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We apply a method of time-dependent Hurst exponent, proposed in the
series of papers by Grech and Mazur [Physica A 336, 335 (2004)], Grech and
Pamula [Physica A 387, 4299 (2008)] and Czarnecki, Grech and Pamula
[Physica A 387, 6801 (2008)], on the stock market of the Czech Republic
for a period between 1997 and 2009. Our results support the findings of the
authors so that the time-dependent Hurst exponent can give some crucial
information before a critical event happens on a market. We also discuss
some potentially weak points of the method.

PACS numbers: 05.40.–a, 05.45.Vx, 89.20.–a, 89.65.Gh

1. Introduction

Detection of crashes of stock markets has significant importance for
traders. As the stock markets are complex systems driven by heteroge-
nous agents with different strategies and investments horizons, the task is
quite difficult. Such heterogeneity of investors is in close connection with a
potential fractal behavior of the markets [1]. As such, the market is char-
acterized by a fractal measure of Hurst exponent 0 < H < 1, which is also
a measure of long-range dependence in an underlying process [2]. Hurst
exponent equal to 0.5 indicates either an independent [3] or a short-range
dependent process [4]. For H > 0.5, the process has significantly positive
correlations at all lags and is said to be persistent [5]. On the other hand,
if H < 0.5, the process has significantly negative correlations at all lags and
is called anti-persistent [6].

(1223)
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In the series of papers, [7–9] applied the time-dependent Hurst exponent
to Dow Jones Industrial Average (DJIA) index and Polish WIG index and
uncovered connection between an evolution of Hurst exponent and coming
market crash. In this paper, we apply the same procedure to the stock
market of the Czech Republic for the period between 1997 and 2009.

The paper is structured as follows. In Section 2, we briefly describe de-
trended fluctuation analysis, which we use for Hurst exponent estimation,
and basic logics behind the connection between the time-dependent Hurst
exponent and market turning points. In Section 3, the results are presented
for the critical periods of years 2000, 2005, 2006 and the financial crisis of
2008–2009. In Section 4, we discuss potential drawbacks of the methodology
and stress the condition of well defined trends and stability on the market
for the method to work properly. Section 5 concludes.

2. Local Hurst exponent and extreme events

There are many estimators of Hurst exponent in the literature — rescaled
range analysis [2], detrended fluctuation analysis [10], detrending moving
average [11], generalized Hurst exponent approach [12] and others (for more
detailed reviews, see [3,13,14]). In our research, we use detrended fluctuation
analysis, which was shown to be quite robust to different characteristics of
the time series [13], to get comparable results with [7–9]. Let us first briefly
describe the method.

Detrended fluctuation analysis (DFA) was proposed by [10] while exam-
ining the series of DNA nucleotides. In the procedure, the time series of
length T is divided into sub-periods of length υ and a profile (cumulative
deviations from a mean) is constructed. A linear fit Xυ(t) of the profile is
estimated for each sub-period. A detrended signal Yυ is then constructed
as Yυ = X(t)−Xυ(t). Fluctuation F 2

DFA(υ), which is defined as an average
mean squared error from the linear fit over all sub-periods of length υ, scales
as F 2

DFA(υ) ≈ cυ2H , where c is a constant independent of υ [15].
As DFA is based on the linear fitting and averaging over sub-periods, a

minimum sub-period length υmin as well as a maximum length υmax needs
to be set to avoid an inefficient fitting and averaging. In the research, we
use υmin = 5, υmax = T/5 and T = 215 to get comparable results with the
referenced papers.

To obtain the time-dependent (or local) Hurst exponent, we need to fix
the time series length T and move the estimation window of Hurst exponent.
By doing so, we get a new time series of “local” Hurst exponents. As Hurst
exponent is not only a measure of persistence but can be also interpreted as
a measure of mood on the market, it enables us to interpret the evolution of
the time-dependent H series. As H < 0.5 characterizes the anti-persistent
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behavior, the decreasing trend of H can be seen as an increasing nervousness
on the market. Similarly, the increasing H can be seen as a support of the
trend that has just started. Based on these simple logics, [9] and [7] defined
the sufficient conditions for a burst of a bubble or simply a strong reversion
of a market trend. With a use of moving averages of Hurst exponents with
lag of 5 (a trading week) and 21 (a trading month) trading sessions, which
we label as H5 and H21, respectively, the evolution of the market mood can
be interpreted. The conditions, which have to be met simultaneously, are as
follows:

• the time-dependent Hurst exponent is in a decreasing trend,

• H5 . 0.5 ,

• H21 . 0.45 ,

• local minimum of the time-dependent Hurst exponent reached a value
below 0.4 during the similar period as the previous conditions.

