the analysis of the model features one important modification has
been made. From Eq. (3) and (4) it comes that due to the kick the phase
may exceed 1. In such a case nothing particular happens as ϕ(t) is just
growing continuously to infinity. For the reasons explained in subsequent
chapters it occurred necessary to disallow such a situation and, when ϕ̃ > 1
or Φ̃ > 1, reset the respective phase to the integer value. Mathematically it
may be expressed by turning the respective kick height into a function:
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m (ϕ) =
{

m form+ ϕ <= 1 ,
m+ ϕ− 1 otherwise , (8)

and respectively for M :

M (Φ) =
{

M forM + Φ <= 1 ,
M + Φ− 1 otherwise . (9)

3. Theoretical results

Theoretical analysis determines the location and properties of synchro-
nization regions in the parameter space. The stability may be determined
from the analytic form of the phase response curve (PRC). The stability of
the fixed points of the PRC determines the existence of Arnol’d tongues. In
this chapter an unmodified version of the model is used: i.e. without the
modifications defined by Eqs. (8) and (9).

3.1. Synchronization regions

We would like to calculate parameter values at which phase synchroniza-
tion n : m may be obtained. Calculations below are led for the simplest case:
1 : k, but the argumentation may be easily extended to cover any n : m case
which is explained at the end of this section. First, we introduce a Poincaré
section at a hyperplane defined by the condition Φ̃ = 0. The period in time
between consecutive crossings of this section will be referred to as cycle of Φ̃.
The ordinal number of a cycle is denoted as n. Next we introduce an integer
winding number:

k =
[

lim
t→∞

ϕ(t)
Φ(t)

]
. (10)

Here the square brackets denote the integer part: i.e. the highest integer
not greater than. From Eqs. (3), (4) and (5) it follows that, in the absence
of kicks, the value of k satisfies 0 < k ≤ ω as such is the increment of phase
ϕ during one cycle of Φ̃.

Let us assume that the n + 1-th cycle of Φ̃ begins at the time t0, with
Φ̃ = 0 and ends at t0 + ∆t when the next crossing of the Poincaré section
takes place. As the time ∆t corresponds to one full cycle of a slow rotator,
therefore the phase of this rotator by definition increments by 1. The phase
of the fast rotator at the beginning of a cycle is ϕ = ϕn and at the end of a
cycle: ϕn+1. Let us now analyze the phase increments. The phase increases
due to the angular velocity and due to kicks. Integration of the angular
velocity terms gives phase increment equal to r∆t and R∆t, respectively.
The “kick” part depends on the number of kicks each rotator obtains during
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the full cycle of Φ̃. For simplicity we assume that the last: M -th kick does
not cause significant phase overshoot, characterized by Φ̃ > 1, for the slow
rotator and the total increment of Φ during one cycle is exactly 1. This
assumption is justified by the quality of the approximation.

During the whole cycle of Φ̃ the fast rotator obtains only one kick: at
delay τ2, i.e. at physical time t0 + τ2. For simplicity we assume that τ2 <
1/R so that the kick always acts in the cycle of Φ̃ following time t0 when
it was caused, although in a synchronized state this is irrelevant. During
full cycle of Φ̃ the fast rotator will make k full cycles plus a normalized
phase increment which may be denoted as εn. In a synchronized state,
ϕ has to advance exactly by k, hence the normalized phase increment εn
vanishes. This property of εn makes it useful for numerical detection of
phase synchronization — as described in Section 4. Therefore, the phase
increment of a fast rotator during n+ 1-th cycle may be expressed as:

∆ϕ = ϕn+1 − ϕn = k + εn = r∆t+m. (11)

During a full cycle of Φ̃ the slow rotator obtains k kicks that advance its
phase by kM . Total phase increment of the slow rotator is given by:

R∆t+Mk = 1 . (12)

As already mentioned, we assume that the single kick occurs not later than
t0 + (1−M)/R so that the phase will not “overshoot” 1. Note only, that
in case of overshoot the equation (12) overestimates ∆t by at most M/R:
the overshoot means that the phase advance related with kicks is between
(k − 1)M and kM .

