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In this paper we discuss subdiffusive mechanism for the description of
some stock markets. We analyse the fractional Black–Scholes model in
which the price of the underlying instrument evolves according to the sub-
diffusive geometric Brownian motion. We show how to efficiently estimate
the parameters for the subdiffusive Black–Scholes formula i.e. parameter
α responsible for distribution of length of constant stock prices periods
and σ — volatility parameter. A simple method how to price subdiffusive
European call and put options by using Monte Carlo approach is presented.

PACS numbers: 05.10.Gg, 89.65.Gh, 05.10.–a, 02.50.–r

1. Introduction

Anomalous diffusion is conveniently described by the Fractional Fokker–
Planck Equation (FFPE) with temporal fractional derivatives. The equiva-
lent approach is based on the subordinated Langevin equation. These equa-
tions provide useful tools for the description of different types of dynamics
in complex systems [1–7]. It turns out that data from financial markets can
have subdiffusive or superdiffusive character [8]. Therefore, it is natural to
apply the recently developed theory of anomalous diffusion also to different
problems in temporary financial modeling. One of them is option pricing
on emerging markets, where the number of participants and the number of
transactions is rather low. Then the price processes display characteristic
for subdiffusion periods in which they stay motionless.
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Option contracts are such financial instruments which play a crucial role
in protection of investors against the market risk. Fair price of an option is
such a price under which there is not possible to make sure profits by creating
any kind of portfolio strategy (no-arbitrage opportunity) [9]. Therefore, op-
tion pricing is a challenging problem. First of all, we need to find a so-called
martingale measure (see [9] and [10]) for price process describing evolution
of underlaying stock. According to such a measure the price process became
a martingale. This martingale assumption guarantees that the market game
between purchaser and seller of the option be fair for both sides and thus
the option price is fair for both players [11].

In many financial markets we observe price processes having many pe-
riods of constant values or periods in which they exhibit very small fluc-
tuations [8]. This effect is characteristic for subdiffusive processes since it
corresponds to trapping events in which the subdiffusive test particle get im-
mobilized [1–3]. A natural physical way to modeling of such a subdiffusive
behavior is the method of subordinated Langevin equations [5, 6].

In this paper we consider the market model which captures periods in
which the underlying process stays motionless. It is a generalization of the
classical Black–Scholes (BS) model [12] and is based on the assumption that
the price of the underlying instrument evolves according to the subdiffusive
Geometric Brownian Motion (GBM). Up to our knowledge the first source,
where such a martingale model was fully developed is [13], however some
ideas of option pricing for subordinated processes were discussed earlier,
see [14–16].

In order to develop practical aspects of a market model, which capture
the statistical characteristics of the financial market, one needs to know how
to calibrate it i.e., how to estimate its parameters and how to calculate the
price of derivatives. In this paper we propose a simple and effective method
of calibration for the subdiffusive BS model.

In principle, one can investigate subdiffusion processes by using two
methods. The first deterministic one is the FFPE, and the second one
is the stochastic subordination method (Langevin picture) developed re-
cently [5, 6, 17]. In this paper we focus on the subordinated Langevin equa-
tion approach since it permits to apply Monte Carlo methods.

Let us note that subdiffusions with characteristic constant periods (stops)
can be obtained from classical diffusion process X(τ) by subordination [5,6]:

Yα(t) = X
(
Sα(t)

)
, t ∈ [0, T ] , (1)

where Sα(t) is the inverse α-stable subordinator, independent from the dif-
fusion process X(τ), defined as follows [18–20]:

Sα(t) = inf{τ > 0 : Uα(τ) > t} , (2)
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and {Uα(τ)}τ≥0, α ∈ (0, 1), denotes a strictly increasing α-stable Lévy mo-
tion [21], with Laplace transform 〈e−kUα(τ)〉 = e−τk

α
. In turn, X(τ) denotes

here the diffusion i.e., corresponding Itô’s process given by some Stochastic
Differential Equation (SDE) w.r.t. the Brownian motion B(t).

2. Subdiffusive Black–Scholes market model

In this section we use subdiffusive mechanism to the description of stock
markets and we consider a generalization of the classical BS model, which
captures the subdiffusive character of a given financial markets. We assume
the same conditions as Black and Scholes in their original paper [12]. The
notation using in this section is following: Yα(0) denotes stock prices at
time 0,K > 0 — strike price, T — exercise date (in years), σ = const.> 0
— volatility parameter, r ≥ 0 — risk free interest rate, and α is the index
of subdiffusion.