When all these conditions are met, the turning point of the market should
be near. Authors showed these conditions were met for the most severe
crashes of DJIA (1929, 1987 and 1998). Quite interestingly, authors con-
cluded that even if the attacks of 9/11 had not happened, the market would
have turned into a decreasing trend [8]. However, the method seems to work
only if the market is in clear stable trend where the sentiments of the traders
can be represented by the time-dependent Hurst exponent. This condition
is more stressed in our application on PX. Obviously, the use of the method
is limited to the detection of turning points or crashes which happen due
to inner forces inside the trading process and the sentiments of the traders.
External shocks to the market cannot be predicted by such approach.

3. Results

We test ability of the time-dependent Hurst exponent to predict signifi-
cant turning points at Prague Stock Exchange in the Czech Republic, which
is represented by PX stock index. The period covered in our research ranges
from 7/1/1997 to 12/31/2009 and thus contains several significant peaks and
bottoms as well as the current financial crisis. The turning points, which
are researched here, are summed in Table I. We can see that there were not
any crashes comparable to the ones of 1929 and 1987 in the USA but rather
turning points. Behavior during the first several days after the peak was hit
were in order of percentage losses compared to the decades losses during the
first several days of the mentioned crises.
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TABLE I

Crashes at Prague Stock Exchange.

Top Bottom First 3 sessions First 5 sessions Total drop

27.03.2000 10.7.2000 −5.50% −7.23% −26.49%
10.03.2005 16.5.2005 −3.92% −11.02% −15.37%
27.02.2006 13.6.2006 −2.73% −1.62% −26.37%
29.10.2007 18.2.2009 −0.55% −2.48% −67.54%

The evolution of PX values and the time-dependent Hurst exponent is
shown in Fig. 1. We can see that not only the index but also Hurst exponent
goes through a rapid development with several short and long lasting trends.
The exponent values range between 0.35 and 0.7 and the evolution indicates
that there is the connection between the time-dependent Hurst exponent
patterns and the turning points on the market.

Fig. 1. Evolution of logarithms of PX index (black, on the left y-axis) and time-
dependent Hurst exponent (grey, on the right y-axis).

The rest of the section is divided into three parts. In the first part, we
deal with the turning points of the years of 2000, 2005 and 2006. The second
part is devoted to the current financial crisis. The last subsection discusses
the results for different time series lengths T .



Local Scaling Properties and Market Turning Points at Prague Stock . . . 1227

3.1. 2000, 2005 and 2006

The first turning point occurred in March 2000 after quite rapid growth
which started in November 1999 and was connected with a cumulative return
of 38.66% in four months period. The situation before the turning point
is illustrated in Fig. 2. The time-dependent Hurst exponent is in a clear
decreasing trend and its values reach a minimum of less than 0.4. The
conditions for the moving averages are met as well. Therefore, the “crash”
signal described in the previous section occurred. In the following three and
a half months, the index lost over 26% of its value. However, the decreasing

Fig. 2. Evolution of PX index (black solid) and time-dependent Hurst exponent
(grey dashed) in the upper chart. Moving averages of time-dependent Hurst ex-
ponent with a window of 5 trading days (grey dashed) and 21 trading days (black
solid) in the lower chart. Charts show the situation before the turning point of 2000.
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trend lasted even longer and was reversed as late as 17th September 2001
when the market hit the bottom of 320.1 points with a cumulative loss of
77.60% since the peak of March 2000.

The second critical point took place on 3/10/2005 and again followed
after a very strong increasing trend which started in July 2004 and was
connected with a cumulative return of around 46%. The evolution of the
index, the time-dependent Hurst exponent and the corresponding moving
averages are shown in Fig. 3. The pattern is similar to the previous case
— decreasing trend of the time-dependent Hurst exponent with the moving
averages around the critical levels. However, the situation that happened
afterwards is quite different as we can see a crash rather than a turning point
of the market as there were significant losses in several sessions right after
the peak but not a long lasting trend.

