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We study a motion of an anomalous random walker on finite intervals
restricted by two absorbing boundaries. The competition between anoma-
lously long jumps and long waiting times leads to a very general kind of
behavior. Trapping events distributed according to the power-law distri-
bution result in occurrence of the Mittag–Leffler decay pattern which in
turn is responsible for universal asymptotic properties of escape kinetics.
The presence of long jumps which can be distributed according to non-
symmetric heavy tailed distributions does not affect asymptotic properties
of the survival probability. Therefore, the probability of finding a random
walker within a domain of motion decays asymptotically according to the
universal pattern derived from the Mittag–Leffler function, which describes
decay of single modes in subdiffusive dynamics.

PACS numbers: 05.90.–m, 05.10.–a, 02.50.–r, 82.20.–w

1. Introduction

In close to equilibrium situations interactions of a test particle with other
particles, by means of the central limit theorem, can be approximated by the
white Gaussian noise. In far-from-equilibrium realms, a stochastic process
describing interactions of the test particle with the environment can be dis-
tributed according to some more general distributions. The application of
the generalized central limit theorem leads to α-stable densities [1–3], which
are still invariant under convolution, however they are of the heavy-tailed
type.
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In porous or gel-like media a particle performing a random walk can be
trapped, i.e. after each jump it waits for some (random) time before the next
jump occurs. Traditionally, this approach is assumed in the continuous time
random walk (CTRW) scenarios [4, 5]. In particular, when the jump length
and the waiting time distributions have power-law asymptotics, i.e. p(x) ∝
|x|−(α+1) (0 < α < 2) and p(t) ∝ t−(ν+1) (0 < ν < 1), the concept of CTRW
leads to the idea of the fractional dynamics [6–10]. In the very general
case, when there is a competition between anomalously long waiting times
and anomalously long jumps, the appropriate fractional diffusion equation,
which describes asymptotic evolution of the probability density of finding
a random walker at time t in the vicinity of point x, reads [7–9]

∂p(x, t)
∂t

= 0D
1−ν
t

[
∂α

∂|x|α

]
p(x, t) . (1)

In Eq. (1), ∂α/∂|x|α stands for the Riesz fractional (space) derivative which
is defined via the Fourier transform F [∂αf(x)/∂|x|α] = −|k|αFf(x), while
0D

1−ν
t denotes the Riemann–Liouville fractional (time) derivative 0D

1−ν
t =

d/dt 0D
−ν
t defined by the relation [7, 11] 0D

1−ν
t f(x, t) = 1/(Γ (ν))d/dt ×∫ t

0 dt
′ f(x, t′)/(t− t′)1−ν .

2. Model and results

We extend earlier studies [12–15] by investigating the influence of the
competition between long waiting times and long jumps on the escape from
finite intervals restricted by two absorbing boundaries. More precisely, we
study the escape of a free particle from a finite interval in the situation when
subdiffusion coexists with Lévy flights, see Eq. (1) and [16–18]. Initially, at
time t = 0 a test particle is located in the middle of the interval [−L,L].
We assume that jumps length are distributed according to general α-stable
densities [1, 3, 19]. We compare two situations when jumps are distributed
according to symmetric α-stable densities (β = 0) with the situation when
jumps’ lengths are distributed according to skewed α-stable densities (as an
exemplary value of the asymmetry parameter we use β = 1, see below).

For the subdiffusion parameter ν < 1 (see Eq. (1)), the stochastic rep-
resentation of Eq. (1) is provided by the subordination method [17,20], i.e.
the process inspected X(t) is obtained as a function X(t) = X̃(St) by using
a stochastic clock St. The St is a ν-stable subordinator providing a link
between the operational time s and the physical time t. The ν-stable subor-
dinator is defined as St = inf {s : U(s) > t}, where U(s) stands for a strictly
increasing ν-stable process whose distribution Lν,1 has the Laplace trans-
form 〈e−kU(s)〉=e−sk

ν . The parent process X̃(s) is composed of independent
increments of the α-stable motion described in the operational time s

dX̃(s) = dLα,β(s) . (2)
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Increments of the α-stable process are distributed according to the prob-
ability density function whose characteristic function is (α 6= 1)

