ANTISYMMETRIC-TENSOR FIELD MEDIATING IN HIDDEN SECTOR AND REDUCTION OF ITS POLARIZATION DEGREES OF FREEDOM

Wojciech Królikowski
Institute of Theoretical Physics, University of Warsaw Hoża 69, 00-681 Warszawa, Poland

(Received March 2, 2010)
In the model of hidden sector of the Universe, proposed and commented recently, a new nongauge mediating field transforming as an antisymmetric tensor (of dimension one) plays a crucial role. If it gets definite parity, say, -, it can be split into two three-dimensional fields of spin 1 and parity - and + , respectively, much like the electromagnetic field (of dimension two) is split into its electric and magnetic parts. Then, the parity is preserved by a new weak interaction in the hidden sector. A priori, the parts of the nongauge mediating field may be either independent or dependent. We discuss a simple natural constraint that may relate them to each other in a relativistically covariant way, reducing their independent polarization degrees of freedom to three. In Appendix, we describe another option, where the mediating field (of dimension one) is gauged by a vector field (of dimension zero).

PACS numbers: 14.80.-j, 04.50. $+\mathrm{h}, 95.35 .+\mathrm{d}$

1. Introduction

In previous papers [1,2], we have proposed a model of hidden sector of the Universe, consisting of sterile spin-1/2 Dirac fermions ("sterinos"), sterile spin-0 bosons ("sterons"), and sterile nongauge mediating bosons (" A bosons") described by an antisymmetric-tensor field (of dimension one) weakly coupled to steron-photon pairs and, more obviously, to the anti-sterino-sterino pairs,

$$
\begin{equation*}
-\frac{1}{2} \sqrt{f}\left(\varphi F_{\mu \nu}+\zeta \bar{\psi} \sigma_{\mu \nu} \psi\right) A^{\mu \nu} \tag{1}
\end{equation*}
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the Standard-Model electromagnetic field (of dimension two), while \sqrt{f} and $\sqrt{f} \zeta$ denote two dimensionless small coupling constants. Here, it is presumed that $\varphi=\langle\varphi\rangle_{\mathrm{vac}}+\varphi_{\mathrm{ph}}$ with a spontaneously
nonzero vacuum expectation value $\langle\varphi\rangle_{\text {vac }} \neq 0$. Such a coupling of photons to the hidden sector has been called "photonic portal" (to hidden sector). It provides a weak coupling between the hidden and Standard-Model sectors of the Universe. The photonic portal is an alternative to the popular "Higgs portal" (to hidden sector) [3].

In the present note, we discuss the polarization degrees of freedom for A bosons, in particular, a simple natural constraint that may reduce these degrees to three in a relativistically covariant way.

The new interaction Lagrangian (1), together with the A-boson kinetic and Standard-Model electromagnetic Lagrangians, leads to the following field equations for $F_{\mu \nu}$ and $A_{\mu \nu}$:

$$
\begin{equation*}
\partial^{\nu}\left[F_{\mu \nu}+\sqrt{f}\left(\langle\varphi\rangle_{\mathrm{vac}}+\varphi_{\mathrm{ph}}\right) A_{\mu \nu}\right]=-j_{\mu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\square-M^{2}\right) A_{\mu \nu}=-\sqrt{f}\left[\left(\langle\varphi\rangle_{\mathrm{vac}}+\varphi_{\mathrm{ph}}\right) F_{\mu \nu}+\zeta \bar{\psi} \sigma_{\mu \nu} \psi\right] \tag{3}
\end{equation*}
$$

where j_{μ} denotes the Standard-Model electric current and M stands for a mass scale of A bosons, expected typically to be large.