Fig. 3. Charts show the situation before the turning point of 2005. The notation
holds.
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The third turning point is the one of 2006. The detailed description of the
situation is shown in Fig. 4. Even though the turning point was quite strong
with a cumulative loss of more than 26% in three and a half months, there
is no pattern visible in neither the moving averages of the time-dependent
Hurst exponent nor the Hurst exponent itself. However, the turning point
followed after several strong corrections between September and November
2005 as well as a small correction in June 2005. Such result confirms the
findings of [7–9] who also asserted that the time-dependent Hurst exponent
is able to detect critical points only in a presence of stable market trends.
This was the case of the first two turnings which we analyzed but is not the
case for the critical point of 2006. Moreover, the period of the end of 2005

Fig. 4. Charts show the situation before the turning point of 2006. The notation
holds.
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and the beginning of 2006 was a starting point of long lasting and strong
decreasing trend of the time-dependent Hurst exponent which evolved into
the biggest market plummeting of the history of PX index.

3.2. Financial crisis of 2008–2009

The current financial crisis is absolutely unprecedential in the history
of the Czech stock market as is the case for almost all stock markets with
short history. From the peak at the end of November 2007 to the bottom
in February 2009, PX index lost over 67% of its value. One of the main
challenges of the paper is whether the time-dependent Hurst exponent could
have predicted the downturn.

Fig. 5. Charts show the situation before the turning point of the current financial
crisis of 2007–2009. The notation holds.
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The evolution of the index together with the local Hurst exponent and
the moving averages are summarized in Fig. 5. We can see that the “before
crisis” pattern appeared with all the criteria strongly met (H5 very close to
0.4 andH21 well below 0.45). Again, the signal showed that the turning point
is about to happen in several upcoming trading days. When we turn back
to Fig. 1, we can see that the decreasing trend of the local Hurst exponent
started as early as in November 2005 and thus lasted over two years. This
shows that even though the market was strongly growing (with gains of
over 30% with the downturn of more than 26% in 2006 being included), the
mood on the market was decreasing and the investors were becoming more
nervous. After the end of the strong increases, the market turned into a
strongly decreasing trend while the evolution of the local Hurst exponent
only confirmed that the trend is about to last. As already mentioned, the
cumulative losses soared up to more than 67%. The critical point of 2006
can thus be seen as kind of a “foreplay” before the crisis of 2008–2009.

3.3. Changing time series length T

As DFA has been shown to have large standard errors for small samples,
based on Monte Carlo simulations (e.g. [16, 17]), we need to check whether
the results are robust to a choice of the time series length T . In the previous
sections, we used T = 215; in Fig. 6, we show the evolution of the local
Hurst exponents based on T = 180, 215, 250, 430. We also estimated the
local exponents for T = 200 and T = 230, which are not presented in the
chart for a sake of clarity. Such lengths were chosen to be close to T = 215
so that we can comment on a sensitivity of the method and T = 430 was
picked to uncover whether there is a significant difference between lengths
around one trading year and two trading years.

The results are quite straightforward. Estimates of the local Hurst ex-
ponents for the shorter estimation periods T are very similar for the whole
sample. Even though the series are quite noisy, the most important trends
are kept the same. When looking for the turning point patterns, the results
are very similar for all of T = 180, 200, 215, 230, 250. For T = 430, most of
the variation is lost and there are no significant and quickly changing trends
so that the method of the local Hurst exponent can be hardly used for the
detection of critical points on the market. Such result supports the use of
the short time series for such analysis, which is in hand with results of [7–9].
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To further illustrate the difference between the estimates of local Hurst
exponents with different T , we examine correlations between the estimates.
In Table II, we show the correlations between the local Hurst exponents.
The bigger the difference between estimation periods T the lower the corre-
lation. If T = 215 is taken as a reference, the correlations are higher than
0.8 for the time series of length around one trading year. However, the cor-
relation between samples of 215 and 430 drops to 0.51. More importantly,
we also present the correlations between changes of the local Hurst expo-
nents in Table III, which gives more information about co-movements of the
exponents series. The discrepancy between the short and the long series is
more profound. For all pairs of T ≤ 250, the correlations are higher than
0.6 whereas for T = 430, all the cross-correlations are lower than 0.3.

TABLE II

Correlations of local Hurst exponents with different T .

T = 180 T = 200 T = 215 T = 230 T = 250 T = 430

T = 180 1.0000 0.8596 0.8249 0.7762 0.7093 0.3702
T = 200 — 1.0000 0.8910 0.8577 0.8143 0.4490
T = 215 — — 1.0000 0.9039 0.8595 0.5149
T = 230 — — — 1.0000 0.8907 0.5640
T = 250 — — — — 1.0000 0.6263
T = 430 — — — — — 1.0000

TABLE III

Correlations of changes in local Hurst exponents with different T .

