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Molecular engines are nano-scale machines operating under far-from-
equilibrium conditions. In living cells they transform chemical energy into
mechanical work while acting under randomly fluctuating forces in the form
of thermal noise. In this paper we discuss a previously introduced model
of a stepper motor [M. Żabicki, E. Gudowska-Nowak, W. Ebeling, Chem.
Phys. in press], which is able to drive the system uphill at the cost of the
energy inflow from an energy reservoir. The efficiency of the motor is de-
fined as the ratio of the power exerted in the uphill motion with respect to
the energy influx from the depot. We analyze the efficiency of this system
by adapting the motor model in which only the internal motion includes in-
ertia, whereas the motion of its center of mass becomes overdamped. Based
on the numerical simulations of the center of mass trajectories and analysis
of directed fluxes of motor particles moving along a one-dimensional track,
we derive thermodynamic estimates of the motor efficiency as a function of
the opposing force.

PACS numbers: 87.10.+e, 05.70.Ln, 87.16.Nn

1. Introduction

The great challenge in the field of nanotechnology is nowadays the design
and construction of microscopic synthetic motors that could transform ex-
ternally supplied energy into a programmed motion and perform dedicated
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mechanical tasks such as e.g. pumping of matter or charges and transporting
a cargo [1,2]. In nature many cellular processes require nano-scale molecular
motors to produce motion and forces [3,4]. Those molecular devices are pro-
teins that are capable to convert chemical energy from the hydrolysis of ATP
into mechanical work used to power e.g. intracellular transport of organelles.
Valuable insights into the chemomechanical energy transduction by protein
motors has been achieved over the past 10 years thanks to the technical
developments that allow detection and manipulation of motor proteins at a
single molecule level [3,5]. Additionally, solving the atomic structures of pro-
tein motors and building atomic models of actin filaments and microtubule
have improved understanding of motor motility along their tracks [5–7]. The
results coming from the structural analysis and single-molecule experiments
support [8, 9] the concept of protein motors as nano-machines built up of
levers, springs and swivels synchronized in a coordinated action.

Theories describing motility of molecular motors comprise various levels
of complexity starting from simple kinetic models [10, 11] with few states
to all atom molecular dynamics [12]. Novel computational approaches to
kinematics of molecular motors are based on coarse-grained structural mod-
els in which pre-defined groups of atoms form a system of semi-rigid bodies
connected by joints [12,13]. Whereas contacts between the clusters of atoms
enforce excluded volume constraints, the spring-like potentials model system
elasticity and provide a simple representation for conformational changes
of motors. Formation and rupture of adhesive bonds between individual
molecules which gives rise to the protein friction [14] is also an important
ingredient of molecular simulations.

Unlike macroscopic motors, motor proteins operate in “low Reynolds
number environments” [3, 15, 16]. Viscous forces (dependent on particle di-
mensions) dampen the motion and dissipate kinetic energy so that the motor
has to be provided with a specific energy to move and to perform its tasks.
In a macroscopic machine, this energy supply is often provided through
a directional force when work is done to move mechanical components in a
particular way. As moving bodies become less massive and smaller in dimen-
sions, inertial terms decrease in importance and viscosity begins to dominate.
Accordingly, a common approach in physical modeling of molecular motors
is based on the paradigm of an overdamped Brownian particle undergoing a
random walk in a periodic, asymmetric potential representing the surface of
the track [13] and subject to additional, external (possibly time-dependent)
forces. Observation of a preferential direction of motion in such a system
is possible if the time-inversion symmetry is broken (often, this condition is
colloquially stated as “breaking of the detailed balance symmetry” [16,17]).
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In this paper we analyze efficiency of a stepper machine [18], which
is based on a previously developed ratchet motor model with an energy
depot [19–21]. The stepper motor is mimicking hand-over-hand mechanism
of the kinesin motion [22]. We follow description of the stepping as proposed
by Bier [16] and derive a model of a thermodynamic machine [23] which
reflects basic characteristics of the Carnot cycle [18]. An essential element
in our model is the expansion and contraction of a polymer linker connecting
two units (heads) of the kinesin dimer, each of which consists of about 350
amino acids. When kinesin moves on a microtubule surface, it performs
steps of amplitude 8.1 nm, the distance between adjacent tubulin sites [3].
The steps are powered by the hydrolysis of ATP and each step involves
consumption of about one ATP molecule with a release of energy of about
13 kBT . The idealized kinesin stepper motor starts its motion in a state of
high energy and low entropy [11] with a linker band stretched between its
heads. Performing the motion requires the head to be first detached what
causes loosening of the linking band and increases entropy.

