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We consider boundary value problems for a subdiffusion-degradation
problem within an approach based on reaction-subdiffusion equations de-
rived earlier. Thus, boundary value problems for subdiffusion with degra-
dation can be solved within the Green functions approach, where the new
Green functions have the structure of a product of the Green functions
for mere subdiffusion with an exponential. Although the equations with
non-decoupling reaction and transport appear complicated at first glance,
it turns out that the methods for the solution of the corresponding linear
reaction-diffusion equations can easily be adopted to the anomalous case.
In particular, the solutions can be expressed in terms of solutions to the
problem without degradation.

PACS numbers: 05.40.Fb, 82.33.–z, 05.60.–k

1. Introduction

Anomalous diffusion is characterized by a mean square displacement that
goes as

〈
r2
〉
∝ tα, with α > 1 corresponding to the superdiffusive case and

0 < α < 1 to the subdiffusive case. In many situations, subdiffusion can
be modelled within the continuous time random walks (CTRW) scheme.
The probability density function (pdf) of the waiting times between succes-
sive jumps of a particle lacks its mean and obeys a power law, ψ(t) ∝ t−(1+α),
which involves time-fractional operators in the deduced transport equa-
tions [1].

Boundary value problems (BVP) for the fractional diffusion equation
can be solved using e.g. the standard Laplace technique already known from
BVP under normal diffusion [2–5], although nontrivial higher transcendental
functions may appear as solutions.
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For normal reaction-diffusion equations in general, it is impossible to
express the solutions analytically. However, there are some special cases
which allow for a fully analytical representation of the solution to special
BVPs. One of them is the Dirichlet BVP for degrading particles, i.e. the
simple reaction A → 0. We will focus on this special case in order to
generalize it to subdiffusion.

There have been different proposals for setting up reaction-subdiffusion
equations, mostly on a phenomenological basis [6]. Analogous to normal
reaction-diffusion, a reaction term, either without or with a fractional deriva-
tive acting upon it, was added to the fractional transport term. The latter
version holds for subdiffusion controlled reactions on microscopic scales [7–9],
so that within the CTRW scheme reactions are only possible when the par-
ticle performs a step, i.e. at the beginning or end of a waiting time period.

In this paper we apply a third type of reaction-subdiffusion equations
put forward e.g. in [10,11], where the transport term is affected by reaction.
The equation used here was derived in [12], corresponding to the situation in
which the reaction (here degradation) is diffusion controlled on a microscopic
scale so that classical reaction rate kinetics remains valid, while subdiffusive
transport emerges at a mesoscopic scale due to trapping e.g. in the cavities
of a porous medium.

For normal diffusion, it was shown that in order to obtain the solution
to the Dirichlet BVP for degrading particles, one has to subject the solution
to the same BVP without degradation to a transformation [13]. As will turn
out, this holds true as well for the subdiffusion-reaction equations under
consideration, moreover, this transformation is the same as the one in the
normal diffusive case.

2. Reaction-subdiffusion equations

In order to model our subdiffusion process with degradation of particles,
we are going to use the CTRW scheme as put forward in [12]. A particle
arriving at site i stays there for a sojourn time t drawn from a pdf ψ(t). In a
one-dimensional situation, the particles leaving a site make a step to the left
or to the right, where for an unbiased random walk the probabilities for either
direction are equal to 1/2. Accounting for the local balance of probability
gain and loss at site i on the one hand and continuity of the probability flux
(particle conservation during jumps) on the other, the balance equation for
the occupation number of A-particles at each site reads:

Ȧi(t) = j+i (t)− j−i (t)− κAi (1)
= 1

2 j
−
i−1(t) + 1

2 j
−
i+1(t)− j

−
i (t)− κAi , (2)
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where j−i (t) and j+i (t) are the loss- and gain flux of A-particles at site i,
respectively, and κAi is the reaction term, describing loss of particles due to
degradation A→ 0. The loss flux at site i is determined by the gain flux at
the site at all previous times and by the survival probability and is given by

j−i (t) = ψ(t)Pi(t, 0)Ai(0) +

t∫
0

ψ(t− t′)Pi(t, t′)j+i (t′) dt′ , (3)

that means the particles leaving site i at time t either were there from the
very beginning and did not degrade until t, or arrived there at some later
time t′ < t and did neither jump nor degrade until t. Here, the probability
density to make a step at t having arrived at t′ is given by the waiting time
pdf ψ(t − t′), and the probability not to degrade is given by the classical
kinetic rate equation

d

dt
Pi(t) = −κPi(t) (4)

so that
Pi(t, t0) = exp (−κ(t− t0)) . (5)

