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In the model of hidden sector of the Universe, proposed and commented
recently, a new nongauge mediating field transforming as an antisymmetric
tensor (of dimension one) plays a crucial role. If it gets definite parity,
say, −, it can be split into two three-dimensional fields of spin 1 and parity
− and +, respectively, much like the electromagnetic field (of dimension
two) is split into its electric and magnetic parts. Then, the parity is pre-
served by a new weak interaction in the hidden sector. A priori, the parts
of the nongauge mediating field may be either independent or dependent.
We discuss a simple natural constraint that may relate them to each other
in a relativistically covariant way, reducing their independent polarization
degrees of freedom to three. In Appendix, we describe another option,
where the mediating field (of dimension one) is gauged by a vector field (of
dimension zero).

PACS numbers: 14.80.–j, 04.50.+h, 95.35.+d

1. Introduction

In previous papers [1,2], we have proposed a model of hidden sector
of the Universe, consisting of sterile spin-1/2 Dirac fermions (“sterinos”),
sterile spin-0 bosons (“sterons”), and sterile nongauge mediating bosons
(“A bosons”) described by an antisymmetric-tensor field (of dimension one)
weakly coupled to steron–photon pairs and, more obviously, to the anti-
sterino–sterino pairs,

−1
2

√
f
(
ϕFµν + ζψ̄σµνψ

)
Aµν , (1)

where Fµν = ∂µAν − ∂νAµ is the Standard-Model electromagnetic field (of
dimension two), while

√
f and

√
f ζ denote two dimensionless small coupling

constants. Here, it is presumed that ϕ = 〈ϕ〉vac+ϕph with a spontaneously

(1277)
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nonzero vacuum expectation value 〈ϕ〉vac 6= 0. Such a coupling of photons
to the hidden sector has been called “photonic portal” (to hidden sector). It
provides a weak coupling between the hidden and Standard-Model sectors
of the Universe. The photonic portal is an alternative to the popular “Higgs
portal” (to hidden sector) [3].

In the present note, we discuss the polarization degrees of freedom for
A bosons, in particular, a simple natural constraint that may reduce these
degrees to three in a relativistically covariant way.

The new interaction Lagrangian (1), together with the A-boson kinetic
and Standard-Model electromagnetic Lagrangians, leads to the following
field equations for Fµν and Aµν :

∂ν
[
Fµν +

√
f (〈ϕ〉vac+ ϕph)Aµν

]
= −jµ , Fµν = ∂µAν − ∂νAµ (2)

and (
2−M2

)
Aµν = −

√
f
[
(〈ϕ〉vac+ ϕph)Fµν + ζψ̄σµνψ

]
, (3)

where jµ denotes the Standard-Model electric current and M stands for a
mass scale of A bosons, expected typically to be large.

The field equations (2) (“supplemented Maxwell’s equations”) are modi-
fied due to the presence of hidden sector. This modification has a magnetic
character, because the hidden-sector contribution to the total electric source-
current jµ+∂ν [

√
f (〈ϕ〉vac +ϕph)Aµν ] for the electromagnetic field Aµ is a

four-divergence giving no contribution to the total electric charge
∫
d3x{j0+

∂k[
√
f (〈ϕ〉vac+ϕph)A0k]} =

∫
d3xj0 = Q. In particular, it can be seen that

the vacuum expectation value 〈ϕ〉vac 6= 0 generates spontaneously a small
sterino magnetic moment

µψ =
fζ

2M2
〈ϕ〉vac , (4)

though sterinos are electrically neutral. This is a consequence of an effective
sterino magnetic interaction

−µψψ̄σµνψFµν (5)

appearing, when the low-momentum-transfer approximation

Aµν '
√
f ζ

M2
ψ̄σµνψ (6)

effectively implied by Eq. (3) is used in the interaction (1) with
ϕ = 〈ϕ〉vac+ϕph.
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2. Option of independent field components for A bosons

