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We study bond and site percolation in four real social networks: two
Internet society of friends consisting of over 106 and 107 people, over 106

users of music community website and over 5 × 106 users of gamers com-
munity server. We study the properties of those systems (e.g. the network
components size distribution) in function of fraction p of nodes or links
that retained in network. We have calculated critical fraction pc at which
the percolation transition takes place and giant component emerges.

PACS numbers: 89.75.Hc, 89.75.Fb, 64.60.ah

1. Introduction

In recent years investigations of complex systems have attracted the
physics community’s great interest, e.g. it was discovered that the struc-
ture of various biological, technical, economical, and social systems has the
form of complex networks sharing common properties [1]. The advent of
modern database technology has greatly advanced the statistical study of
social systems. The vastness of the available data sets makes this field
suitable for the techniques of statistical physics. Progress in information
technology makes it possible to investigate the structure of social networks
of interpersonal interactions maintained over the Internet. Some examples
of such networks are e-mail networks, blog networks [2] and web-based social
networks of artificial communities [3]. All users of such systems can add, by
mutual consent, other people to their databases of friends.

We study the properties of the diluted network, i.e. when a fraction pn

of nodes or pb of bonds retained in the network. If p is large enough the
network remains connected and exist a giant component. Below a certain
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threshold pc the giant components disappears. Above the threshold the
network is in a percolating phase [4]. Percolation in real-world networks
is widely recognized as a key problem of interest [5]. Some examples of
possible applications are the robustness of communication networks (e.g.
the Internet) [6] for random failure, the efficiency of preventive vaccination
against the spread of disease [7] or information propagation in networks (e.g.
rumor spreading) [8].

The aim of this work is to investigate bond and site percolation in four
different on-line social networks. Two of them are large social networks of an
Internet community, which consists of 106 (Grono; www.grono.net) and 107

(Skyrock; www.skyrock.com) individuals. The Skyrock project was started
on the website www.skyrock.com. During its existence, it has grown into
a well-known social phenomenon among (mainly French-speaking) Internet
users. In both systems all users can add, by mutual consent, and remove
other people from their databases of friends. In this way undirected friend-
ship network is formed.

The third system under investigation is LastFM (www.last.fm) — the
music community server, and more exactly the part of it known as Audio-
scrobbler project which was started in year 2002. There is about 106 users
of this system. Data gathered by the web-service is used to find users with
similar music taste. On that basis people with similar music taste and songs
they often listen to is present and recommended to users who can see this
information on their profile web site via web browser. This way people with
similar music taste can meet each other and have the possibility to make
friends (mutual consent is required).

The fourth system under investigation is XFire (www.xfire.com). It is
gamers community program similar to every Internet Chat systems, marked
out its integration with almost all popular computer games. People who like
to play computer games are using this application to keep in contact with
other players even when they do not play any game in that moment or play
two different games. For this purpose, they add other people into their friend
list (mutual consent is required) and have possibility to see which game their
friend plays, how much overall time they played and can always chat with
this person when online. X-fire allows to see friends of your friends, so people
have greater chance to make new acquaintanceship.

2. Results

Basic network measures of networks and Giant Components (GC) are
presented in Table I. In all cases the value of the clustering coefficient C is
two orders of magnitude larger than that of a random graph. The average
path length 〈l〉 in GC is very small and comparable to that in a random
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graph. A high value of the clustering coefficient C and a short average path
length 〈l〉 are characteristic features of social networks [9]; they are typical
for small-world networks.

TABLE I

Average properties of the whole network and the giant component (GC) for four
systems: Grono, LastFm, XFire, SkyRock. Values in parentheses indicate the
uncertainty in the final digit.

Network N (NGC) 〈k〉 〈l〉GC C k0 γ τ κ

Grono 1002182 46.3 4.4 0.2 0 0.83(3) 4.50(5) 138
(994381)

LastFM 1192118 4.2 6.6 0.23 10(1) 4.0(1) 3.61(2) 12
(816093)

XFire 5241578 1.2 6.9 0.17 0 1.92(1) 3.80(1) 18
(957579)

SkyRock 9823234 16.7 7.5 0.14 0 0.8(1) 5.30(1) 23
(8228056) 0 2.70(2)

The degree distribution of networks is plotted in Fig. 1. The graph shows
power-law regime for all networks (the parameters of the power-law distribu-
tions were computed with maximum likelihood estimation [10] in other cases
least-squares fitting were used). Such a power-law is common in many types
of networks [1], also in social networks [9]. The connectivity distribution in
each case can be approximated with the power-law P (k) ∼ (k + k0)−γ (the
values of the parameters are presented in Table I). In the case of Grono for
large k (k > 100) the degree distribution starts to take an exponential form

Fig. 1. Degree distribution for four systems: Grono (squares), LastFm (triangles),
XFire (crosses) and Skyrock (circles) in a double logarithmic scale. Results can be
fit to power-law P (k) ∼ (k + k0)−γ (dashed line). The values of the exponents are
presented in Table I. The datasets are vertically offset.
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P (k) ∼ e−0.01k. In the case of SkyRock two scaling regimes are observed,
for low connectivity with γ = 0.8 and for large connectivity with γ = 2.7.
To compare the goodness of fit for power-law distribution and more general
models, P1(k) ∼ kβ−1e−λk

β and P2(k) ∼ e−λk(x−k0)−β , the likelihood ratio
test was used [10]. These models include cutoffs and saturation, hence can
be fitted to all data. The basic idea behind the likelihood ratio test is to
compute the likelihood of our data in two competing distributions. The one
with the higher likelihood is then the better fit. For low and large values
of k the power-law distribution fits better than P1 and P2.