φ(k) = 〈exp(ik∆Lα,β)〉 = exp
[
−∆tσα|k|α

(
1− iβ sgnk tan

πα

2

)]
. (3)

For β = 0, the above setup provides a proper stochastic realization of
the random process described by the fractional Fokker–Planck equation (1)
[17,20]. For β 6= 0, Eq. (2) gives a stochastic representation of the following
fractional Fokker–Planck equation [21]

∂p(x, t)
∂t

= 0D
1−ν
t

[
β tan

πα

2
∂

∂x

∂α−1

∂|x|α−1
+

∂α

∂|x|α

]
p(x, t) . (4)

In order to quantify the process of the escape from finite intervals we use
the first passage time density and the survival probability S(t), which is the
complementary cumulative distribution of the first passage time density f(t).
The first passage time density is related to the probability density p(x, t),
see Eqs. (1) and (4), by the relation

f(t) = − d

dt

L∫
−L

p(x, t)dx = − d

dt
S(t) , (5)

where S(t) =
∫ L
−L p(x, t)dx. The survival probability S(t) represents the

probability that at time t a test particle, which started its motion in the
middle of the interval, has not been yet absorbed at the boundaries located
at ±L. We do not use the mean first passage time to characterize the escape
kinetics because for ν < 1, due to trapping events, this quantity diverges.

Properties of the first passage time distribution can be determined from
Eqs. (1) and (5). Using the method of separation of variables, the solution
p(x, t) of Eq. (1) can be written [7] as a sum of eigenfunctions

p(x, t) =
∑
i

cipi(x, t) =
∑
i

ciTi(t)ϕi(x) , (6)

where Ti(t) and ϕi(x) fulfill

dTi(t)
dt

= −λi,ν 0D
1−ν
t Ti(t) , (7)[

β tan
πα

2
∂

∂x

∂α−1

∂|x|α−1
+

∂α

∂|x|α

]
ϕi(x) = −λi,νϕi(x) . (8)
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The solution of Eq. (7) is given by the Mittag–Leffler function [11]

Ti(t) = Eν(−λi,νtν) ≡
∞∑
j=0

(−λi,νtν)j

Γ (1 + νj)
, (9)

which interpolates between the stretched exponential form for small values of
the argument Eν(−tν) ∝ exp [−tν/Γ (1 + ν)], while asymptotically for large
arguments it behaves like Eν(−tν) ∝ t−ν , see [7]. In the limit of ν = 1 the
Mittag–Leffler function is equivalent to the exponential function. Finally,
eigenvalues λi,ν are defined by boundary conditions to Eq. (8) and ci are
determined by the initial condition.

In order to estimate the survival probability, it is necessary to collect the
sample of first passage times. Required first passage times are obtained by
numerical simulation of the subordinated Langevin equation. The Langevin
equation (2) is simulated until the first escape from the domain of motion,
i.e. as long as −L < x(s) < L. After the escape from the interval the
operational time s is converted into the physical time t by use of the inverse
ν-stable subordinator St. For α < 2, trajectories of the process x(t) are
discontinuous and boundary conditions become non-local [13,14]. Therefore,
within simulations it is assumed that the entire semi lines x 6 −L and x > L
are absorbing.

Figures 1 and 2 present survival probabilities for different values of the
subdiffusion parameter ν: ν = 0.7 (Fig. 1) and ν = 0.95 (Fig. 2). In each
figure various panels correspond to different values of the stability index α:
α = 1.9 (left-top panel), α = 1.5 (right-top panel), α = 1.1 (left-bottom
panel) and α = 0.7 (right-bottom panel). Within each panel various curves
correspond to various values of the asymmetry parameter β: β = 0 —
symmetric jump length distributions — ‘◦’ and β = 1 — asymmetric jump
length distributions — ‘+’.