In analogy with the familiar splitting of Fµν into ~E and ~B, we can split
the field Aµν into the three-dimensional vector and axial fields ~A(E) and ~A(B)

of spin 1 and parity − and +, respectively (if the field Aµν has a definite
parity, say, −). Then,

(Aµν) =


0 A

(E)
1 A

(E)
2 A

(E)
3

−A(E)
1 0 −A(B)

3 A
(B)
2

−A(E)
2 A

(B)
3 0 −A(B)

1

−A(E)
3 −A(B)

2 A
(B)
1 0

 . (7)

Similarly, for the spin tensor σµν = (i/2)[γµ, γν ] with ~α = (αk) = (γ0γk) =
(iσk0) and ~σ = (σk) = γ5~α = (1/2)

(
εklmσ

lm
)

(k = 1, 2, 3), we get

(σµν) =


0 iα1 iα2 iα3

−iα1 0 σ3 −σ2

−iα2 −σ3 0 σ1

−iα3 σ2 −σ1 0

 . (8)

Then, the interaction (1) can be rewritten in the form(
ϕ~E − iζψ̄ ~αψ

)
· ~A(E) −

(
ϕ~B − ζψ̄ ~σψ

)
· ~A(B) , (9)

where ϕ = 〈ϕ〉vac+ϕph with 〈ϕ〉vac 6= 0. Consequently, the first and second
of supplemented Maxwell’s equations (2) for photons can be split as follows:

~∂ ×
(
~B+
√
f ϕ ~A(B)

)
= ∂0

(
~E+
√
f ϕ ~A(E)

)
+~j ,

~∂ ·
(
~E+
√
f ϕ ~A(E)

)
=j0 , ~∂ × ~E = −∂0

~B , ~∂ · ~B = 0 (10)

and the field equation (3) for A bosons as:(
2−M2

)
~A(E) = −

√
f
(
ϕ~E − iζψ̄ ~αψ

)
,(

2−M2
)
~A(B) = −

√
f
(
ϕ~B − ζψ̄ ~σ ψ

)
, (11)

where ϕ = 〈ϕ〉vac+ϕph with 〈ϕ〉vac 6= 0. Here, (jµ) = (j0,−~j) is the Standard-
Model current ( ~E = −∂0

~A − ~∂A0 and ~B = ~∂ × ~A with (∂µ) = (∂0, ~∂) and
(Aµ) = (A0,− ~A)). Note that the source-free Eqs. (10) are, of course, the
ordinary source-free Maxwell’s equations.
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The sterile A bosons described by the fields ~A(E) and ~A(B), when they
propagate freely in space (

√
f → 0), get the one-particle wave functions

~A
(E,B)
~kA

(x) =
1

(2π)3/2
1√
2ωA

~e (E,B)e−ikA·x , (12)

where kA = (ωA,~kA) with ωA =
√
~k2
A +M2, while ~e (E,B) are linear polar-

izations of A(E) and A(B) bosons [2]. If the field Aµν has a definite parity,
say, −, then due to Eq. (7) the polarizations ~e (E) and ~e (B) are polar and
axial vectors, respectively. Then, the parity is preserved by the new weak
interaction (1) or (9) in the hidden sector.

Denoting by eµν the antisymmetric polarization tensor appearing in the
A-boson relativistic free wave function

A
µν~kA

(x) =
1

(2π)3/2
1√
2ωA

eµνe
−ikA·x (13)

split according to Eq. (7) into ~A
(E,B)
~kA

given in Eq. (12), we can write

(eµν) =


0 e

(E)
1 e

(E)
2 e

(E)
3

−e(E)
1 0 −e(B)

3 e
(B)
2

−e(E)
2 e

(B)
3 0 −e(B)

1

−e(E)
3 −e(B)

2 e
(B)
1 0

 . (14)

(Of course, there is a triplet of antisymmetric polarization tensors eµνa
(a = 1, 2, 3) split into two triplets of linear polarizations ~e (E,B)

a =
(
e

(E,B)
ka

)
(a = 1, 2, 3, k = 1, 2, 3).)