After separation of relative motion of heads and center-of-mass motion
of the whole kinesin, the kinematics of the center of mass of the motor can
be described by an overdamped Langevin equation. In contrast, the inertia
plays an important role in the relative motion of the heads [18]. Here,
we investigate the average velocity of the motor by simulating exemplary
trajectories of motion and analyzing their ensemble properties.

2. Molecular Motor Model and its directional motion

We adopt a modeling approach at the level of a Brownian ratchet, as-
suming that the motor is restricted to moving in one spatial dimension along
a biopolymer track of a tubulin and is subjected to random bombardments
of surrounding fluid molecules. The motor itself consists of two similar units
(heads) connected by a rubber-like linker. After detachment of the head
from the trail, the linker band relaxes and its coiling increases the entropy
of the system. The docking of the head in the next binding site of the po-
tential is followed by an expansion of the polymer and a decrease of entropy.
The stepping mechanism is powered by the energy supply from the exter-
nal depot which is permanently filled with the chemical energy of the ATP
hydrolysis and absorption [11,18].

We consider first the stochastic motion of kinesin heads governed by the
Langevin equation:

mdv(t)
dt
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where U(x) is a ratchet-type potential representing the surface of the mi-
crotubule with docking locations for the stepper, γ0 is a friction frequency
acting on the relative motion of the heads, x(t) = x1(t) − x2(t) and v(t) =
v1(t) − v2(t) are relative position and speed of kinesin heads (labeled 1, 2
respectively). The coordinate xc = (x1(t) + x2(t))/2 stands for the center
of mass position1 and ξ(t) represents the white Gaussian noise of intensity
m
√

2Dv with Dv = γ0kBT/m. The term TS′(x) denotes entropic force
exerted by an extended elastomer linking kinesin heads. As the length of
the elastomeric band decreases, the entropy of the system increases by ∆S.
Note that for an ideal stretched elastomer the decrease in length corresponds
to an increase of volume of an ideal gas. The first law of thermodynam-
ics can be then written as dE = TdS + FSdx with an equation of state
FS = kBTf(x/x∗), where x∗ is the contour length in a worm-like-chain
model for an unstructured polypeptide [4]. Up to the first approximation,
the entropic force is nearly constant for a small end-to-end distance of a
linker and strongly increases, i.e. deviates from linearity at larger exten-
sions of the polymer [14]. As discussed elsewhere [14], deviations from the
linearity can be also induced at small end-to-end distances conditioned on
the properties of the solvent and molecular crowding. For the purpose of
modeling we have adopted an analytic form of the entropy with a flat central
region incorporating two small maxima:

TS(x) = s0 + ax2 − bx4 , (2)

hence the force FS = TS′(x) = 2x(a − 2bx2) is nonlinear. It should be
stressed, however, that additional tests performed on the model with alter-
native forms of the rubber band potential (like e.g. piece-wise linear) showed
that our results are insensitive to the details of the entropy model.

The mechanical energy of motion is powered by the energy flow de(t)/dt
from the depot (reservoir) which depends on the coupling d between the mo-
tor and the energy reservoir. The energy accumulated in the depot container
q can be dissipated with a rate c. Altogether, the corresponding dynamics
for the energy reads

de(t)
dt

= q − ce(t)−mdv2e(t) . (3)

The equation of motion of the center of mass may be written as [18]

dxc(t)
dt

=
F0

Γ
− 1
Γ

[
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1 Note, that for a separate head, the equation of motion reads
mẍi = −mγ0ẋi − U ′(xi) + FS(x1 − x2) +mde(t)ẋi −MΓ0ẋ0 +m

√
2Dvξi.
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where F0 is an external force acting at the center of mass and Γ is the center
of mass friction. We note that the term in the parenthesis models the force
exerted on the center of mass, generated by the relative oscillatory motion
of two heads. In the above formulation the mass and friction of the complex
system are not simple (additive) functions of two masses and two friction
coefficients representative for the motion of heads [18]. Considering that x(t)
is a periodic function of time [18], the overdamped dynamics in the center-of-
mass resembles clearly resembles the scenario of flashing ratchets [13,24,25]
in which an intriguing phenomenon of a negative mobility has been observed.

For the ratchet potential U(x) we use the standard model [26]

U(x)
E0

= −F0x+ U1(x) ,

U1(x) = h
[
0.499−0.453(sin(2π(x+0.1903))+ 1

4(sin(2π(x+ 0.1903)))
]
, (5)

where F0 is an external biasing force directed to the left and h is the height
(amplitude) of the barriers (in relation to E0). The above set of equations
has served as a prototype of an entropy-driven stepper model. The results of
numerical simulations of Eqs. (1), (3), (4) are discussed in the next section.