The field equations (2) ("supplemented Maxwell's equations") are modified due to the presence of hidden sector. This modification has a magnetic character, because the hidden-sector contribution to the total electric sourcecurrent $j_{\mu}+\partial^{\nu}\left[\sqrt{f}\left(\langle\varphi\rangle_{\mathrm{vac}}+\varphi_{\mathrm{ph}}\right) A_{\mu \nu}\right]$ for the electromagnetic field A_{μ} is a four-divergence giving no contribution to the total electric charge $\int d^{3} x\left\{j_{0}+\right.$ $\left.\partial^{k}\left[\sqrt{f}\left(\langle\varphi\rangle_{\mathrm{vac}}+\varphi_{\mathrm{ph}}\right) A_{0 k}\right]\right\}=\int d^{3} x j_{0}=Q$. In particular, it can be seen that the vacuum expectation value $\langle\varphi\rangle_{\text {vac }} \neq 0$ generates spontaneously a small sterino magnetic moment

$$
\begin{equation*}
\mu_{\psi}=\frac{f \zeta}{2 M^{2}}\langle\varphi\rangle_{\mathrm{vac}} \tag{4}
\end{equation*}
$$

though sterinos are electrically neutral. This is a consequence of an effective sterino magnetic interaction

$$
\begin{equation*}
-\mu_{\psi} \bar{\psi} \sigma_{\mu \nu} \psi F^{\mu \nu} \tag{5}
\end{equation*}
$$

appearing, when the low-momentum-transfer approximation

$$
\begin{equation*}
A_{\mu \nu} \simeq \frac{\sqrt{f} \zeta}{M^{2}} \bar{\psi} \sigma_{\mu \nu} \psi \tag{6}
\end{equation*}
$$

effectively implied by Eq. (3) is used in the interaction (1) with $\varphi=\langle\varphi\rangle_{\mathrm{vac}}+\varphi_{\mathrm{ph}}$.

2. Option of independent field components for \boldsymbol{A} bosons

In analogy with the familiar splitting of $F_{\mu \nu}$ into \vec{E} and \vec{B}, we can split the field $A_{\mu \nu}$ into the three-dimensional vector and axial fields $\vec{A}(E)$ and $\overrightarrow{A^{(B)}}$ of spin 1 and parity - and + , respectively (if the field $A_{\mu \nu}$ has a definite parity, say, -). Then,

$$
\left(A_{\mu \nu}\right)=\left(\begin{array}{cccc}
0 & A_{1}^{(E)} & A_{2}^{(E)} & A_{3}^{(E)} \tag{7}\\
-A_{1}^{(E)} & 0 & -A_{3}^{(B)} & A_{2}^{(B)} \\
-A_{2}^{(E)} & A_{3}^{(B)} & 0 & -A_{1}^{(B)} \\
-A_{3}^{(E)} & -A_{2}^{(B)} & A_{1}^{(B)} & 0
\end{array}\right) .
$$

Similarly, for the spin tensor $\sigma^{\mu \nu}=(i / 2)\left[\gamma^{\mu}, \gamma^{\nu}\right]$ with $\vec{\alpha}=\left(\alpha_{k}\right)=\left(\gamma^{0} \gamma^{k}\right)=$ $\left(i \sigma^{k 0}\right)$ and $\vec{\sigma}=\left(\sigma_{k}\right)=\gamma_{5} \vec{\alpha}=(1 / 2)\left(\varepsilon_{k l m} \sigma^{l m}\right)(k=1,2,3)$, we get

$$
\left(\sigma^{\mu \nu}\right)=\left(\begin{array}{cccc}
0 & i \alpha_{1} & i \alpha_{2} & i \alpha_{3} \tag{8}\\
-i \alpha_{1} & 0 & \sigma_{3} & -\sigma_{2} \\
-i \alpha_{2} & -\sigma_{3} & 0 & \sigma_{1} \\
-i \alpha_{3} & \sigma_{2} & -\sigma_{1} & 0
\end{array}\right)
$$

Then, the interaction (1) can be rewritten in the form

$$
\begin{equation*}
(\varphi \vec{E}-i \zeta \bar{\psi} \vec{\alpha} \psi) \cdot \vec{A}^{(E)}-(\varphi \vec{B}-\zeta \bar{\psi} \vec{\sigma} \psi) \cdot \vec{A}^{(B)} \tag{9}
\end{equation*}
$$

where $\varphi=\langle\varphi\rangle_{\mathrm{vac}}+\varphi_{\mathrm{ph}}$ with $\langle\varphi\rangle_{\mathrm{vac}} \neq 0$. Consequently, the first and second of supplemented Maxwell's equations (2) for photons can be split as follows:

$$
\begin{array}{r}
\vec{\partial} \times\left(\vec{B}+\sqrt{f} \varphi \vec{A}^{(B)}\right)=\partial_{0}\left(\vec{E}+\sqrt{f} \varphi \vec{A}^{(E)}\right)+\vec{j}, \\
\vec{\partial} \cdot\left(\vec{E}+\sqrt{f} \varphi \vec{A}^{(E)}\right)=j_{0}, \quad \vec{\partial} \times \vec{E}=-\partial_{0} \vec{B}, \quad \vec{\partial} \cdot \vec{B}=0 \tag{10}
\end{array}
$$

and the field equation (3) for A bosons as:

$$
\begin{align*}
& \left(\square-M^{2}\right) \vec{A}^{(E)}=-\sqrt{f}(\varphi \vec{E}-i \zeta \bar{\psi} \vec{\alpha} \psi) \\
& \left(\square-M^{2}\right) \vec{A}^{(B)}=-\sqrt{f}(\varphi \vec{B}-\zeta \bar{\psi} \vec{\sigma} \psi) \tag{11}
\end{align*}
$$

where $\varphi=\langle\varphi\rangle_{\text {vac }}+\varphi_{\mathrm{ph}}$ with $\langle\varphi\rangle_{\text {vac }} \neq 0$. Here, $\left(j_{\mu}\right)=\left(j_{0},-\vec{j}\right)$ is the StandardModel current $\left(\vec{E}=-\partial_{0} \vec{A}-\vec{\partial} A_{0}\right.$ and $\vec{B}=\vec{\partial} \times \vec{A}$ with $\left(\partial_{\mu}\right)=\left(\partial_{0}, \vec{\partial}\right)$ and $\left.\left(A_{\mu}\right)=\left(A_{0},-\vec{A}\right)\right)$. Note that the source-free Eqs. (10) are, of course, the ordinary source-free Maxwell's equations.

The sterile A bosons described by the fields $\vec{A}(\mathrm{E})$ and $\overrightarrow{A^{(B)}}$, when they propagate freely in space $(\sqrt{f} \rightarrow 0)$, get the one-particle wave functions

$$
\begin{equation*}
\vec{A}_{\vec{k}_{A}}^{(E, B)}(x)=\frac{1}{(2 \pi)^{3 / 2}} \frac{1}{\sqrt{2 \omega_{A}}} \vec{e}^{(E, B)} e^{-i k_{A} \cdot x} \tag{12}
\end{equation*}
$$

where $k_{A}=\left(\omega_{A}, \vec{k}_{A}\right)$ with $\omega_{A}=\sqrt{\vec{k}_{A}^{2}+M^{2}}$, while $\vec{e}^{(E, B)}$ are linear polarizations of $A^{(E)}$ and $A^{(B)}$ bosons [2]. If the field $A_{\mu \nu}$ has a definite parity, say, - , then due to Eq. (7) the polarizations $\vec{e}^{(E)}$ and $\vec{e}^{(B)}$ are polar and axial vectors, respectively. Then, the parity is preserved by the new weak interaction (1) or (9) in the hidden sector.

Denoting by $e_{\mu \nu}$ the antisymmetric polarization tensor appearing in the A-boson relativistic free wave function

$$
\begin{equation*}
A_{\mu \nu \vec{k}_{A}}(x)=\frac{1}{(2 \pi)^{3 / 2}} \frac{1}{\sqrt{2 \omega_{A}}} e_{\mu \nu} e^{-i k_{A} \cdot x} \tag{13}
\end{equation*}
$$

split according to Eq. (7) into $\vec{A}_{\vec{k}_{A}}^{(E, B)}$ given in Eq. (12), we can write

$$
\left(e_{\mu \nu}\right)=\left(\begin{array}{cccc}
0 & e_{1}^{(E)} & e_{2}^{(E)} & e_{3}^{(E)} \tag{14}\\
-e_{1}^{(E)} & 0 & -e_{3}^{(B)} & e_{2}^{(B)} \\
-e_{2}^{(E)} & e_{3}^{(B)} & 0 & -e_{1}^{(B)} \\
-e_{3}^{(E)} & -e_{2}^{(B)} & e_{1}^{(B)} & 0
\end{array}\right)
$$

(Of course, there is a triplet of antisymmetric polarization tensors $e_{\mu \nu a}$ $(a=1,2,3)$ split into two triplets of linear polarizations $\vec{e}_{a}^{(E, B)}=\left(e_{k a}^{(E, B)}\right)$ $(a=1,2,3, k=1,2,3)$.)

