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Propagation of relativistic particles in the Schwarzschild gravitational
field is studied. Particles emitted radially outward with speed at infinity
exceeding c/

√
2 are observed to be accelerated in the gravitational field

by a distant observer. This is the Shapiro effect for relativistic parti-
cles. Slower particles are decelerated, as in Newtonian gravity. A speed-
dependent potential for relativistic particles corresponding to the speed
measured in terms of the coordinate time is derived to be V = GMγ
(γ2 − 2)/r which is repulsive for v > c/

√
2. The gravitational repulsion

could be revealed in satellite experiments with beams of relativistic parti-
cles subject to very precise time measurements. Principles of laboratory
measurements able to test kinetic energy changes of relativistic particles in
the Earth gravitational field are discussed.

PACS numbers: 04.80.Cc

1. Introduction

Gravitational interactions of light (electromagnetic radiation in general)
have been studied extensively after prediction by Einstein [1] of light deflec-
tion by massive bodies. This [2] and other predictions of General Relativity,
i.e. the gravitational redshift [3] and the Shapiro delay [4] have been con-
firmed empirically. In contrast, little is known about interactions of massive
relativistic particles with the gravitational field. In this paper, a peculiar
acceleration of relativistic particles receding from the central mass, which is
a Shapiro effect for relativistic particles, is studied. Experimental evidence
of such an effect would provide a robust test of General Relativity in a sector
not tested yet.

Testing the interaction of relativistic particles with gravity would require
using beams of relativistic particles and very precise timing. Energy of par-
ticles should be such that the speed range between 0.5c and 0.9c is covered.
The physical nature of particles is irrelevant, however neutral beams might
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be easier to send over longer distances. A crucial component of such exper-
iments is very precise time measurement, possibly at subnanosecond level.
Such a challenging requirement is a result of short time scale of the Shapiro
delay, which is the light crossing time of coordinate gravitational radius.

2. Shapiro effect for relativistic particles

It was Hilbert who first noted [5] that gravitational interactions of rel-
ativistic particles in the Schwarzschild field are different from those of non-
relativistic particles. From the Schwarzschild metric,

ds2 = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2 , (1)

one can derive the radial geodesic equation

d2r

dt2
=

3m
r2

(
1− 2m

r

)−1(dr
dt

)2

− m

r2

(
1− 2m

r

)
, (2)

whose integral is found to be(
dr

dt

)2

=
(

1− 2m
r

)2

−
(

1− 2m
r

)3 (
1− v2

0

)
, (3)

where v0 is the particle speed at infinity.
The acceleration, Eq. (2), strongly depends on the coordinate speed.

If v0 > 1/
√

3 — the particle is repulsed as d2r/dt2 > 0 for any value of
r > 2m and the speed, Eq. (3), monotonically grows. For v0 < 1/

√
3, the

speed, Eq. (3), has a maximum at some finite value of r = rmax, and the
acceleration is negative for r > rmax. For v0 = 0, the case of free fall of a
particle stationary at infinity, rmax = 6m.

The Hilbert repulsion in Eq. (2) is a coordinate-dependent effect. There
was a long-standing controversy as to the reality of this repulsion, for his-
torical details see [6].

The repulsive effect of gravity which is a direct result of the geodesic
equation, Eq. (2), in the Schwarzschild metric was discovered by Shapiro [4]
who considered a more invariant expression for change of the speed of light
in the gravitational field [7]. His prediction, which is now referred to as the
Shapiro delay, is considered one of classic tests of General Relativity.

The physical radial speed, v = dl/dt, is defined in terms of the metric,
Eq. (1), using the invariant length differential, dl = dr/

√
1− 2m/r. From

the metric, Eq. (1), the speed of light measured in terms of the coordinate
time is

dl

dt
=

√
1− 2m

r
, (4)
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and the acceleration is
d2l

dt2
=
m

r2

√
1− 2m

r
. (5)

Far from the central mass, r � 2m, the acceleration is

d2l

dt2
≈ m

r2
= −gN , (6)

where gN is the Newton acceleration.
This formula shows that the speed of light measured by a distant observer

is decelerated when light is falling onto the central mass, and accelerated
when light is emitted from the central mass. The net result for the radio
signal reflected by Venus in opposition is a delay [4] with respect to the
hypothetical signal traveling always with the constant speed of light c.

Jaffe and Shapiro [8] noticed that also relativistic particles behave simi-
larly as light in the gravitational field. They proposed an operational proce-
dure to measure the speed of particles falling onto the central mass which is
independent of any coordinate system. It consists of measuring the speed of
a test particle using the echo times of radio (light) signals reflected by the
particle. All time measurements refer to the coordinate time t which is the
proper time of a distant observer.