Combining (12) and (11) we reduce the unknown variable ∆t and the
phase increment of the fast rotator may be expressed as follows:

∆ϕ = ω(1−Mk) +m. (13)

Following Eq. (11) the condition for synchronization is εn = 0 which gives
∆ϕ = k. Introducing this into (13) gives the synchronization condition in
the form:

Mk =
ω − k +m

ωk
. (14)

The above condition defines the synchronization regime: i.e. the value of
Mk at which the integer winding number is equal to k. The accuracy of
Eq. (14) is discussed in Section 4.

If we define as cycle a period of time between every m-th crossing of the
Poincaré section, we may find regions of synchronization of type m : k using
the method described above.
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3.2. Phase response curve

Phase response curve (PRC), following the notation used here, will be
the function of the normalized phase ϕ̃n. For the n-th iteration its value is
equal to εn: the normalized phase increment during the full cycle of Φ̃. In
this chapter the PRC will be denoted f(ϕ̃) to point out that it is not related
to any specific iteration n.

In order to find the PRC we have to determine the sequence of events
during a full cycle of Φ̃. Depending on the values of angular velocities, pulse
height and delay times, different events in each of rotators may appear in
different sequence and at different moments in time. Such a sequence for
typical parameter values is summarized in Table I. The initial condition for
both rotators at the beginning of the cycle is (ϕ̃n, Φ̃n) = (ϕ0, Φ0). The initial
phase of the slow rotator is Φ0 = 0, however if there is any “pending” kick

TABLE I

Single cycle of evolution of the model. Parameters R,M and τ2 represent the an-
gular velocity, the height and the delay of the kick for the slow rotator, whereas
parameters r,m and τ1 represent the same parameters for the fast rotator. Initial
condition for the cycle is given by (ϕ0, Φ0). The amount of physical time corre-
sponding to the full cycle of Φ̃ is labeled as tk in the bottom rows of the first
column. The phase of the fast rotator at the end of the cycle is denoted by ϕ̃n+1 in
the bottom rows of the right column. Symbol F denotes “fire” of a certain rotator
and the star ∗ means that the rotator was given a kick. Symbols A and B denote
two scenarios of the phase evolution. For brevity we use such a convention that if
the symbol t appears in the Φ̃ column, the corresponding time (i.e. the value from
the “Time” column) should be substituted instead.

Time t Phase Φ̃ Phase ϕ̃
0 Φ0 ϕ̃n = ϕ0
(1−ϕ0)

r Φ0 +Rt 1F

(1−ϕ0)
r + τ2 Φ0 +Rt+M∗ rτ2

(1−ϕ0)
r + τ2 + τ1 Φ0 +Rt+M rτ2 +m∗

(2−ϕ0)
r − 1

m Φ0 +Rt+M 1F

(2−ϕ0)
r − 1

m + τ2 Φ0 +Rt+ 2M∗ rτ2

. . . here come last 2 steps repeated (k − 3)-times

(k−ϕ0)
r − 1

m + τ2 → tk Φ0 +Rtk + kM∗ > 1F rτ2 → ϕ̃n+1
A

Alternatively, if Φ0 +Rtk + kM < 1

1−kM−Φ0
R → tk Φ0 +Rtk + kM = 1F ω(1−kM−Φ0)→ ϕ̃n+1

B
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caused in the previous cycle its effect may be easily introduced by setting
Φ0 = M . The presence of such pending kicks comes from the presence of
the delay τ2, which introduces the delay between a cause (“fire” of the fast
rotator in previous cycle) and the effect (the slow rotator given a kick in
current cycle).

From the last column the value of the phase ϕ̃n+1 at the end of the cycle
may be read. By subtracting from it the initial phase ϕ0 we calculate the
phase response curve (PRC). Following [12] we may treat the PRC as a map
function which defines the evolution of the ϕ̃n on the surface of the Poincaré
section hyperplane between consecutive cycles.