If the fields ~A(E) and ~A(B) are independent (as can be in Eqs. (11)),
then the corresponding polarizations form two independent triplets of or-
thonormal versors,

~e (E,B)
a · ~e (E,B)

b =δab (a, b=1, 2, 3) ,
3∑

a=1

e
(E,B)
ka e

(E,B)
la =δkl (k, l=1, 2, 3)

(15)
with ~e (E,B)

a = (e (E,B)
ka ) (a = 1, 2, 3, k = 1, 2, 3) [2].

In place of the option of independent field components for A bosons, we
will discuss in Section 3 an option with a simple natural constraint that may
relate the fields ~A(E) and ~A(B) to each other in a relativistically covariant
way, reducing their independent polarization degrees of freedom to three.
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3. Option of AµνA
µν = 0 for A bosons

Consider the natural option, where the axial polarizations ~e (B)
a (a =

1, 2, 3) are related to the polar polarizations ~e (E)
a (a = 1, 2, 3) through the

constraint
~e

(B)
1,2,3 = ~e

(E)
2,3,1 × ~e

(E)
3,1,2 (16)

(both in right- and left-handed frame of reference), where

~e
(E)
2,3,1 × ~e

(E)
3,1,2 = (+ or −)~e (E)

1,2,3 (17)

in a right- or left-handed frame of reference, respectively. Thus, the con-
straint (16) can be trivially rewritten as

~e (B)
a = (+ or −)~e (E)

a (18)

(a = 1, 2, 3), showing that ~e (B)
a are parallel or antiparallel to ~e (E)

a and have
the same magnitudes as ~e (E)

a ,

~e (B)2
a = ~e (E)2

a . (19)

Then, from Eqs. (14) and (19) it follows that the products

eµνae
µν
a = 2

(
~e (B)2
a − ~e (E)2

a

)
= 0 (20)

(a = 1, 2, 3) are relativistically covariant in a trivial way. Notice that, when
~e

(E)2
a = 1, the orthonormal conditions (15) are valid in the present option as
previously in the option of independent ~e (E)

a and ~e (B)
a (a = 1, 2, 3), though

now ~e
(B)
a are dependent on ~e (E)

a (through Eqs. (18)).
For the field operators ~A (E,B)(x), we can write in the Heisenberg picture

that

~A (E,B)(x) =
∫
d3~kA

3∑
a=1

aa(~k, t)
1

(2π)3/2
1√
2ωA

~e (E,B)
a e−ikA·x + h.c. , (21)

where the annihilation and creation operators, aa(~k, t) and a†a(~k, t), are the
same for (E) and (B) components of Aµν(x). In the case of constraint (18),
we can infer from Eq. (21) that

~A (B)(x) = (+ or −) ~A (E)(x) (22)

and hence,
~A (B)2(x) = ~A (E)2(x) . (23)
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Then, Eqs. (7) and (23) imply that the product

Aµν(x)Aµν(x) = 2
[
~A (B)2(x)− ~A (E)2(x)

]
= 0 (24)

is relativistically covariant in a trivial manner.
Thus, in conclusion, the new natural option, accepting the constraint (18)

for the polarizations ~e (E)
a and ~e (B)

a or, equivalently, the constraint (22) for
the fields ~A (B)(x) and ~A (E)(x), may be satisfactory in describing polar-
izations of the mediating A bosons in our model of hidden sector (commu-
nicating with the Standard-Model sector through the photonic portal). In
this option, the parity is preserved by the new weak coupling (1) or (9)
in the hidden sector. It is a scheme practically realizing three axial ~e (B)

a in
terms of three polar ~e (E)

a in a relativistically covariant, trivial way. From the
methodological point of view, the constraint (18) (see also its form (16)) has
the character of a definition of ~e (B)

a in terms of ~e (E)
a that, in consequence,

is included in the definition of field Aµν(x).
In Sections 4 and 5, we will describe as an illustration two simple par-

ticle processes that may be important for the hypothetic phenomenology of
A bosons.