3. Simulations of motor trajectories

Results discussed in this paragraph have been derived from model tra-
jectories simulated for a constant set of parameters, i.e.: γ0 = 0.02, m = 1,
Dv = 0.1, q = 1, c = 0.1, d = 0.960061, with initial values v0 = 0.745513,
x0 = 0.771748, e0 = 0.023095. The parameters of the entropy model have
been fixed to a = 0.5 and b = 1.0, respectively. The discrete time step
has been set to ∆t = 10−3 and integration of the equations of motion has
been performed up to the final time tfin = 50.0. At each time step, the
relevant velocities of the center-of-mass motion have been recorded and fi-
nally averaged over the time 〈vc〉 = 1/tfin

∫ tfin

0 dtvc(t). Data obtained have
been further averaged over 105 trajectories. The left panel of Fig. 1 depicts
normalized frequency histograms estimating (long time) probability density
function P (〈vc〉). We note that for a special choice of parameters our dy-
namic system might possess several attractors [20]. Accordingly, the initial
conditions for the simulations have been chosen to assure that trajectories
start in the basin of the “uphill attractor”. This guarantees that the system
is able to convert the (chemical) energy extracted from the depot into the
mechanical work used to move the stepper system uphill the potential and
against the biasing force F0.
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(a) F0 = −0.2
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(b) F0 = −0.1
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(c) F0 = 0
Fig. 1. Mean velocity distribution as a function of the load F0 (left panel), with
sample trajectories of the motion depicted in the right panel. The friction for the
center-of-mass motion has been set to Γ = 0.101790. Histograms of the time-
averaged velocity 〈vc〉 have been obtained for 105 trajectories, each of which had
duration tfin = 50.

The exemplary trajectories of the stepper motion are presented in Fig. 1.
Note that the biasing force F0 which models the load is negative, i.e. it is
pointing to the left. In contrast, in almost 100% cases, the motor consumes
the energy and performs the motion in an opposite direction, i.e. it moves
uphill against the force F0.
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The efficiency of performing that work at the cost of energy extracted
from the depot has been further determined by use of the formula [27]

η =
|F0| 〈〈vc〉〉

q
, (6)

with 〈〈vc〉〉 being the ensemble average of the (long time) velocity vc:

〈〈vc〉〉 =

∞∫
−∞

P (〈vc〉)d 〈vc〉 . (7)

The above expression has been used to derive functional dependence of η on
the load F0, cf. Fig. 2. Closer inspection of Fig. 1 indicates, that for a given
set of parameters, the average velocity 〈〈vc〉〉 depends on the load F0 and
approaches zero for a stalling force F0 = −0.2. The profile of the efficiency
of energy conversion η(F0) (cf. Fig. 2) corresponds to a non-monotonous
function of the load and varies between the stalling force and the vanishing
bias F0 = 0. For values F0 ∈ (−0.2; 0), the motor steps uphill (to the right).
Its efficiency η assumes a maximum value of about 12% for F0 = −0.18 and
acquires vanishing values at F0 = −0.2 (the average velocity drops to zero)
and at F0 = 0, (the work performed by the motor vanishes). The bell-like
shape of the energetic efficiency reflects the changes in the average velocity
of the stepper and assumes the form similar to the experimentally observed
efficiency of kinesins [22,27].

Fig. 2. Efficiency as a function of the force F0. Γ = 0.101790.
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4. Conclusions

We have analyzed kinematics of a stepper motor driven by the en-
ergy supply from an external depot. The energy of the reservoir constantly
changes in time: the inflow of (chemical) energy to the depot competes with
its dissipation and conversion to the mechanical energy of the motor. The
two-head stepper is assisted by a nonlinear entropic force acting between
its units. We have documented that (for appropriate parameters and initial
conditions) such a primitive model device is able to transform the depot en-
ergy to perform work against the external force (load) in the uphill motion.
The efficiency of energy transduction displays the typical behavior observed
in experiments with molecular motors [22, 27]. The function first increases
with the (negative) load force and then abruptly drops to zero. The maxi-
mal value of η as observed for the special parameter set in our simulations
reached about 10–15 percent. The losses in performance of the motor are
due to the dissipative mechanisms in the depot and the mechanical friction
acting on the stepper. At the critical (stalling) load force the motor stops
to operate. More detailed studies of the influence of the loss factors and the
entropic force on different efficiency measures will be presented elsewhere.
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