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The influence of temperature and transport conditions on the electron
spin relaxation in lightly doped n-type GaAs semiconductors is investi-
gated. A Monte Carlo approach is used to simulate electron transport,
including the evolution of spin polarization and relaxation, by taking into
account intravalley and intervalley scattering phenomena of the hot elec-
trons in the medium. Spin relaxation lengths and times are computed
through the D’yakonov–Perel process, which is the more relevant spin re-
laxation mechanism in the regime of interest (10 < T < 300 K). The decay
of the initial spin polarization of the conduction electrons is calculated as
a function of the distance in the presence of a static electric field varying
in the range 0.1–2 kV/cm. We find that the electron spin depolarization
lengths and times have a nonmonotonic dependence on both the lattice
temperature and the electric field amplitude.

PACS numbers: 71.70.Ej, 72.25.Dc, 72.25.Rb

1. Introduction

The processing of a high volume of information and world wide commu-
nication are, at the present, based on semiconductor technology, whereas
information storage devices rely on multilayers of magnetic metals and in-
sulators. Semiconductor spintronics offers a possible direction towards the
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development of hybrid devices that could perform logic operations, commu-
nication and storage, within the same material technology: electron spin
could be used to store information, which could be transferred as attached
to mobile carriers and finally detected [1–6].

Although these important potential advantages, the designers of spin
devices have to worry about the loss of spin polarization (spin coherence)
before, during and after the necessary manipulations. In particular, effi-
cient injection, transport, control and detection of spin polarization must
be carefully treated [2]. Electron–spin states depolarize by scattering with
imperfections or elementary excitations such as phonons. Hence, for the op-
erability of prospective spintronic devices, the features of spin relaxation at
relatively high temperature jointly with the influence of transport conditions
should be firstly understood [1, 7].

In recent years there was a proliferation of experimental works in which
the influence of transport conditions on relaxation of spins in semiconduc-
tors has been investigated [8–14]. Even though for high speed transfer of
information, high external electric fields must be used, up now only the in-
fluence of low electric fields (F < 0.1 kV/cm) on coherent spin transport has
been investigated and very little is known about the effects of higher electric
fields [10] or high lattice temperatures.

Despite of this great experimental interest, few theoretical works [13,15]
and simulative studies [7, 16, 17], have been carried out. Theoretical ap-
proaches to describe spin dynamics and spin-polarized electron transport in-
clude the two-component drift-diffusion model [13], Monte Carlo techniques
to solve the Boltzmann equation [7] and microscopic approaches solving the
Bloch kinetic equations [18]. However, a comprehensive theoretical investi-
gation of the influence of transport conditions on the spin depolarization in
semiconductor bulk structures, in a wide range of values of temperature and
amplitude of external fields, is lacking.

Inducing spin polarization in a semiconductor, such as GaAs and Si,
can be done efficiently and at reasonable current levels by electrical trans-
fer of spins from a ferromagnetic metal across a thin tunnel barrier, at low
temperatures (5–150 K) [19, 20]. Very recently, electrical injection of spin
polarization in n-type and p-type silicon at room-temperature have been
experimentally carried out [21]. These promising experimental results for
development of spintronic devices suggest that it is important to investigate
the spin coherence up to room temperature. Earlier Monte Carlo simulation
has revealed that the presence of an external electric field can accentuate spin
relaxation in GaAs bulk materials [7]. In this work, solving the transport
and spin dynamics stochastic differential equations by a semiclassical Monte
Carlo approach, we estimate the spin lifetimes and depolarization lengths
of an ensemble of electrons, for intermediate values of the electric field
(0.1–2 kV/cm) and lattice temperatures in the range 10 < T < 300 K.
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The paper is organized as follows: in Sec. 2 the semiconductor physical
model and the Monte Carlo approach are presented; in Sec. 3 the numerical
results are given and discussed. Final comments and conclusions are given
in Sec. 4.