4. Illustration 1: annihilation of a pair AA into a pair γγ

To illustrate the working of our formalism consider in the lowest order
the annihilation channel AA→ ϕ∗phγ ϕ

∗
phγ → γγ induced by the coupling

−1
2

√
f ϕphFµν A

µν (25)

following from the interaction Lagrangian (1) with ϕ = 〈ϕ〉vac+ϕph.
The corresponding S-matrix element reads (in an obvious notation):

S(AA→ γγ) = −if
[

1
(2π)12

1
16ω1ω2ωA1ωA2

]1/2
(2π)4δ4(k1+ k2− kA1− kA2)

×1
4

[
1
i
eµν2 (k2µe2ν − k2νe2µ)

1
(k1 − kA1)2 −m2

ϕ

1
i

(k1ρe1σ − k1σe1ρ)e
ρσ
1 +

+
1
i
eµν2 (k1µe1ν − k1νe1µ)

1
(k2 − kA1)2 −m2

ϕ

1
i

(k2ρe2σ − k2σe2ρ)e
ρσ
1

]
, (26)

where according to the matrix (14) for the antisymmetric polarization tensor
eµν of A bosons we put

eµν =


e
(E)
k µν =k 0 ,
−εklme

(B)
m µν = k l ,

−e(E)
l µν = 0 l ,

(k, l = 1, 2, 3) (27)
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and, subsequently, take into account the constraint (18)

~e (B) = ±~e (E) (28)

in a right- or left-handed frame of reference, respectively. Then, in Eq. (26)
there appears four times the expression of the type

1
i
eµν (kµeν − kνeµ) = −1

i
2~e (E) ·

(
ω~e± ~k × ~e

)
. (29)

Here, ω = |~k| and ωA =
√
~k2
A +M2, giving (k− kA)2 −m2

ϕ = −2(ωωA −~k ·
~kA) +M2 −m2

ϕ with ~k ·~kA = ω
√
ω2
A −M2 cos θ~k .

From Eq. (26) we calculate the differential and total cross-sections for
the channel AA→ γγ:

d 6σ(AA→ γγ)

d3~k1d3~k2

=
(2π)6

vrel

∑
e1

∑
e2

1
3

∑
e
(E)
1

1
3

∑
e
(E)
2

|S(AA→ γγ)|2

(2π)4δ4(0)
(30)

and (two photons are indistinguishable)

σ(AA→γγ)=
1
2

∫
d3~k1d

3~k2
d 6σ(AA→γγ)

d3~k1d3~k2

. (31)

The result we obtain in the centre-of-mass frame, where ~kA1 + ~kA2 = 0 and
vrel = 2

√
ω2
A1 −M2/ωA1 = 2|~kA1|/ωA1 = 2vA1, is

σ (AA→ γγ) 2vA1 =
1

144πω2
A1

ξ

v2
A1

(
ξ

1− ξ2
+

1
2

ln
1 + ξ

1− ξ

)
(32)

with

ξ ≡
2ωA1

√
ω2
A1 −M2

2ω2
A1 −M2 +m2

ϕ

=
2ω2

A1

2ω2
A1 −M2 +m2

ϕ

vA1 (33)

(here, of course, ωA1 = ωA2 = ω1 = ω2 and vA1 = vA2).
Note that for nonrelativistic A bosons (when ωA1→ M) we get ξ →

[2M2/(M2+m2
ϕ)]vA1. If it happens that M2 ∼ m2

ϕ or � m2
ϕ, then ξ → vA1

or 2vA1, respectively. Thus, in the nonrelativistic case, we have from Eq. (32)

σ (AA→ γγ) 2vA1 →
f2

72πM2

(
2M2

M2 +m2
ϕ

)2

∼ f2

72πM2
, (34)

the last step working if it happens that M2 ∼ m2
ϕ.
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5. Illustration 2: decay of an A boson into a fermion pair f̄f

In contrast to sterinos, sterons and A bosons are not stable. For an
illustration consider in the lowest order the decay channel A → γ∗ → f̄f ,
where f is a charged fermion (e.g. f = e−, µ−, p). This process is induced
by the coupling

−1
2

√
f 〈ϕ〉vacFµνA

µν − ef ψ̄f γµ ψfAµ , (35)

where the first term follows from the interaction Lagrangian (1) with ϕ =
〈ϕ〉vac+ϕph, while the second presents the Standard-Model electromagnetic
interaction for f fermions (e.g. ef = −e,−e, e).