With the particle speed defined as for light, v = dl/dt, using the invariant
length differential dl, the invariant speed is [8]

dl

dt
=

√(
1− 2m

r

)
−
(

1− 2m
r

)2 (
1− v2

0

)
, (7)

where v0 is the speed at infinity. The acceleration measured by a distant
observer is

d2l

dt2
=

2m
r2

(
1− 2m

r

)−1/2(
1+(v2

0−1)
(

1− 2m
r

))
−m
r2

√
1− 2m

r
. (8)

Far from the central mass, r � 2m, the acceleration of relativistic par-
ticles is

d2l

dt2
≈ m(2v2

0 − 1)
r2

, (9)

which for v0 = 1 is −gN, the same as for light.
We conclude that relativistic particles moving out of the central mass

are observed by distant observer to be accelerated in the Schwarzschild field.
The acceleration is almost exactly negative of the usual Newton attraction
(deceleration) for ultrarelativistic particles with v0 ≈ 1.
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One should stress that the gravitational repulsion is only seen by a dis-
tant observer who measures speed at distant points with respect to his proper
time. This was thoroughly discussed by McGruder [6]. Local observers
would use the local time at their location, T , with dT = (1 − 2m/r)dt, to
determine the acceleration. The speed of particles in terms of l and time
T is

dl

dT
=

√
1−

(
1− 2m

r

)(
1− v2

0

)
. (10)

It is evident that this speed is a monotonically increasing function of r and
tends to 1 for v0 approaching the speed of light. The acceleration is

d2l

dT 2
=
m

r2
(
v2
0 − 1

)√
1− 2m

r
. (11)

It is always negative and vanishes only in the limit v0 = 1, i.e. for photons.
This is in agreement with the result of Okun [9], who showed that particles
whose speed approaches the speed of light cease to be accelerated in the
Newton field.

The limiting speed, which for relativistic particles separates the regime of
gravitational attraction from that of repulsion can be obtained from Eq. (9).
Gravitational repulsion starts to dominate for the speed v0 > 1/

√
2.

Comparing equations Eq. (7) and Eq. (10) one concludes that the speed,
Eq. (7), for v0 = 1 is the speed of light that is measured in Shapiro time
delay experiment. The local speed, given by Eq. (10), is always equal to the
speed of light c (which is 1 in our units). Thus no delay is observed when
the local time is used.

The Shapiro effect for relativistic particles could be verified in experi-
ments involving beams of relativistic particles with very precise timing. The
time scale of the Shapiro delay is ∆τS = rg/c, where rg = 2m ≡ 2GM/c2 is
the gravitational radius. For Earth rg = 0.9 cm and ∆τS = 3×10−11s, a very
short time scale indeed. For Sun ∆τS = 10−5s, a significantly longer time
scale, however sending beams of relativistic particles across the diameter of
the Earth’s orbit may be difficult.

Consider an idealized version of the classical Shapiro experiment with
a beam of relativistic particles sent along the radial direction from a place
located at radial coordinate r1 to another position at the same ray at r2
where the beam is reflected back to the receiver at r1. The sender device,
the receiver, and the reflector would be aboard satellites. If the satellite
hosting both the sender of a beam of relativistic particles and the receiver,
and a satellite carrying the reflector are positioned at almost opposite points
of the same orbit (for the beam at most to graze the atmosphere) the clas-
sical Shapiro experiment could be performed. One should measure the time
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interval between sending and receiving the particles with speed v0, τ(v0), by
precise determination of the time instants of emitting and receiving the parti-
cles. The formula, Eq. (7), of the Shapiro effect for relativistic particles then
predicts that for beams sent with speed v0 > 1/

√
2 the Shapiro time delay is

measured: τ(v0)>Tv =2d/v0, here T is the time interval needed for particles
with speed v0 to transverse twice the physical diameter d of the orbit.

For particles sent off with the speed v0 < 1/
√

2 an opposite effect is
measured: the time interval between sending and receiving back the par-
ticles τ(v0) is shorter than T . Such a time ordering is a common feature
of Newtonian gravity, when particles falling down in the gravitational field
accelerate, and decelerate only when climbing up the potential well.

Classical version of the Shapiro experiment requires time measurements
by a single clock only, however problems with technical realization of a per-
fect reflection of relativistic particles without changing their speed could be
an obstacle. Thus an experiment without reflector should be also considered.
In this case a beam is sent from location r1 to r2 where a detector coupled
with precise clock measures the time instant of arrival of the beam. The
two clocks, at the sending and receiving satellites should display the same
time t unaffected by gravity. Also the clocks should be synchronized with
sufficiently high precision presumably exceeding the present synchronization
level of the GPS system clocks.