Substituting the gain flux by means of Eq. (1), we find

j−i (t) = ψ(t)Pi(t, 0)Ai(0) +

t∫
0

ψ(t− t′) exp
(
−κ(t− t′)

)
×
[
Ȧi(t′) + j−i (t′) + κAi(t′)

]
dt′ . (6)

Since both the survival probability Pi and the waiting time pdf ψ in the
integrand are functions of (t−t′), we are able to write explicitly an expression
for the loss flux,

j−i (t) =

t∫
0

M(t− t′) exp
[
−κ(t− t′)

]
A(x, t′) dt′ , (7)

where we made use of the shift theorem of Laplace Transform:

L{exp [−κt] f(t)} = f̃(u+ κ) (8)

and the convolution theorem. The emerging new kernel M is defined by the
waiting time pdf in Laplace domain, M̃(u) = uψ̃/(1− ψ̃).
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Since the relative change in concentration between neighboring sites is
considered to be small, we change to the continuous coordinate x = ai and
insert (7) into (2), so that

∂A(x, t)
∂t

=
a2

2
∆

t∫
0

M(t− t′) exp
[
−κ(t− t′)

]
A(x, t′) dt′ − κA(x, t) . (9)

For κ→ 0 and ψ̃(u) ' 1− (uτ)α this reduces to a subdiffusion equation, the
convolution with the memory M corresponding to the Riemann–Liouville
fractional derivative.

We find the modified Green function, i.e. the response to a δ-peak at
x = 0 and t = 0 for (9) in Laplace domain:

G̃(x, u) =
1√

Kα (u+ κ)1−α/2
exp

[
−

√
(u+ κ)α

Kα
|x|

]
(10)

which is exactly the Green function of the subdiffusion equation without
reaction, with u changed to u+κ. Kα = a2/(2τα) is the generalized diffusion
constant.

3. The Dirichlet boundary value problem

In BVP in general and the Dirichlet BVP in particular, particles are
permanently introduced into (or moved out of) the domain of interest. In
subdiffusion, this might lead to difficulties due the non-Markovian nature of
transport, i.e. to the fact that each of the particles will memorize the time it
was inserted, and the question is whether there can be an integral description
of all the particles. Let us for now omit the degradation of particles in the
discussion of the problems that may arise due to the different ages of particles
in the system. The results will be applicable to the case with degradation
included as well.

We label the particles according to the time t0 they were introduced into
the system, so that e.g. A(x, t|t0)dt0 is the partial concentration at x at time
t of A-particles that were introduced between t0 and t0 + dt0. Each partial
concentration will behave according to the Green function G of subdiffusion.
The boundary value will be maintained by a source at the boundary that
compensates for losses, so that we can write

A(x, t|t0)dt0 = G(x, t− t0)q(t0) dt0 , (11)

where q(t0)dt0 is the amount of particles inserted between t0 and t0+dt0. For
simplicity we assumed only one boundary, and the location of it is already
included in G (i.e. the spatial integration over the point source is already
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carried out). The initial particle concentration in the interior of the system
is taken to be zero. The overall concentration is the integral of (11) with
respect to t0 from 0 to t, which is a temporal convolution, in Laplace domain:

G̃(x, u)q̃(u) =
1√

Kαu1−α/2 exp
[
−
√
uα

Kα
|x− xbound|

]
q̃(u) . (12)

With the boundary condition Ã(xbound, u) = A0/u we find the source needed
to compensate for the losses:

q̃(u) = A0

√
Kα

uα
, (13)

so that in the end

Ã(u) =
A0

u
exp

[
−
√
uα

Kα
|x− xbound|

]
, (14)

a result not differing from the one we obtain by fitting the boundary. The
Laplace variable u is related to the residence time of the particles in the
system (which will be cut off in the case of degradation), and it is justified
to perform the standard fitting procedures in Laplace domain, where a con-
stant boundary value A0 in time corresponds to A0/u. Moreover, the lower
integration limit in Eq.(7), or in the Riemann–Liouville fractional derivative
in the fractional diffusion equation, has actually to be interpreted as the
time the respective particles were inserted into the system, and not as the
time that has passed since the initial preparation of the system (those two
are of course the same if no particles are inserted in the course of time).