The corresponding S-matrix element reads (in an obvious notation):

S
(
A→ f̄f

)
= −ief

√
f〈ϕ〉vac

[
1

(2π)9
m2
f

E1E2 2ωA

]1/2

(2π)4δ4(p1 + p2 − kA)

× 1
2
ū(p1)

1
i

(
kµAγ

ν−kνAγµ
)
v(p2)

1
k2
A

eµν , (36)

where the A-boson antisymmetric polarization tensor eµν is given as in
Eq. (27) and the constraint (28) is taken into account. Then,(
kµAγ

ν−kνAγµ
)
eµν = 2

[
ωA~γ − ~kAβ ∓

(
~kA × ~γ

)]
· ~e (B) = 2M~γ · ~e (E) , (37)

the last step being valid for the A boson at rest, where ~kA = 0 and so,
ωA = M . In this case, in consequence of energy-momentum conservation,
~p1 + ~p2 = 0 and E1 = E2 = ωA/2 = M/2.

From Eq. (36) we calculate the differential and total decay rates in the
channel A→ f̄f :

d 6Γ
(
A→ f̄f

)
d3~p1d3~p2

= (2π)3
1
3

∑
e(E)

∑
u

∑
v

|S
(
A→ f̄f

)
|2

(2π)4δ4(0)
(38)

and

Γ
(
A→ f̄f

)
=
∫
d3~p1 d

3~p2
d 6Γ

(
A→ f̄f

)
d3~p1 d3~p2

. (39)

For the A boson at rest, we obtain

Γ
(
A → f̄f

)
=

e2f f〈ϕ〉2vac

12πM

(
M2 + 2m2

f

)√
M2 − 4m2

f

M3
. (40)
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When M2 � m2
f , then Eq. (40) gives

Γ
(
A→ f̄f

)
'
e2ff〈ϕ〉2vac

12πM
∼
e2ffM

12π
, (41)

the last step applying if it happens that M2 ∼ 〈ϕ〉2vac.
Stable sterinos are candidates for thermal cold dark matter. In this case,

under the tentative assumption that

m2
ψ ∼

(
10−3 to 1

)
〈ϕ〉2vac ∼ m2

ϕ , M2 ∼ 〈ϕ〉2vac , (42)

and putting boldly
f ∼ e2 ' 0.0917 , ζ ∼ 1 , (43)

we estimate (in a similar way as in the third Ref. [1]) that

mψ ∼ (13 to 770) GeV . (44)

This gives M2 ∼ (400 to 770)2 GeV2. Here, the experimental value
ΩDMh

2 ∼ 0.11 is taken for the dark-matter relic abundance [4]. Then, the
annihilation cross-section for an antisterino–sterino pair (improved in com-
parison with the third Ref. [1]) is equal to

σann

(
ψ̄ψ
)
vrel ∼

[
σ
(
ψ̄ψ → ϕphγ

)
+ (20/3 to 8)σ

(
ψ̄ψ → e+e−

)]
2vψ ∼ pb

(45)
(pb = 10−12b = 10−36cm2), where 3 · [1 + 3·(4/9 + 1/9)] = 8 for mt < mψ

∼ 770 GeV and without top quark 3 + 2 ·3 ·(4/9 + 1/9) + 3 ·(1/9) = 20/3
for mt > mψ ∼ 13 GeV (masses of active leptons and quarks are neglected
versus Eψ ∼ mψ).