Relativistic particles with speed v0 < 1/
√

2 (γ0 < 1.41) behave in
a Newtonian way in the gravitational field, with less relativistic particles
being more Newtonian. Particles with speed v0 = 1/

√
2 should not be de-

layed nor advanced, and thus should travel twice the orbit diameter in time
τ(1/
√

2) = T as if no gravity be present.
Particles with speed v0 > 1/

√
2 start to behave in a “light-like” manner:

the time to traverse the orbit diameter twice becomes longer than T , i.e.
the Shapiro time delay occurs. The most delayed corpuscules are photons.

The behaviour of fast particles is in a sense opposite to slow particles:
such particles are deceletrated when falling down in the gravitational poten-
tial well, and accelerated only when climbing up the potential well. Relativis-
tic particles experience gravitational repulsion, a sort of apparent antigravity.

An urging question is what energy change of relativistic particles would
be measured in an ideal laboratory experiment.

Let us consider particles emitted outward in the Earth gravitational field,
whose speed is measured using the coordinate time t. In the Newtonian limit
the kinetic and potential energy contributions to the particle energy can be
defined. It is important that in the Newtonian limit time is assumed not to
be affected by gravitational field, and thus to advance with the same rate
throughout the whole space-time. Thus the Newton time is a coordinate
time.
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Formula, Eq. (8), shows that both photons and relativistic particles are
subject to gravitational repulsion. However, there is a crucial difference
between photons and relativistic particles: any acceleration bears no con-
sequence for photon energies whereas a steady acceleration is expected to
continuously increase the kinetic energy of massive particles. Energy of a
photon as a constant of motion in the Schwarzschild metric is

E = hν(r)

√
1− 2m

r
, (12)

where hν(r) is the energy measured by an observer stationary at r. The
constant E can be expressed in terms of the photon energy at infinity
E = hν0. It is clear that the local photon energy, hν(r), does not de-
pend on the choice of time variable which determines how the speed of light
is measured. In particular, it is not influenced by the acceleration, Eq. (5),
and remains the same as in the case of no acceleration, Eq. (11).

For massive particles, the constant of motion E in terms of the coordinate
speed Eq. (3) reads

E = µ0

√
1− 2m

r

√1−
(
dr

dt

)2(
1− 2m

r

)−2
−1

. (13)

Its value can be expressed by the Lorentz factor at infinity, E = µ0γ0,
where µ0 is the rest mass of a particle. In this formula, the speed is present
explicitly which signals dependence on the time variable. This makes the
real difference as compared to photons in the weak field limit.

For slow particles in the Newtonian limit, where gravity is very weak,
one can divide the energy of test particles into kinetic and potential terms,
E = µ0(1 + v2/2 + VN(r)), where VN(r) = −m/r is the Newton potential.

We derive a similar formula for relativistic particles using the formula
Eq. (13) and expanding the right-hand side to lowest order in 2m/r,

E = µ0

√1−
(
dr

dt

)2
−1

+ 2µ0γ0

(
γ2

0 −
3
2

)
m

r
. (14)

Here, the first term is the kinetic energy corresponding to speed measured
in terms of the radial coordinate r and the coordinate time t. The second
term is the potential corresponding to such a choice of coordinates.
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The conserved energy E, in terms of the invariant speed, Eq. (7), is

E = µ0

√
1− 2m

r

√1−
(
dl

dt

)2(
1− 2m

r

)−1
−1

. (15)

Expanding the right-hand side of Eq. (15) to first order in gravitational
coupling, the kinetic and potential terms can be identified as above. The
kinetic energy is µ0γ(r), where γ(r) = 1/

√
1− (dl/dt)2 and the potential is

Vrel(r, v0) =
mγ0

(
γ2

0 − 2
)

r
. (16)

For particles stationary at infinity, v0 = 0, we find Vrel(r, 0) = −m/r, the
Newton potential. For v0 = 1/

√
2 the potential vanishes, Vrel(r, 1/

√
2) ≡ 0.

For relativistic particles with v0 > 1/
√

2, moving outward, the kinetic
energy increases with r. In order for the energy to be conserved the potential,
Vrel(r, v0), should decrease with r, oppositely than the Newton potential
does.

The potential, Eq. (16), is a generalization of the Newton potential for
relativistic particles corresponding to their speed being measured with re-
spect to the coordinate time t. One thus can consistently describe the
Shapiro delay of relativistic particles in weak gravitational fields as a re-
sult of the repulsive gravitational potential.

Let us consider principles of two different measurements of the kinetic
energy change of relativistic particles in the Earth gravitational field. In
the first one, the kinetic energy is measured by some time-of-flight method.
To obtain particle speed at different levels one would prefer using clocks
keeping the same time at every location. Current time keeping technology
allows one to construct space endowed with a chosen coordinate time. In
the GPS system, some coordinate time is maintained in a significant volume
of space surrounding Earth. One can imagine clocks in the whole volume to
tick with the same rate in full synchronization, with gravitational influence
eliminated by appropriate offsetting every clock before deployment.