For a random network of arbitrary degree distribution, the condition for

the existence of a spanning cluster is κ = 〈k
2〉

2〈k〉 > 1 [12]. In the networks
under investigations the values of the parameter κ are much greater than one
(see Table I), thus those networks are in percolative phase. The properties
of the structure of the networks under investigation are presented in more
details in Ref. [3, 11].

In order to investigate the dynamics of the bond and site percolation in
real social networks we introduce two observables: the number of nodes in
Giant Component NGC and the number of bonds in GC KGC. Thus, the
probability that randomly chosen node belongs to GC equals SN = NGC

N and
the probability that randomly chosen bond belongs to GC equals SB = KGC

K ,
where N is the number of nodes and K is the number of bonds in the
network. The value of SN and SB increases with an in increase in a fraction
pn of nodes or pb of bonds retained in the network. The relationship between
relative number of bonds and nodes in GC and p is shown in Fig. 2. For low
values of p the value of order parameter do not change and S ≈ 0. However
for large enough p, near to critical value pc, a rapid increase in S is observed.

Fig. 2. The relationship between fraction of bonds pb or nodes pn that retained in
network and relative number of bonds in Giant Component (a) and relative size
of Giant Component (b) for four systems: Grono (squares), LastFm (triangles),
XFire (crosses) and Skyrock (circles).
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Near criticality, for p ≥ pc, the probability of belonging to the spanning
cluster (GC) behaves as

S ∼ (p− pc)β , (1)

where β is the order parameter critical exponent. For infinite-dimensional
systems (such as a Cayley tree) and for scale-free networks with γ > 4 it
is known that β = 1 [4, 13]. According to Ref. [13] the order parameter
exponent β for scale-free networks equals β = 1

γ−3 for 3 < γ < 4 and
β = 1

3−γ for 2 < γ < 3. The existence of an infinite-order phase transition
at γ = 3 for growing networks of the Albert–Barabási model, has been
reported in [15].

The relationship between p and order parameter S for p ≈ pc is shown
in Fig. 3. For p = pc the value of parameter κ ≈ 1. For values of con-
trol parameter greater than critical value and for p−pc

pc
< 0.5 the value of

order parameter increases approximately linearly with p. Thus, for all net-
works under investigation we obtain β ≈ 1. The critical values of control
parameters equal: pbc ≈ 0.003 and pnc ≈ 0.005 for Grono, pbc ≈ 0.035
and pnc ≈ 0.05 for LastFM, pbc ≈ 0.001 and pnc ≈ 0.0025 for SkyRock,
pbc ≈ 0.015 and pnc ≈ 0.03 for XFire. In all cases pbc < pnc.

It is surprising that in four different systems the form of distribution of
sizes of network components P (s) is very similar. In all cases the results
can be approximated with the power-law P (s) ∼ s−τ . The values of the
exponents are presented in Table I. The relation between parameter γ and
the exponent τ for scale-free networks which are close to the percolation
threshold is presented in Ref. [13]. It has been shown that the exponent τ
bear a strong γ-dependence τ = 2γ−3

γ−2 for 2 < γ < 4 (note that in the case
of networks LastFM and XFire the value of the exponent τ seems to be
independent of the form of the degree distribution, see Table I). For γ > 4
usual mean field result τ = 5

2 is observed. Related results for growing net-
works of the Albert–Barabási model are presented in Ref. [14]. In networks
under investigation the value of the parameter τ is high, however the fit to
power-law relation is much better than to exponential decay. In order to
determining whether a power-law is consistent with the empirical data is by
computing the p-value for the power-law distribution [10]. In all systems
under investigation the p-value is above threshold value (i.e. 0.05), hence
the power-law model cannot be rejected.

The relationship between fraction of bonds or nodes that retained in
network and the value of the exponent τ for networks under investigation
is shown in Fig. 4. For the value of p for which the minimum in τ(p)
relationship is observed the number of components in the network reaches
maximum.
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Fig. 3. The relationship between fraction of bonds pb ≈ pbc or nodes pn ≈ pnc that
retained in network and relative number of bonds in Giant Component (a) and
relative size of Giant Component (b).
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Fig. 4. The relationship between fraction of bonds pb (a) or nodes pn (b) that
retained in network and the value of the exponent τ . The size of error bars is
smaller than the size of marks. The uncertainty of the exponent τ is smaller
than 1%.

3. Conclusions

Percolation in real-world networks is widely recognized as a key problem
of interest. In this work we have investigated site and bond percolation in
four real social networks. We have calculated approximated value of fraction
pn of nodes or pb of bonds retained in the network at which giant component
emerges. Note that in order to calculate the critical value of probability pc

with greater accuracy, the simulations for greater networks should be per-
formed. However in our case it is impossible, because we investigate the
percolation phenomenon in real networks and we cannot change the size of
the system.

We have calculated the value of critical exponents β and τ . The rela-
tionship between the fraction of bonds or nodes retained in the network and
value of exponent β was presented. The properties of the real, on-line social
networks are different than uncorrelated scale-free networks. Contrary to
results presented in [13] the values of critical exponents β and τ seems to be
independent of the form of degree distribution. This result indicates that in
the case of real social networks the internal structure of network (e.g. com-
munity structure) has much stronger influence on percolation phenomenon
(e.g. the value of critical exponents) than the degree distribution. However
it should be noted that the meaning of critical exponents and the percola-
tion threshold is not very precise as result of finite size of systems under
investigation.
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Social network services nowadays become a new, very important medium
of exchange of information between users. Some examples of possible appli-
cations of percolation theory in the case of on-line social networks are the
information propagation in networks (e.g. rumor spreading, in such a case
the values of parameters pb and pn correspond to the value of parameter
that describes how interesting the rumor is) and viral marketing.
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Kruszewska for her help and useful discussions.
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