In the case of these assumptions, we can estimate from Eqs. (34) and
(41) that

σ(AA→ γγ) 2vA1 ∼ (2.3 to 0.62)× 10−4

TeV2
= (0.088 to 0.024) pb (46)

and

Γ
(
A→ f̄f

)
∼ (90 to 170) MeV =

(
1

0.72
to

1
0.38

)
× 1023

s
(47)

(~ = 1 = c).



1286 W. Królikowski

Appendix

Option of a dimensionless vector field gauging our mediating field

The sterile mediating field Aµν of dimension one, discussed in this paper,
is not gauged in the conventional manner i.e., it is not the four-dimensional
curl of a vector field of dimension one, as in the case of electromagnetic
field Fµν = ∂µAν − ∂νAµ gauged by the vector field Aµ. In this Appendix,
we ask the question, what would happen, if the mediating field Aµν (still of
dimension one) were the four-dimensional curl of a new dimensionless vector
field χµ,

Aµν = ∂µχν − ∂νχµ , (A.1)

where, for simplicity, we would apply the analogue of electromagnetic
Lorentz gauge

∂µχ
µ = 0 (A.2)

giving ∂νAµν = −∂ν∂νχµ = 2χµ.
In the case of option (A.1), the hidden-sector interaction Lagrangian (1)

in Section 1 takes the form

−1
2

√
f
(
ϕFµν + ζψ̄ σµνψ

)
(∂µχν − ∂νχµ) (A.3)

that up to a four-divergence can be replaced by the coupling

−
√
f
[
∂ν
(
ϕFµν + ζψ̄ σµνψ

)]
χµ . (A.4)

Here, the formal current ∂ν(ϕFµν + ζ ψ̄σµνψ) (of dimension four) is identi-
cally conserved,

∂µ
[
∂ν
(
ϕFµν + ζψ̄ σµνψ

)]
≡ 0 , (A.5)

not providing a new gauge charge (of dimension one), since

Q(χ) ≡
∫
d3~x ∂ν

(
ϕF 0ν + ζψ̄ σ0νψ

)
= 0 (A.6)

(F 00 = 0 and σ00 = 0) due to the presence of ∂ν at front of the integrand.
However, this guarantees a trivial gauge invariance with respect to χµ , when
the kinetic Lagrangian (of dimension four) for χµ is built up only from Aµν
(of dimension one) in the conventional way:

−1
4

[
(∂λAµν)

(
∂λAµν

)
−M2AµνA

µν
]
. (A.7)

Then, the field equations (2) and (3) in Section 1 transit respectively
into the forms

∂ ν
[
Fµν +

√
f ϕ (∂µχν− ∂νχµ)

]
= −jµ or 2Aµ = −jµ−

√
f ∂ν [ϕ (∂µχν− ∂νχµ)]

(A.8)
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(with ∂νAν = 0) and

(2−M2)2χµ = −
√
f ∂ ν

(
ϕFµν + ζψ̄σµνψ

)
(A.9)

(with ∂ νχν = 0). We can derive Eq. (A.9) either applying the Euler–
Lagrange equations to the Lagrangian involving χµ , ∂µχν − ∂νχµ and
∂λ(∂µχν − ∂νχµ) or acting on both sides of the field equation (3) with the
operator ∂ ν . Note that in the low-momentum-transfer approximation, when
2 can be neglected versus the large mass scale squared M2, we obtain from
Eq. (A.9)

2χµ '
√
f

M2
∂ ν
(
ϕFµν + ζψ̄σµνψ

)
. (A.10)

In contrast, for processes near the mass shell, 2 ∼ M2, we can write
(2−M2)χµ ' (

√
f /M2)∂ν

(
ϕFµν + ζψ̄σµνψ

)
.