2. Semiconductor model and spin-polarized
electron transport calculation

2.1. Semiconductor model and semiclassical Monte Carlo approach

The study of the transport properties and the spin relaxation process in
a semiconductor in the presence of an external field is not simple, especially
when the field is very strong. In this case, it is preferable to perform a
numerical simulation of the process. The Monte Carlo method presents the
remarkable advantage of giving a detailed description of the particles motion
in the semiconductor taking into account the scattering mechanisms, and
allows us to obtain all the needed information, such as average velocity of
the electrons, temperature, current density, etc., directly without the need of
calculating the electron distribution function. The time of free flight (time
interval between two collisions), the collisional mechanisms, the scattering
angle, and all the parameters of the problem are chosen in a stochastic way,
making a mapping between the probability density of the given microscopic
process and a uniform distribution of random numbers.

The Monte Carlo algorithm, developed for simulating the motion of elec-
trons in a GaAs semiconductor, follows the standard procedure described in
Ref. [22]. Here, we incorporate the description of the electron spin dynamics
by following a standard semiclassical formalism. We assume that the spatial
electron transport is well described by the Boltzmann equation and that the
electrons move along classical trajectories between two scattering events.
The conduction bands of GaAs are the Γ -valley, four equivalent L-valleys
and three equivalent X-valleys. The parameters of the band structure and
scattering mechanisms are taken from Ref. [22]. In this work Monte Carlo
simulations of electron transport and spin depolarization dynamics are lim-
ited to low-energy regime with the electric field amplitude varying in the
range 0.1–2 kV/cm. In this energy range the electrons can be found only in
the Γ -valley. Our computations include the effects of the nonparabolicity of
the band structure and, among many different scattering mechanisms, elec-
tron scattering due to ionized impurities, acoustic, piezoelectric and polar
optical phonons in the Γ -valley. The scattering probabilities are calculated
by the Fermi Golden Rule and the scattering events are considered instan-
taneous. We assume field-independent scattering probabilities; accordingly,
the influence of the external fields is only indirect through the field-modified
electron velocities. Nonlinear interactions of the field with the lattice and
bound carriers is neglected. We neglect also electron–electron interactions
and consider electrons to be independent [27]. All simulations are performed
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in a n-type GaAs bulk with a free electrons concentration n = 1013 cm−3.
We have assumed that all donors are ionized and that the free electron con-
centration is equal to the doping concentration.

2.2. Spin relaxation dynamics

The spin depolarization of drifting electrons is analyzed for a lattice tem-
perature T varying in the range 10 < T < 300 K. For these values of T the
D’yakonov–Perel process is the more relevant spin relaxation mechanism [14].
This mechanism, effective in the intervals between collisions, is related to the
spin–orbit splitting of the conduction band in non-centrosymmetric semicon-
ductors like GaAs [5, 15,24] .

In a semiclassical formalism the effective single-electron Hamiltonian
which accounts for the spin–orbit interaction term is

H = H0 +HSO , (1)

where H0 is the self-consistent electron Hamiltonian in the Hartree approx-
imation, including also interactions with impurities and phonons. The spin-
dependent term HSO may be written as

HSO =
~
2
~σ · ~Ωeff , (2)

and can be viewed as the energy of a spin in an effective magnetic field that
causes electron spin to precess. ~Ωeff is a vector depending on the orientation
of the electron momentum vector with respect to the crystal axes (xyz).
Near the bottom of the Γ -valley, the effective magnetic field can be written
as [25]

~Ωeff = βΓ
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where ki are the components of the electron wave vector, and βΓ the spin–
orbit coupling coefficient [15]. In particular,

βΓ =
α~2

m
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(
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 , (4)

where α = 0.029 is a dimensionless material-specific parameter which gives
the magnitude of the spin–orbit splitting, η=∆/(Eg+∆), with ∆=0.341 eV
the spin–orbit splitting of the valence band, Eg is the energy separation
between the conduction band and valence band at the Γ point and m is the
effective mass. In Eq. (4), we consider the effects of nonparabolicity on the
spin–orbit splitting in Γ -valley, estimated by Pikus and Titkov [26].
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The quantum-mechanical description of the evolution of the spin 1/2 is
equivalent to the evolution of the classical momentum ~S under an effective
magnetic field ~Ωeff with the equation of motion

d~S

dt
= ~Ωeff × ~S . (5)