The asymptotic properties of the survival probability are determined
by the Mittag–Leffler function, which asymptotically behaves like a power-
law characterized by the exponent −ν (0 < ν < 1), i.e. Eν(−tν) ∝ t−ν .
Therefore, for sufficiently large time the decay of the survival probability
is of the power-law type with the exponent defined by the value of the
subdiffusion parameter ν, see Figs. 1, 2 and [22]. The asymmetry of the jump
length distribution changes the shape of survival probabilities, however it
does not affect the asymptotic form of these distributions. Furthermore, for a
large value of the stability index α, differences between survival probabilities
are minimal. It is the consequence of the fact that for large values of the
stability index α, the asymmetry does not affect the shape of the jump length
distribution so drastically as for small values of the stability index α. For
small values of the subdiffusion parameter ν, the asymptotic power-law decay
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Fig. 1. Survival probability S(t), i.e. the probability of finding a random walker
within [−L,L] interval at time t. The value of the subdiffusion parameter is set to
ν = 0.7. Different panels present results for various values of the stability index
α: α = 1.9 (left-top panel), α = 1.5 (right-top panel), α = 1.1 (left-bottom panel)
and α = 0.7 (right-bottom panel). Various curves correspond to different values of
the asymmetry parameter β: ‘◦’ — β = 0 — symmetric jump length distributions
and ‘+’ — β = 1 — asymmetric jump length distributions.
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Fig. 2. The same as in Fig. 1 with ν = 0.95: α = 1.9 (left-top panel), α = 1.5
(right-top panel), α = 1.1 (left-bottom panel) and α = 0.7 (right-bottom panel).
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of survival probabilities is very well visible. With increasing value of the
subdiffusion parameter ν, the power-law part of survival probabilities shifts
toward larger times. Finally, for ν = 1, the Markovian case is reconstructed
and the survival probability S(t) attains an exponential form.

Figures 3 and 4 present the location of the median (q0.5) of the first pas-
sage time distributions and their width defined as the interquantile distance
q0.9 − q0.1, i.e. as the width of the interval containing 90% of collected first
passage times. Due to (slow) power-law decay both the mean first passage
time and variance of the first passage time diverge. In Figs. 3 and 4 lines
are drawn to guide the eye only. In Fig. 3, the case of α = 1 with β = 1, as
leading to numerical instabilities, is excluded.

There is a significant difference between properties of the median location
and the distribution width for asymmetric (β = 1, see top-panel of Fig. 3)
and symmetric (β = 0, see bottom-panel of Fig. 3) jump length distributions.
Symmetric jump length distributions result in a monotonic dependence of
the median location and the distribution width as a function of the stability
index α. On the contrary, asymmetric jump length distributions result in the
non-monotonic dependence. The median location and the distribution width
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Fig. 3. Location of the median q0.5 (left panel) and the distribution width q0.9−q0.1

(right panel) for asymmetric α-stable jump length distributions (β = 1, top panel)
and symmetric α-stable jump length distributions (β = 0, bottom panel). Various
curves correspond to different values of the subdiffusion parameter ν. Lines are
drawn to guide the eye only.
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as a function of the subdiffusion parameter ν, regardless of the value of the
asymmetry parameter β, behave in a monotonic way. Consequently, with
a decreasing value of the subdiffusion parameter, both the median and the
distribution width increase, see Fig. 4. This reflects the fact that a decreasing
value of the subdiffusion parameter slows down the escape process.
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Fig. 4. Location of the median q0.5 (left panel) and the distribution width q0.9−q0.1

(right panel) for asymmetric α-stable jump length distributions (β = 1, top panel)
and symmetric α-stable jump length distributions (β = 0, bottom panel). Various
curves correspond to different values of the stability index α. Lines are drawn to
guide the eye only.

3. Summary and conclusions

Using analytical arguments derived from the properties of the Mittag–
Leffler function we have demonstrated that for a system exhibiting competi-
tion between long jumps and long waiting times the asymptotic dependence
of the survival probability is determined by the value of the subdiffusion
parameter ν. Furthermore, numerical results constructed by the subordi-
nation method nicely confirmed analytical predictions. The observed decay
patterns of the survival probability are very general for systems whose dy-
namics contains a subdiffusive component. The subdiffusive component is
responsible for an introduction of the Mittag–Leffler decay pattern of single
relaxation modes. The competition between subdiffusion (long waiting time)
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and Lévy flights (anomalously long jumps) does not affect the asymptotic
form of the survival probability. Finally, the asymmetry of the jump length
distribution can change the shape of the survival probability. Nevertheless,
the asymptotics remains unaffected.

Computer simulations have been performed at the Institute of Physics,
Jagellonian University and the Academic Computer Center, Cyfronet AGH.
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