Now, consider for χµ the vacuum solution χ(vac)
µ to the field equation (A.9)

(with 〈ϕ〉vac 6= 0 and ϕph = 0 as well as ψ = 0), satisfying, therefore, the
simpler field equation(

2−M2
)
2χ(vac)

µ = −
√
f 〈ϕ〉vac2A

(vac)
µ =

√
f 〈ϕ〉vac jµ + f 〈ϕ〉2vac2χ

(vac)
µ

(A.11)
or (

2−
∼
M

2
)

2χ(vac)
µ =

√
f 〈ϕ〉vac jµ , (A.12)

where ∼
M

2 = M2 + f〈ϕ〉2vac . (A.13)

In the particular case of electrically charged particle at rest at the point
~x0, where

jµ(~x) = e0 g
µ0δ3(~x− ~x0) , (A.14)

we get from Eq. (A.12)

χ(vac)
µ (~x) = −

(
1
∆
− 1

∆−
∼
M 2

)
1
∼
M 2

√
f 〈ϕ〉vace0 gµ0 δ

3(~x− ~x0)

=
e0
√
f 〈ϕ〉vac
∼
M 2

gµ0

4π|~x− ~x0|

(
1− e−

∼
M |~x−~x0|

)
(A.15)

(2 = ∆ − ∂2
0). We can see that here χ(vac)

µ is spontaneously generated by
〈ϕ〉vac 6= 0 via the field equation (A.12). In the low-momentum-transfer
approximation, we can put

∼
M |~x− ~x0| � 1 and hence obtain

χ(vac)
µ (~x) ' e0

√
f 〈ϕ〉vac
∼
M 2

gµ0

4π|~x− ~x0|
. (A.16)
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Thus, in this approximation, the Coulomb-like dependence on |~x−~x0| dom-
inates in χ(vac)

µ given in Eq. (A.15).
The space-integrated interaction energy of two charged particles at rest

at the points ~x0 and ~x′0, corresponding to the solution (A.15) for χ(vac)
µ , is

equal to (cf. Eq. (A.4)):

V (vac) = −
∫
d3~x
√
f 〈ϕ〉vac∂ν

[
F 0ν(~x)

]
χ
′(vac)
0 (~x)

=
∫
d3~x
√
f 〈ϕ〉vacj

0(~x)χ′(vac)
0 (~x) +O

(
f2
)

=
e0e
′
0

4π
f〈ϕ〉2vac
∼
M 2

1
|~x0 − ~x′0|

(
1− e−

∼
M |~x0−~x′0|

)
+O

(
f2
)

= V (vac)(|~x0 − ~x′0|) , (A.17)

where χ′(vac)
0 (~x) = (e′0

√
f 〈ϕ〉vac/

∼
M

2
)[1 − exp(−

∼
M |~x − ~x′0|)]/(4π|~x − ~x′0|)

due to Eq. (A.15). For
∼
M |~x0 − ~x′0| → 0 or ∞, the energy (A.17) tends to

(e0e′0/4π)f〈ϕ〉2vac/
∼
M or (e0e′0/4π)f〈ϕ〉2vac/ (

∼
M 2|~x0 − ~x′0|)→ 0, respectively.

This not-observed-yet correction to the Coulomb energy e0e′0/(4π |~x0 −
~x′0|) of two charged particles, generated spontaneously by 〈ϕ〉vac 6= 0, would
require a really small value for the constant f〈ϕ〉2vac/ (M2 + f〈ϕ〉2vac) (mul-
tiplied by 1− exp(−

∼
M |~x0 − ~x′0|)) in order to be potentially acceptable. In

the case of tentative assumption (42) in Section 5, where M2 ∼ 〈ϕ〉2vac and

boldly f ∼ e2 ' 0.0917, the value of f〈ϕ〉2vac/
∼
M

2
∼ e2/(1 + e2) ' 0.0840

is dangerously large, so that our correction to the Coulomb energy ought to
be seen in experiment. Since it is not yet, this may suggest a smaller value
for f . Then, mψ ∝ f becomes also smaller.