In Eq. (5), the scattering reorients the direction of the precession axis, mak-
ing the orientation of the effective magnetic field random and trajectory-
dependent, thus leading to spin relaxation (dephasing) [15]. The reciprocal
effect of the electron spin evolution on the orbital motion through spin–orbit
coupling can be ignored due to the large electron kinetic energy in compar-
ison with the typical spin splittings and strong change of the momentum
in scattering events [27]. In this modelization the scattering processes are
considered spin-independent.

2.3. Calculation of spin depolarization times and lengths

The dependence of spin relaxation times and lengths on temperature
and driving electric field has been investigated by simulating the dynamics
of 5 × 104 electrons, initially polarized (〈~S〉 = 1) along the x̂-axis at the
injection plane (x0 = 0). We calculate 〈~S〉 as a function of time by aver-
aging over the ensemble of electrons. In Fig. 1 (a), we show the electron
average polarization 〈Sx〉, calculated as a function of time in the presence of
an electric field, with amplitude F = 0.1 kV/cm and directed along x̂-axis,
for three different values of temperature. In Fig. 1 (b), we show the same
component of spin polarization 〈Sx〉, calculated at T = 77 K, as a function
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Fig. 1. (a) Spin polarization 〈Sx〉 as a function of time, with field amplitude F =
0.1 kV/cm, at three different values of temperature; (b) Spin polarization 〈Sx〉 as
a function of distance at T = 77 K, for three different values of the electric field
amplitude.
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of the distance traveled by the center of mass of the electron cloud from
the injection plane, for three different values of the external field amplitude.
Since 〈Sx〉 is found to decrease with both time and distance by showing
an almost linear trend in a semi-log plot, the spin relaxation times τ and
lengths L are estimated by considering the spin depolarization as an expo-
nentially process dependent on time and distance [7]. If 〈Sx〉 and 〈x〉 are
the mean polarization along x̂-axis and the mean position of the ensemble of
the electrons as a function of time, τ and L are chosen to be characteristic
time and distance such that

〈Sx〉 = A× exp(−t/τ) = B × exp(−〈x〉/L) , (6)

with A and B normalization factors. L and τ satisfy the relation L = vd · τ ,
where vd is the average drift velocity.

3. Numerical results and discussion

In Fig. 2 we show the spin electron relaxation length L (panel (a))
and the spin depolarization time τ (panel (b)) as a function of the lat-
tice temperature, for different values of the electric field amplitude, namely
F = 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0 kV/cm. For a fixed electric field, the spin
electron relaxation length is a monotonic decreasing function of the tempera-
ture. When F = 0.5 kV/cm, L shows its maximum value, remaining greater
than 35 µm up to T ' 80 K. Furthermore, for field amplitudes greater
than 1 kV/cm, the spin depolarization length remains almost constant for
T < 100 K. At room temperature the maximum value of L (∼ 6 µm) is
obtained for F≥ 1 kV/cm.
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Fig. 2. (a) Spin depolarization length L and (b) spin depolarization time τ as
a function of the temperature T , plotted for several values of the electric field
amplitude F .
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The relaxation time τ shows, instead, a nonmonotonic behavior with
the temperature (see Fig. 2 (b)). In particular, the curves obtained with
F = 0.1 and 0.2 kV/cm exhibit a minimum at T ∼ 80 K and an increase
in the range 100–170 K. For temperatures greater than 170 K, all curves
with a field amplitude up to 0.5 kV/cm show a common decreasing trend.
The longest value of spin coherence time is achieved for the field amplitude
F = 0.5 kV/cm for almost the entire range of temperatures. For higher
values of F , the spin depolarization time strongly decreases, becoming nearly
temperature-independent for F > 1.5 kV/cm.