Note that this end-cycle phase value does not directly depend on the
parameter m. As the phase ϕ is reset many times before the cycle is com-
pleted, it results only in shifting the time by 1/m. There are two alternative
scenarios of the phase evolution at the end of cycle that are denoted A andB.
If the condition Φ̃ >= 1 is met during the k-th kick, i.e. at time τ2 after
the fast rotator has fired, the final phase of the fast rotator is ϕ̃n+1 = rτ2.
This leads to the phase response curve which is linear in ϕ̃ and decreases
monotonously:

fA(ϕ̃) = rτ2 − ϕ̃ . (15)

Scenario B is shown in the last row of the table: when the phase Φ reaches 1
by its own evolution (with angular frequency R). Then, the final phase is
equal to the initial phase plus the total phase increment during the cycle.
This gives the PRC in form:

fB(ϕ̃) = m+ ω(1− Φ0)− k(1 + ωM) . (16)

Note that in scenario B the PRC does not explicitly depend on ϕ0. The
indirect relation is through the parameter Φ̃0 which will be discussed below.
Regardless of the value of k and of the value of ϕ̃ the PRC for variant B is
always piecewise constant as a function of ϕ̃.

An example of the PRC is shown in Fig. 2. In the whole range of ϕ̃
there may appear scenario A (part c), B (part (a) or both of them (part (b).
Plots for k = 2 and k = 3 (not shown) are piecewise constant — similar to
the one for k = 1. The first qualitative change appears at k = 4 where the
mixed evolution scenario appears. Above k = 4 the scenario is always A and
the corresponding PRC does not depend on k. The point of discontinuity
corresponds to the value ϕ̃M = rτ2. For ϕ̃ < ϕ̃M there is a “pending kick”
from the previous cycle which is taken into account by setting Φ0 = M in
Eq. (16).

Determination of fixed points of the PRC is straightforward: for scenario
A we readily obtain from Eq. (15) and Fig. 2 (c) that the fixed points are
located at: ϕ̃∗A,1 = 1/2 rτ2 and ϕ̃∗A,2 = 1/2 (rτ2 − 1). In scenario B, the
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Fig. 2. Example of the phase response curve f(ϕ̃n) which governs the evolution of
the phase ϕ̃n i.e. on the surface of the Poincaré section for different values of the
winding number k. Part (a) shows the PRC for k = 1, part (b) for k = 4 and part
(c) for k = 5, 6, 7, 8. The values of other parameters used for this calculation are
R = 0.2, ω = 8, m = M = 0.1, τ1 = 0.1, τ2 = 0.4. Regions in which scenario B or
A appears are marked accordingly.

locus of the fixed point depends on the piece of the piecewise constant curve
which intersects with the diagonal. Actual locus of this point is, however,
not important for further analysis.

Concerning the stability of these fixed points, we can see that in scenario
A the slope of the PRC is (−1) everywhere, which means that the stability
is marginal and each initial condition different from any of ϕ̃∗A will lead to
stable orbit of period 2. In scenario B the slope is nearly everywhere 0 so
each initial condition, under action of the map defined by the PRC, will
be attracted to the stable fixed point ϕ̃∗B. Neither of points is repelling.
According to [12] (Subsection 2.4 thereof) synchronization takes place (and
Arnol’d tongues appear) only if a fixed point is repelling and ϕ̃ evolves to
0 or 1 i.e. falls into the synchronized state. Inverting the argumentation
from [12], in our case when the fixed points are at least marginally stable,
the system is never driven to synchrony.

Introduction of the modifications defined by Eq. (8) and (9) affects the
PRC in such a way that values of m and M that appear in Eq. (16) be-
come functions of the corresponding phases which introduces conditions for
synchronization.

The above analysis enabled us to determine the loci of synchronization
regions in the parameter space. The regions of synchronization for the non-
modified case have measure 0 in parameter space and no synchronization
regimes equivalent to Arnol’d tongues are observed [12].

4. Numerical results

The model was implemented numerically in order to verify the analyt-
ical results. Numerical procedure used Runge–Kutta method of the order
of 4 with fixed time step equal 20 ms. The delta-kick was not integrated
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but was added to the output of the Runge–Kutta method. Below we use
two convenient techniques of visualization of synchronization states. In the
synchrogram technique [9, 20] we mark along the vertical axis the values of
phase of one (primary) rotator (usually the slower) at the moments when
the second (secondary) rotator “fires”. Values of phase from one cycle of
the slow rotator form a set of points along the vertical axis. The horizontal
axis is scaled in cycles of the primary rotator. The second method is to
plot time intervals between moments when the rotator “fires”. Such a plot is
widely used in neural dynamics, where it is referred to as interspike intervals
(ISI) plot: intervals between spikes of a single neuron. Such a name will be
adopted here. An example of both plots is shown in Fig. 3 for two different
dynamical states. Part (a) and (b) show synchrograms. Part (c) and (d)
show the ISI of the slow rotator. Part (e) and (f) show the ISI of the fast
rotator. Parts (a), (c) and (e) show the synchrogram and the ISI plots for
an unsynchronized state obtained for the unmodified model. Parts (b), (d)
and (f) show the synchrogram and the ISI plots for a synchronized state
obtained for the modified model.