Finally, we would like to point out that our previous option discussed
in Section 3, based on the constraint (22), ~A (B)(x) = (+ or –) ~A (E)(x), is
in contradiction with the new option (A.1) which can be considered as an
“orthogonal” proposal. In fact, making use of the relations A (E)

k = A0k and
A

(B)
k = −(1/2)εklmAlm (k = 1, 2, 3) (cf. Eq. (7)), we obtain from Eq. (A.1)

that
~A (E) = −∂0~χ− ~∂χ0 , ~A (B) = ~∂ × ~χ , (A.18)

where ~A (E,B) =
(
A

(E,B)
k

)
, (χµ) =

(
χ0, ~χ

)
, (∂µ) =

(
∂0, ~∂

)
. Hence, applying

also Eq. (A.2), we get two pairs of Maxwell-type equations (but of dimension
two instead of dimension three):

~∂ × ~A (E) = −∂0
~A (B) , ~∂ · ~A (B) = 0 (A.19)



Antisymmetric-Tensor Field Mediating in Hidden Sector and Reduction . . . 1289

and
~∂ × ~A (B) = ∂0

~A (E) −2~χ , ~∂ · ~A (E) = −2χ0 , (A.20)

where −(2−M2)2χµ is equal to the formal current
√
f ∂ν(ϕFµν +ζψ̄ σµνψ)

(of dimension four) according to Eq. (A.9).
In the case of free wave functions (12) of an A boson, we infer from

Eqs. (A.19) that

~kA × ~e (E)
a = ωA~e

(B)
a , ~kA · ~e (B)

a = 0 (a = 1, 2) (A.21)

(not a = 1, 2, 3), where
(
kµA
)

=
(
ωA , ~kA

)
with ωA =

√
~k2
A +M2. We choose

~e
(E,B)
1 · ~e (E,B)

2 = 0. Now, the field operators ~A (E,B)(x) in the Heisenberg
picture are given as in Eq. (21), but with the summation over a = 1, 2.
The first relation (A.21) is really “orthogonal” to the constraint (18), ~e (B)

a =
(+ or −)~e (E)

a (a = 1, 2, 3), considered in Section 3. With the ansatz

~kA · ~e (E)
a = 0 (a = 1, 2) (A.22)

and the choice ~e (E) 2
a = 1, the relations (A.21) define two orthogonal triplets

~e
(E)
a , ~e (B)

a , ~kA/ωA, where ~e
(B) 2
a = 1 −M2/ω2

A < 1 and (~kA/ωA)2 = 1 −
M2/ω2

A < 1, so that the vectors ~e (B)
a and (~kA/ωA) are not versors (they

become such in the limit of ω2
A/M

2 →∞). The versors ~e (E)
a (a = 1, 2) can

be treated as two independent linear polarizations of an A boson.
The first Eq. (A.21)together with Eq. (A.22) implies that

~kA × ~e (B)
a = −ωA

(
1−M2/ω2

A

)
~e (E)
a (a = 1, 2) . (A.23)

The last relation and the relation (22) show that the free gauging wave
function χµ

a~kA
(x) of an A boson may be presented as

χµ
a~kA

(x) =
1

(2π)3/2
1√
2ωA

1
i ωA

eµae
−ikA·x (A.24)

with
(eµa) =

(
0, ~e (E)

a

)
(a = 1, 2) . (A.25)

Then, due to the first Eq. (A.21) and Eq. (A.22), it satisfies together with
Aµν
a~kA

(x) its defining formulae (A.1) and (A.2). Here, χ0
a~kA

(x) = 0 in conse-
quence of the ansatz (A.22).



1290 W. Królikowski

REFERENCES

[1] W. Królikowski, arXiv:0803.2977[hep-ph]; Acta Phys. Pol. B 39, 1881
(2008); Acta Phys. Pol. B 40, 111 (2009); Acta Phys. Pol. B 40, 2767 (2009).

[2] W. Królikowski, arXiv:0909.2498[hep–ph]; arXiv:0911.5614[hep-ph].
[3] Cf. e.g. J. March-Russell, S.M. West, D. Cumberbath, D. Hooper, J. High

Energy Phys. 0807, 058 (2008).
[4] C. Amsler et al., [Particle Data Group], Phys. Lett. B667, 1 (2008).