We know that the solutions to the subdiffusive Dirichlet BVP with degra-
dation will be, generally speaking, linear combinations of temporal convolu-
tions of functions of the type (10). As constant boundary values lead to the
prefactor 1/u in Laplace space, we can express the solution with degradation
in terms of the solution without degradation, but for the same boundary con-
ditions. Let for now A∗ be the solution to the problem without degradation.
The solution with degradation included is then in Laplace domain:

Ã(x, u) =
κ+ u

u
Ã∗(x, κ+ u) (15)

and in original domain (again using the shift theorem):

A(x, t) = κ

t∫
0

A∗(x, t′) exp
[
−κt′

]
dt′ +A∗(x, t) exp [−κt] (16)

a result already found for the construction of the solution for normal diffusion
with degradation [13], corresponding to α = 1.
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In the following, we examine a one-dimensional system with given bound-
ary concentrations. We account for two cases: one fixed boundary value in
a semi-infinite domain, and two fixed boundary values at a finite interval.
In all these considerations we assume that initially, the interior of the region
of interest is completely empty, A(x, t = 0) = 0, and its boundaries are
determined by the aforementioned Dirichlet boundary conditions.

3.1. Semi-infinite domain

We put A(0, t) = A0. Without reaction, the solution to the BVP is found
by going to Laplace domain and fitting the Green function to the boundary
Ã(x = 0, u) = A0/u, so that

Ã(x, u) = Ã(x, u) =
A0

u
exp

[
−
√
uα

Kα
|x|
]
. (17)

In the limiting case of α = 1, this corresponds to the well known result
A(x, t) = A0 erfc

[
x/
√

4Kαt
]
for normal diffusion with a boundary kept

constant [14]. Figure 1 shows the particle profiles under subdiffusion for
different times.
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Fig. 1. Reaction free case: Particle profiles under subdiffusion, α = 0.5 for t = 0.5
(solid/red), t = 5 (dashed/green) and t = 50 (dotted/blue); Kα = 1.

Implying degradation, we repeat the same procedure as above, but this
time the modified Green function (10) constitutes the basic structure of the
solution. We find

Ã(x, u) =
A0

u
exp

−√(u+ κ)α

Kα
|x|

 (18)
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which gives us immediately the stationary profile in the limit u→ 0:

A(x, t→∞) = A0 exp
[
−
√
κα

Kα
|x|
]
, (19)

an exponential just as in the normal diffusive case α = 1, differing only by
the exponent α in the rate coefficient which increases the profile’s steepness
(if κ < 1). Figure 2 shows the profiles under reaction-subdiffusion. Here
and in the preceding figure we used a series expansion and term-by-term
inversion of the corresponding expressions in Laplace domain.
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Fig. 2. Particle profiles under reaction-subdiffusion, α = 0.5 for t = 0.5 (solid/red),
t = 5 (dashed/green) and t = 50 (dotted/blue); Kα = 1, κ = 1.

4. Finite interval (0, L)

On a finite interval with two boundary conditions, the solutions to (9)
will in general be a linear combination of two convolutions of functions of
the type (10) (for mere subdiffusion let κ → 0), which have to be fitted to
the boundaries.

We are first going to investigate the case where the concentration at
one boundary is constant and the other is zero, A(0, t) = A0, A(L, t) = 0.
In this case the solution to the subdiffusion (or reaction-subdiffusion) can
be described in terms of a (temporal) convolution of a function that takes
the value 0 at L, so that only the value at x = 0 has to be fitted. In the
following, we will call this construction G∗, with G∗(L, t) = 0.

The new Green function G∗ of the subdiffusion equation corresponding
to an absorbing boundary at x = L can be obtained via the method of
images [2], i.e. we construct an odd continuation of our function to the
interval of double length (Fig. 3):

G∗(x, t) = G(x, t)−G(2L− x, t) , (20)
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Fig. 3. Sketch of the construction of Ansatz (20).

where G(x, t) is the Green function of the free problem, so that the solution
of the BVP can be found by fitting the boundary:

Ã(x, u) =
A0

u

exp
[
−
√

uα

Kα
x
]
− exp

[
−
√

uα

Kα
(2L− x)

]
1− exp

[
−
√

uα

Kα
2L
] . (21)

Expanding this expression around u = 0 and keeping only the leading orders
we find the stationary solution

Ã(x, u→ 0) =
A0

u

L− x
L

,

A(x, t→∞) = A0

(
1− x

L

)
,

and the lowest order u-correction:
2A0

3Kα

[
Lx− L2

]
uα−1 ,

(22)

which in time domain behaves as

2A0

3Kα

[
Lx− L2

] t−α

Γ [1− α]
.