T = 180 T = 200 T = 215 T = 230 T = 250 T = 430

T = 180 1.0000 0.7148 0.6695 0.6503 0.6462 0.1944
T = 200 — 1.0000 0.6710 0.7434 0.6150 0.2132
T = 215 — — 1.0000 0.6539 0.6149 0.2370
T = 230 — — — 1.0000 0.6594 0.2416
T = 250 — — — — 1.0000 0.2800
T = 430 — — — — — 1.0000

Moreover, we present basic descriptive statistics of the local Hurst ex-
ponents as well as of its first differences in Table IV. Mean values of the
exponents as well as of their differences are quite stable with changing time
series length T . Importantly, standard deviations of the estimates and the
changes are decreasing with varying T . Similarly to [8], we use a measure
of statistical uncertainty defined as a ratio between the standard deviation
and the average of the local Hurst exponents or the differences. There are
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no strong outcomes from the uncertainty ratio of the local Hurst exponents
but there are for the differences. The ratio is strongly varying with T and
reaches its local minimum for T = 215. Even though the ratio is much lower
for T = 430, such time series length has already been discussed to lose ma-
jority of its variation. Such result further supports the choice of T = 215. To
summarize, only short estimation periods should be used in the method as
longer periods (two trading years and more) do not show enough variation
and strong trends.

TABLE IV

Descriptive statistics of local Hurst exponents with different T .

T = 180 T = 200 T = 215 T = 230 T = 250 T = 430

Mean 0.5399 0.5386 0.5385 0.5381 0.5377 0.5480
SD 0.0679 0.0641 0.0615 0.0597 0.0579 0.0479

Mean of differences 0.00006 0.00007 0.00008 0.00003 0.00005 0.00019
SD of differences 0.0216 0.0167 0.0139 0.0133 0.0116 0.0144

Uncertainty 0.1257 0.1191 0.1141 0.1109 0.1077 0.0874
Uncertainty in differences 392.22 227.37 177.08 513.58 218.78 75.81

4. Discussion

Even though the technique of the detection of upcoming turning points
seems to work, it raises a crucial question — Is it not only a coincidence?
We try to answer the question with the following example.

Figure 7 shows the evolution of the time-dependent Hurst exponent
which characterizes a behavior of a random series based on the returns of PX
in the researched period. The random series was simply generated from the
shuffled logarithmic returns of PX index which were cumulated to form the
new time series. The series is purely random but has the same distribution
of returns as the original PX index. Moreover, as the initial value of the
index was kept the same as for the original series, the last values equals to
the original one as well.

We can see that the values of Hurst exponent vary between 0.35 and
0.65 which is less than for the original time series. Nevertheless, H under-
goes strong trends comparable to the original series, which is implied by
the nature of DFA (there are strong auto-correlations in the differences of
the time-dependent Hurst exponent at the lag equal to iυmin for i ∈ N and
iυmin ≤ T ). Moreover, the shuffled PX index has several points which could
be detected as the turning points. The “pre-crash” patterns can be even
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Fig. 7. Evolution of the shuffled PX index (black) and time-dependent Hurst ex-
ponent (grey).

found before these artificial critical points. They are artificial because we
know that the series is random and therefore, if the time-dependent Hurst
exponent pattern signalizes that the critical point is close, it cannot be
correct. For the shuffled series, such behavior can be detected in October
2000 or February 2006. However, there is one significant difference in the
researched pattern. In the same way as for the turning point of 2006 dis-
cussed in the previous section, there are no clear trends and stable behavior
present on the market. The shuffled series do not create environment stable
enough for the method to be used. As already mentioned by [7–9], the stable
and clear evolution of the market is the needed condition for the method of
the time-dependent Hurst exponent to be able to detect potential turning
points.

5. Conclusions

We applied the method of the time-dependent Hurst exponent, based
on the detrended fluctuation analysis, as the crash detection tool proposed
by [7–9] on the Prague Stock Exchange PX index. The examined period
ranged from July 1997 to the end of 2009. We confirmed that the method
works well in the stable market with well defined and long lasting trends.
Out of four turning points of PX, three were detected by the method before
they happened. Importantly, the method was able to detect the upcoming
crisis of 2008–2009. Further, we discussed on some issues of the method such
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as a choice of estimation period of H. We conclude that the method works
well under the set conditions but one must not forget that the method is
efficient only for the market with well defined trends and stable behavior.
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