Fig. 3. Example of synchrograms an ISI plots for unmodified (left column) and mod-
ified (right column) model. Unmodified model is in a non-synchronized state. Mod-
ified model is in a synchronized state. Parts (a) and (b) show synchrograms. Parts
(c) and (d) show the ISI of the slow rotator. Parts (e) and (f) show the ISI of the
fast rotator. Parameters of both models are: m = 0.1,M = 0.06, R = 0.2, ω = 2,
τ1 = 0.1, τ2 = 0.4.
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4.1. Phase diagram

Figure 4 shows phase diagrams in variables M and m: without (a) and
with (b) phase resetting. The regions of sychronization are marked by the
gray area. It may be seen that for the system without resetting the re-
gions of synchronization are sparse and very narrow. It may be seen, how-
ever, that the synchronization regions are located along the lines of Mk(m)
— as predicted by Eq. (14). This pretty good accuracy seems to justify
the approximations done during derivation of Eq. (14). It may also be seen
that for the system with phase resetting, the synchronization area are wide.
Note also the discontinuity of the synchronization regions near m = 0.4. It
probably corresponds to the value of τ2 = 0.4 used in calculations, although
the corresponding scenarios were not analysed in depth (like the scenarios
A and B described in chapter 3.2). The synchronization was detected using
a criterion based on the standard deviation of period of the slow oscillator:
in synchronized states this values were by 10 orders of magnitude lower, as
compared to the non-synchronized states. No other synchronization index
that we have used did show such an accuracy. We have used all the indices
described in [20] but the detailed description of these results is rather a
separate topic and will be published elsewhere.

Fig. 4. Phase diagram of the system in variablesM andm. Part (a) shows phase di-
agram of the unmodified system (without phase resetting), whereas part (b) shows
phase diagram of the system with phase resetting. The regions of sychronization
are marked as gray area. Numeric values correspond to the winding number k in
corresponding area. The vertical lines in both parts show the loci of synchroniza-
tion regions as defined by Eq. (14) for different values of the parameter k. First
line on the right (long dash) corresponds to k = 1, the second (crosses) to k = 2,
the third (triangles) to k = 3. Next lines correspond to k = 4, 5, 6, 7 and 8.
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5. Discussion

Despite its simplicity, the model exhibits many different dynamical states.
In the parameter space of the unmodified model the strongest synchroniza-
tion that may be achieved is frequency locking [20]. In this state εn has
some constant (or nearly constant) value, either positive or negative, c.f.
Eq. (11)). The synchrogram of such a state shows that within one cycle the
values of phase Φ̃ remain at constant distances but the sum of phase differ-
ences is either larger than 1 (and the lines on the synchrogram are directed
upwards) or smaller than 1 (and the lines are directed downwards).

5.1. Nearly-synchronized and non-synchronized states

Apart from frequency locking there may appear also different nearly-
synchronized states. One interesting example is a state in which the ISI of
the slow rotator exhibit modulation with two apparently incommensurate
frequences: fast “carrier” frequency and slow “envelope” frequency: Fig. 3 (c).
The corresponding ISI of the fast rotator seem to be quasiperiodic or chaotic:
Fig. 3 (e). The synchrogram of this case shows a pattern of intersecting hor-
izontal and slanted lines: Fig. 3 (a). Note that the power spectrum for the
ISI of the slow rotator would show two peaks, despite the fact that the ro-
tator is driven only by one system: the fast rotator. Introduction of the
second frequency comes from the fact that the coupling between both rota-
tors is bidirectional. This might possibly be the mechanism of introduction
of the low frequency oscillations observed in the heart rate, the blood pres-
sure variability, as well as in the power spectrum of the breathing rhythm.
The origin of these oscillations is not yet fully understood, despite many
hypotheses that have been formulated [21].