Our analysis of the subdiffusive market model is based on the assump-
tion that the price of the underlying instrument evolves according to the
subordinated GBM (SGBM), which is defined as follows [13]:

Yα(t) = X(Sα(t)) = Yα(0)e
n
(µ− 1

2
σ2)Sα(t)+σB

(
Sα(t)

)o
, (3)

where X(τ) is the classical GBM [9, 10, 12] and parameter µ denotes short-
term trend. Let us note that the SGBM (3) can be represented by the
following subordinated Langevin type SDE:

dYα(t) = µYα(t)dSα(t) + σYα(t)dB
(
Sα(t)

)
. (4)

The above representation of SGBM follows from a version of Itô’s formula
for subdiffusion, see [23]. To describe bond prices we use the same model as
in the classical BS model [9, 10,12]:

dβt = rβt dt , β0 = 1⇔ βt = ert . (5)

First of all, let us note that as shown in [13], the subdiffusive market
model (given by Eq. (3), (4) and (5)) is arbitrage-free, because there exists
a martingale measure ([22]) Qα equivalent to P:

Qα(A) =
∫
A

exp
{
−γB

(
Sα(T )

)
− 1

2 γ
2Sα(T )

}
dP , (6)

where γ=(r + µ)/σ and A∈F such that {e−rtYα(t)}t∈[0,T ] is Qα-martingale.
Unfortunately, the martingale measure Qα equivalent to P is not unique, so
the subdiffusive market model is incomplete [13].
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Let us notice that the martingale measure Qα defined in (6) is a natural
generalization of the martingale measure from the classical Black–Scholes
model because if α ↗ 1, then Qα reduces to the martingale measure from
the classical BS model. Therefore, it is interesting to compare prices in the
classical and subdiffusive model. The subdiffusive Black–Scholes formula
for European call CSub

BS (Yα(0),K, T, σ, r, α) and put P Sub
BS (Yα(0),K, T, σ, r, α)

options prices corresponding to the measure Qα given by (6) satisfy [13]:

CSub
BS (Yα(0),K, T, σ, r, α) =

1
Tα

∞∫
0

CBS

(
Yα(0),K, x, σ, r

)
gα

( x

Tα

)
dx , (7)

P Sub
BS (Yα(0),K, T, σ, r, α) =

1
Tα

∞∫
0

PBS

(
Yα(0),K, x, σ, r

)
gα

( x

Tα

)
dx , (8)

where gα(z) is the p.d.f. of Sα(1) and CBS, PBS denote the classical BS prices
of the European call and put options [9,10,12]. The p.d.f. gα(z) occurring in
formulas (7) and (8) can be expressed by the special H-Fox function [24,25],
so it is possible to calculate analytically the subdiffusive European call and
put option prices.

However, it is more convenient to use the Monte Carlo methods to eval-
uate the expected value of the BS option prices ECBS and EPBS in the
subdiffusion model i.e., at T = Sα(T ). In order to justify this claim ob-
serve, that the right sides of the above pricing formulas can be interpreted
as the expected values of the classical BS call and put option prices evaluated
at random time Sα(T ).

Let us note that for each t ≥ 0, Sα(t) ∼
(

t
Uα(1)

)α
, where “∼” means

equality in distribution. Taking advantage of the above property of the
inverse α-stable subordinator, the estimator for price of the European call
option has the following form:

ĈSub
BS (Yα(0),K, T, σ, r, α) =

1
n

n∑
i=1

CBS(Yα(0),K, Sαi (T ), σ, r) , (9)

and for price of the European put option:

P̂ Sub
BS (Yα(0),K, T, σ, r, α) =

1
n

n∑
i=1

PBS(Yα(0),K, Sαi (T ), σ, r) , (10)

where
Sαi (T ) ∼

(
T

Uαi (1)

)α
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and Uαi (1) are the independent and identically distributed (i.i.d.), totally
skewed positive α-stable random variables (therefore Sαi (T ) are also the
i.i.d.) To generate Uαi (1) we can use the following procedure [21]:

Uαi (1) =
sin
(
α(V + c1)

)(
cos(V )

)1/α (
cos(V − α(V + c1))

W

)(1−α)/α

,

where c1 = π/2, V is the uniformly distributed on (−π/2, π/2) random
variable and W has the exponential distribution with mean one.

3. Calibration of the subdiffusive market model

In order to apply the subdiffusive BS market model described by Eq. (3),
(5) and the subdiffusive Black–Scholes formulas for the European options to
the real data, it is important to know how to estimate parameters of the
model, Fig. 1 and Fig. 2. Therefore, in this section we describe how to fit
the model to the real data.

To model the real-live markets we use the discretization idea i.e., we
consider discrete version of the continuous time stochastic processes. The
discrete analogon of the classical GBM is given by:

Xk = Xk−1 +Xk−1

(
µ∆t+ σ

√
∆tεk

)
, (11)

where εk ∼ N(0, 1) (is a standard normal random variable). The subordi-
nated GBM Yα(t) = X

(
Sα(t)

)
we get by using algorithms presented in [5]

and [17] for discrete analogon of GBM.