As the temperature increases, the scattering rate increases too, and hence
the ensemble of spins loses its spatial order faster, resulting in a faster spin
relaxation. This temperature dependence becomes less evident at higher
amplitudes of the driving electric field, where, because of the greater drift
velocities, the polarization loss is mainly due to the strong effective magnetic
field. At very low electric fields, the spin dephasing is, instead, primarily
caused by the multiple scattering events. The nonmonotonicity of τ can be
ascribed to the progressive change, with the increase of the temperature,
of the dominant scattering mechanism from acoustic phonons and ionized
impurities to polar optical phonons [11]. Following the standard theory of
D’yakonov–Perel, τ−1 is proportional to the third power of the tempera-
ture T and linearly depends on the momentum relaxation time τp [15]. An
increase of the temperature initially leads to a slightly decrease of τ ; for tem-
peratures greater than ∼ 100 K the electrons start to experience scattering
by polar optical phonons. This switching on leads to an abrupt decrease
of τp that, for lattice temperatures in the range 100–150 K, results more
effective than the increase of T , giving rise to the observed increase of τ .
For temperatures greater than 150 K this latter effect is no more relevant.

In Fig. 3 we plot the spin depolarization length L (panel (a)) and the spin
depolarization time τ (panel (b)) as a function of the electric field amplitude,
for different values of the lattice temperature. The spin relaxation lengths
show a marked maximum that rapidly reduces its intensity, widens and
moves towards higher electric field amplitudes with the increasing of the
temperature. For temperatures T ≤ 150 K the decoherence times plotted
in Fig. 3 (b) show a nonmonotonic behavior. For F > 0.5 kV/cm, τ lightly
depends on the temperature up to T ∼ 150 K. At higher temperatures, the
spin electron relaxation time becomes a monotonic decreasing function of
the electric field intensity.

The presence of maxima in the spin depolarization length at intermediate
fields can be explained by the interplay between two competing factors:
in the linear regime, as the field becomes larger, the electron momentum
and the drift velocity increase in the direction of the field. On the other
hand, the increased electron momentum also brings about a stronger effective
magnetic field, as shown in Eq. (3) [7]. Consequently, the electron precession
frequency becomes higher, resulting in faster spin relaxation (i.e., shorter
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Fig. 3. (a) Spin depolarization length L and (b) Spin depolarization time τ as a
function of the electric field amplitude F , plotted for several values of the temper-
ature T .

spin relaxation time). For F < 0.5 kV/cm and T ≤ 150 K the nonmonotonic
behavior of the relaxation time reflects the complex scenario described above,
caused by the triggering of scattering mechanisms having different rates of
occurrence.

4. Conclusions

For the extensive utilization of spintronic devices, the features of spin
decoherence at relatively high temperature, jointly with the influence of
transport conditions, should be fully understood. In this work, by using
a semiclassical Monte Carlo approach, we have estimated the spin mean
lifetimes and depolarization lengths of an ensemble of conduction electrons
in lightly doped n-type GaAs crystals, in a wide range of lattice tempera-
tures (10 < T < 300 K) and field amplitudes (0.1 < F < 2 kV/cm). We
have shown that, under particular conditions, also at temperatures greater
than the liquid-helium temperature, it is possible to obtain very long spin
relaxation times and relaxation lengths. These are essential for the high
performance of spin-based devices, in order to extend the functionality of
conventional devices to higher working temperatures and higher electric field
amplitudes and to allow the development of new information processing sys-
tems. In particular, for F = 0.5 kV/cm we achieve the longer value of spin
lifetime (τ > 0.15 ns) up to a temperature T = 150 K. At room tempera-
tures, we obtain a coherence length of about 6 µm, nearly independent from
the intensity of the electric field.

Furthermore, depending on the interplay between the external electric
field and the different collisional mechanisms with increasing electron energy,
we find very interesting nonmonotonic behavior of spin lifetimes and depo-
larization lengths as a function of temperature and electric field amplitude.
This point deserves further investigations.
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Understanding these phenomena could lead to high temperature and
high field improvement of the gating mechanisms engineering of spin-based
devices.
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