For subdiffusion with degradation we again modify our Green function
(20) according to (10) and finally find the solution in Laplace domain:

Ã(x, u) =
A0

u

exp
[
−
√

(u+κ)α

Kα
x

]
− exp

[
−
√

(u+κ)α

Kα
(2L− x)

]
1− exp

[
−
√

(u+κ)α

Kα
2L
] . (23)
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The stationary profile is obtained in the limit u→ 0,

A(x, t→∞) = A0

exp
[
−
√

κα

Kα
x
]
− exp

[
−
√

κα

Kα
(2L− x)

]
1− exp

[
−
√

κα

Kα
2L
] , (24)

shown in Fig. 4. The relaxation behaviour is governed by the exponential
survival probability (essentially the rate coefficient κ governs time scale of
relaxation as seen from Eq. (16)).
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Fig. 4. Stationary particle profile under reaction-subdiffusion, α = 0.5, Kα = 1,
k = 10, L = 1, A0 = 1.

Let us now turn to the case where both boundaries have non-zero con-
stant values, A(0, t) = A0, A(L, t) = AL. The solution takes the form of
a linear combination of convolutions of functions of the type (10), we choose
as an Ansatz in Laplace domain:

Ã(x, u) = A0q̃0(u) G̃(x, u) +ALq̃L(u) G̃(x− L, u) . (25)

with x ∈ (0, L).
The fitting procedure gives us for mere subdiffusion:

Ã(x, u) =
1
u

A0

1− AL
A0

exp
[
−
√

uα

Kα
L
]
− A0

AL
exp

[
−
√

uα

Kα
2L
]

1− exp
[
−
√

uα

Kα
2L
]


× exp

[
−
√
uα

Kα
x

]

+AL

1− A0
AL

exp
[
−
√

uα

Kα
L
]

1− exp
[
−
√

uα

Kα
2L
]
 exp

[
−
√
uα

Kα
(L− x)

] . (26)
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We find the stationary solution

Ã(x, u→ 0) =
1
u

[
AL −A0

L
x+A0

]
,

A(x, t→∞) =
AL −A0

L
x+A0

and the relaxation term

ALx (−5L+ 3x) +A0(6L2 − Lx+ 3x2)
12Kα

uα−1 ,

(27)

corresponding to

ALx(−5L+ 3x) +A0(6L2 − Lx+ 3x2)
12KαΓ [1− α]

t−α

in time domain.
Proceeding as above we find the solution for the reaction-subdiffusion

equation

Ã(x, u) =
1
u

A0

1− AL
A0

exp
[
−
√

(u+κ)α

Kα
L

]
− A0

AL
exp

[
−
√

(u+κ)α

Kα
2L
]

1− exp
[
−
√

(u+κ)α

Kα
2L
]


× exp

−√(u+ κ)α

Kα
x



+AL

1− A0
AL

exp
[
−
√

(u+κ)α

Kα
L

]
1− exp

[
−
√

(u+κ)α

Kα
2L
]
 exp

−√(u+ κ)α

Kα
(L− x)


 , (28)

and the stationary solution for degrading particles (Fig. 5):

A(x, t→∞) = A0

1− AL
A0

exp
[
−
√

κα

Kα
L
]
− A0

AL
exp

[
−
√

κα

Kα
2L
]

1− exp
[
−
√

κα

Kα
2L
]


× exp

[
−
√
κα

Kα
x

]
+AL

1− A0
AL

exp
[
−
√

κα

Kα
L
]

1− exp
[
−
√

κα

Kα
2L
]
 exp

[
−
√
κα

Kα
(L− x)

]
.
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Fig. 5. Stationary particle profile under reaction-subdiffusion, α = 0.5, Kα = 1,
k = 10, L = 1, A0 = 1, AL = 0.5.

5. Conclusions

We examined the solutions to the equations that describe degradation
of subdiffusing particles, A→ 0, under Dirichlet boundary conditions. The
type of reaction-subdiffusion equations we use here is based on a CTRW
approach and takes into account the fact that particles that react during
their waiting times do not contribute to transport anymore, which leads to
an exponential (reaction-dependent) cutoff of the long-ranged kernel in the
transport term. For such kind of equations we have shown that the problem
of the Dirichlet BVP with degradation in subdiffusion can be reduced to
the Dirichlet BVP without degradation, just as in normal diffusion. We
note again that for this treatment of the reaction-subdiffusion equation with
degradation the exponential cutoff of the transport kernel due to reaction is
essential.
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