Relativistic particles with v0 > 1/
√

2 emitted vertically from the Earth
surface at r0 display acceleration, when their speed is measured using the
clocks maintaining the coordinate time of the GPS sort. According to the
formula, Eq. (9), the gravitational repulsion would be recorded. Using the
time-of-flight method, the kinetic energy is obtained from measured speed
of particles. The particles at level h (h� r0) above the ground are found to
gain energy: Ekin(r0 + h) = Ekin(r0) + ∆Ekin, where ∆Ekin = Vrel(r0, v0)−
Vrel(r0 + h, v0) > 0. Defining the redshift z of kinetic energy as

z = −∆Ekin

Ekin,0
, (17)
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where Ekin,0 = µ0(γ0 − 1) is the kinetic energy at infinity, we find:

z = gh
γ0(γ2 − 2)
γ0 − 1

. (18)

Here g = 981 cm/s2 is the Earth’s gravity.
For relativistic particles with γ0 >

√
2 redshift is negative, z < 0, which

actually corresponds to blueshift.
One concludes that energy measurement of a time-of-flight kind together

with use of the coordinate time would show that relativistic particles gain
kinetic energy when moving vertically upwards which indicates that gravity
acts as a repulsive force.

To check this unusual prediction consider calorimetric measurement of
kinetic energy of relativistic particles. We need to have definition of the phys-
ical kinetic energy of particles, by which we mean a quantity independent
of our choice of the coordinate time, uniquely determined by the physical
time. It is commonly accepted that such physical time is the proper time T
of stationary observer at r.

The splitting of the energy, Eq. (15), into kinetic and potential parts is
coordinate dependent, in particular it depends on the definition of speed.
We can express the conserved energy in terms of the the local speed, dl/dT ,
given in Eq. (10). The energy is

E = µ0

√
1− 2m

r

√1−
(
dl

dT

)2
−1

, (19)

and the corresponding potential obtained by expanding the right-hand side
in 2m/r is

Vloc(r, v0) = −mγ0

r
. (20)

This is the usual attractive Newton potential for relativistic particles.
The kinetic energy change of relativistic particles emitted vertically from

the surface after they are detected at high h above the ground is equal to
the difference of the potential energy Eq. (20) at the two levels. The redshift
z is

z = gh
γ0

γ0 − 1
. (21)

This redshift is positive for any velocity v0. By definition, positive values of
redshift, z > 0, correspond to the kinetic energy loss.
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For nonrelativistic particles with γ0 ≈ 1, the kinetic energy loss when
climbing up the Earth gravitational field is the biggest: z = gh/ε, where
ε = γ0 − 1 → 0. More relativistic particles loose smaller fraction: for
γ0 =

√
2 the redshift is z = 3.41gh. Ultrarelativistic particles loose the

same fraction of energy as photons.
The calorimetric measurement of the kinetic energy of relativistic par-

ticles is expected to show the energy loss when particles move vertically
upwards: the kinetic energy is redshifted in a similar way as for photons or
nonrelativistic particles. This is the usual prediction of attractive gravity.

The astonishing difference of the two above discussed ideal measurements
results from the very strong dependence of the gravitational interaction of
relativistic particles on the time variable. This is not apparent for nonrela-
tivistic particles. For particle velocities measured with respect to both the
coordinate time and the physical time, the potential in the weak field limit
is the same — the usual Newton potential. A common conclusion is that
nonrelativistic dynamics is insensitive to gravitational time dilation in weak
fields.

For relativistic particles the sensitivity to gravitational time dilation is
extreme. Including the gravitational time dilation in the time variable defin-
ing velocities even in very weak fields changes the gravitational repulsion
into attraction. This sensitivity could be employed to test the nature of
the physical time underlying the dynamics of finite-rest-mass particles in
gravitational fields.

One could argue that Eq. (21) is just the same as in Newtonian grav-
ity for particle of inertial mass, µ0γ0, in the Newton potential, VN, and
thus no gravitational time dilation is needed and the universal Newton time
(which is the coordinate time t) can be used to describe dynamics of rela-
tivistic particles in very weak gravitational fields. However, for the Newton
time kinematic acceleration of relativistic particles is measured according to
Eq. (9). Conservation of energy then requires that particles moving verti-
cally upwards gain kinetic energy Such particles are thus blueshifted, z > 0,
because the appropriate potential in this case is that of Eq. (16).

Neither of the predictions discussed above have been tested yet. We
focused only on principles of measurements able to test repulsion of rela-
tivistic particles. The level of precision required in time, speed and energy
measurements may not allow one to carry out such experiments soon. How-
ever, when such precision is achieved, in addition to testing the Shapiro
effect for relativistic particles also the nature of physical time defining the
kinetic energy of relativistic particles could be tested. Any discrepancy with
the formula, Eq. (21), would indicate distortion of the physical time with
respect to that assumed in Eq. (10).
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