When the values of M and m are far from the synchronization regimes
defined by Eq. (14), the synchronization either cannot be achieved or the
values of εn are so high that they cannot be distinguished from no synchro-
nization at all.

5.2. Synchronized states

In the unmodified model, phase locking i.e. complete synchronization,
related with εn = 0 may be achieved only in region of measure zero of
the parameter space. When the modifications defined by Eq. (8) and (9)
are introduced, the synchronization occurs in wider region of the parame-
ter space. Careful analysis of the results reported in [15] shown that the
authors did also use phase reset after “fire”, which hence did not exhibit
phase overshoot. An example of a synchronized state is shown in Fig. 3 (a)
and (c). The synchrogram shows perfectly horizontal lines. The winding
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number is k = 6. As discussed in Section 3.2 phase resetting appears to be a
necessary condition for existence of phase synchronization in such a system.
From the phase diagram Fig. 4 (b) it may be seen that the regions of syn-
chronization and regions of non-synchronization are repeated for each value
of k. Typically the synchronization region for a given value of k is located
at Mk−1 > M > Mk. Also, there always appears an area in which phase
synchronization could not be achieved. In part of the non-synchronized re-
gions there still appears frequency locking but at the border between two
area characterized by different winding numbers, the patterns become too
complicated to be thoroughly analyzed. An example of such a complicated
pattern, shown in Fig. 3 (b) and (d) was analyzed above.

5.3. Symmetry of a variability pattern

After every k beats the fast rotator is kicked by the slow one. This causes
a temporary acceleration via phase advance and the corresponding interval
is shortened. Similar pattern of activity was shown in vagal modulation of
the human heart rate. One difference was that the real vagal activity decel-
erates the phase [3], which would correspond to negative value of the kick
height m1. The second difference is such that the interval variability pat-
tern observed in the model shows clear asymmetry as only every k-th beat
is directly affected by the slow rotator and after that the rate immediately
escapes to the “unperturbed” value. Real pattern of respiratory variability
of the heart rate has rather a symmetric sinusoidal shape. In order to obtain
such a symmetric pattern the model studied here would have to be modified
again. The “lazy” response of the rotator to an external stimulation could
be modelled by introduction of inertia. This would require a structural
change of the model equations as they describe the system which is already
formally overdumped. The impulse characteristics of the force (pulse cou-
pling), which, on the contrary, is not overdamped, seems to stimulate the
system too strongly.

An interesting direction in which current work can be followed is to
consider another class of systems that exhibit phase synchronization: the
relaxation oscillators [6]. These systems are characterized by refraction —
temporary insensivity to external forcing — so the stimulus applied at cer-
tain range of phase does not cause phase increment. In consequence the

1 Such a parameter region was also studied but m > 0 was finally selected for current
presentation. The results are qualitatively close to each other and m < 0 requires
careful handling of the “kick” events: when the phase undergoes a stepwise decrease
and the final result is below zero. One has to decide whether subsequent evolution of
phase should immediately lead to “fire” or not. This problem and a few other technical
issues related with the detection of the “fire” event may be avoided by setting m > 0
which therefore appeared as a reasonable choice.
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system is sensitive to external forcing only in a certain range of phase which
seems to facilitate synchronization. Further discussion of the role of diffrac-
tion is outside the scope of this work.

6. Conclusions

Using the model of two coupled rotators kicked with delay we were able
to reproduce the coupled and non-coupled dynamical regimes described in
the literature [15]. We are able to calculate the winding number, the condi-
tion for phase synchronization and the phase response function. In contrast
to phase resetting published in [12], the fixed point of the phase response
function is at least marginally stable. Due to this property the stability
region has measure 0 in the parameter space and the Arnol’d tongues do
not appear. In order to achieve synchronization it is necessary to introduce
phase resetting, which occurs to be a crucial factor for existence of phase
synchronization. The respiratory sinus arrhythmia phenomenon is observed
in the system. The RSA pattern is, however, clearly asymmetric. In order
to obtain the symmetric pattern of RSA observed in experiment some form
of inertia should be introduced.

The paper was supported by the Polish Ministry of Science and Higher
Education, Grant No. 496/N-COST/2009/0.
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