Fig. 1. Difference between classical BS price and subdiffusive BS price for European
call option with parameters Yα(0) = 100, σ = 1, r = 0.05 and α = 0.9. Clearly, for
small exercise times T the classical BS price is underestimated, while for larger T
it is overestimated in comparison to subdiffusive BS price.
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We need only to estimate parameters α and σ, because the other pa-
rameters: Yα(0), r are known from the market and K, T are given from the
definition of the option contract. So, we focus here on the α and σ estima-
tion. Obviously, subdiffusion Yα(t) = X

(
Sα(t)

)
combines both properties

of the classical Itô’s diffusion X(τ), which is responsible for the volatil-
ity (σ) of the subdiffusive processes, and the inverse α-stable subordinator,
which is responsible for probability distribution of constant price periods.
From a probabilistic interpretation of the subordination mechanism (ran-
dom change of time is independent from the original diffusion) a natural
way for estimation of both parameters follows. It is the idea to decompose
initial data vector onto two independent vectors of data. Denote observed
data vector by Yα = (Y0, Y1, . . . , Yn), where Yi = Yα(ti) is the price at
time ti and 0 = t0 < t1 < . . . < tn = T , tk = (kT )/n is a discretiza-
tion of the time period [0, T ]. The first vector Eα = (Eα1 , E

α
2 , . . . , E

α
M )

contains the sizes of all constant price periods (traps), the second vector
Eσ = (Eσ1 , E

σ
2 , . . . , E

σ
N+1) contains nonconstant observations from Yα, it

means that if k = 0, 1, 2, . . . , n − 1 is the p-th index such that Yk 6= Yk+1,
then Eσp = Yk.

The main idea of α parameter estimation for subdiffusions defined by (1)
is shown in [8]. This method is based on the fact that the lengths of constant
periods (corresponding to jumps of Uα(τ)) of subdiffusion have a totally

Fig. 2. The price of the classical BS European call option presented as a function of
the volatility parameter σ, for T ∈ [0, 5] and with Yα(0) = 2,K = 3, r = 0.02, α = 1.
Clearly, the parameter σ has a strong impact on the price of the option. Therefore,
a choice of an accurate method for volatility estimation is crucial. For subdiffusive
model the problem is even more important.
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skewed α-stable distribution. In order to estimate parameter α we have to
use data from the vector Eα that is the sizes of all traps and treat them as
independent and identically distributed α-stable random variables. Then,
parameter α can be estimated by using one of the following methods: the
Hill estimation method, the Pickands estimate, the EVI estimate (Extreme
Value Index), the POT estimate (Peaks Over Treshold), the M–S estimate
(Meerschaert and Scheffler method), the PCF (Power Curve Fitting) for the
tail index estimation, see [8] and references therein.

To estimate the historical volatility parameter σ, we use the second vec-
tor Eσ = (Eσ1 , E

σ
2 , . . . , E

σ
N+1). First, we calculate the natural estimator of

the standard deviation for logarithmic returns for the observed data, which
in this case is given by:

D =

(
1

N − 1

N∑
k=1

(
Rσk − R̂σ

)2
)1/2

, (12)

where

Rσk = ln
(
Eσk+1

Eσk

)
and R̂σ =

1
N

N∑
k=1

Rσk .

In the subdiffusive BS formula it is natural to use the following estimator
of the volatility parameter: σ̂ = D

√
L, where L = (n+ 1)/T denotes the

number of quotations during the whole year (number of exchange sessions,
n + 1 denotes length of vector Yα). It should be emphasized here that
parameter L depends on the considered data (i.e. discretization of period
[0, T ]). For example, if we analyze daily data (closing prices), then the most
often L = 256. More precisely L ∈ [250, 260] according to the number of
exchange sessions during the given year.

4. Conclusions

In this paper, we have sketched a simple algorithm for parameters (α, σ)
estimation of the subdiffusive Black–Scholes model, which can be imple-
mented efficiently for option pricing. We have demonstrated that in the
case of observed subdiffusive character of the market data, the subdiffusive
BS model is much better than the classical BS model (see Fig. 1). There-
fore, in many cases when the historical financial data have characteristic
stops (Fig. 3), it is recommended to use the subdiffusive BS formula instead
of the classical one.

Finally, let us observe that the idea to split the observed data (see Fig. 4)
into two parts in order to estimate the subdiffusive parameter α and the
volatility parameter σ, is rather general and not restricted only to financial
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Fig. 3. An example trajectory of the SGBM in the logarithmic scale. The elements
of vector Eα are pointed by arrows.

data. It can be applied also to other models described by the Langevin
equations. In particular, it can be used for estimation of the anomalous
diffusion coefficientKd for process Yα(t) = X

(
Sα(t)

)
, withX(τ) given by [6]:

Fig. 4. Vector Eα used for estimation of parameter α (left panel). Logarithm of
data from vector Eσ used for estimation of parameter σ (right panel).
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dX(τ) = F
[
X(τ), Uα(τ)

]
η−1dτ + (2Kd)

1
2dB(τ), X(0) = X0 , (13)

where F
[
x, Uα(τ)

]
= −Vx

[
x, Uα(τ)

] (
F
[
x, Uα(τ)

]
is force and V [x, Uα(τ)]

is an external potential
)
and η is the generalized friction constant.

The authors are grateful to the anonymous referee for useful comments
and suggestions.
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