If the fields $\vec{A}^{(E)}$ and $\vec{A}^{(B)}$ are independent (as can be in Eqs. (11)), then the corresponding polarizations form two independent triplets of orthonormal versors,

$$
\begin{equation*}
\vec{e}_{a}^{(E, B)} \cdot \vec{e}_{b}^{(E, B)}=\delta_{a b}(a, b=1,2,3), \quad \sum_{a=1}^{3} e_{k a}^{(E, B)} e_{l a}^{(E, B)}=\delta_{k l}(k, l=1,2,3) \tag{15}
\end{equation*}
$$

with $\vec{e}_{a}^{(E, B)}=\left(e_{k a}^{(E, B)}\right)(a=1,2,3, k=1,2,3)[2]$.
In place of the option of independent field components for A bosons, we will discuss in Section 3 an option with a simple natural constraint that may relate the fields $\vec{A}(E)$ and $\vec{A}{ }^{(B)}$ to each other in a relativistically covariant way, reducing their independent polarization degrees of freedom to three.

3. Option of $A_{\mu \nu} A^{\mu \nu}=0$ for A bosons

Consider the natural option, where the axial polarizations $\vec{e}_{a}^{(B)}(a=$ $1,2,3)$ are related to the polar polarizations $\vec{e}_{a}^{(E)}(a=1,2,3)$ through the constraint

$$
\begin{equation*}
\vec{e}_{1,2,3}^{(B)}=\vec{e}_{2,3,1}^{(E)} \times \vec{e}_{3,1,2}^{(E)} \tag{16}
\end{equation*}
$$

(both in right- and left-handed frame of reference), where

$$
\begin{equation*}
\vec{e}_{2,3,1}^{(E)} \times \vec{e}_{3,1,2}^{(E)}=(+ \text { or }-) \vec{e}_{1,2,3}^{(E)} \tag{17}
\end{equation*}
$$

in a right- or left-handed frame of reference, respectively. Thus, the constraint (16) can be trivially rewritten as

$$
\begin{equation*}
\vec{e}_{a}^{(B)}=(+ \text { or }-) \vec{e}_{a}^{(E)} \tag{18}
\end{equation*}
$$

$(a=1,2,3)$, showing that $\vec{e}_{a}^{(B)}$ are parallel or antiparallel to $\vec{e}_{a}^{(E)}$ and have the same magnitudes as $\vec{e}_{a}^{(E)}$,

$$
\begin{equation*}
\vec{e}_{a}^{(B) 2}=\vec{e}_{a}^{(E) 2} \tag{19}
\end{equation*}
$$

Then, from Eqs. (14) and (19) it follows that the products

$$
\begin{equation*}
e_{\mu \nu a} e_{a}^{\mu \nu}=2\left(\vec{e}_{a}^{(B) 2}-\vec{e}_{a}^{(E) 2}\right)=0 \tag{20}
\end{equation*}
$$

($a=1,2,3$) are relativistically covariant in a trivial way. Notice that, when $\vec{e}_{a}^{(E) 2}=1$, the orthonormal conditions (15) are valid in the present option as previously in the option of independent $\vec{e}_{a}^{(E)}$ and $\vec{e}_{a}^{(B)}(a=1,2,3)$, though now $\vec{e}_{a}^{(B)}$ are dependent on $\vec{e}_{a}^{(E)}$ (through Eqs. (18)).

For the field operators $\vec{A}^{(E, B)}(x)$, we can write in the Heisenberg picture that

$$
\begin{equation*}
\vec{A}^{(E, B)}(x)=\int d^{3} \vec{k}_{A} \sum_{a=1}^{3} a_{a}(\vec{k}, t) \frac{1}{(2 \pi)^{3 / 2}} \frac{1}{\sqrt{2 \omega_{A}}} \vec{e}_{a}^{(E, B)} e^{-i k_{A} \cdot x}+\text { h.c. } \tag{21}
\end{equation*}
$$

where the annihilation and creation operators, $a_{a}(\vec{k}, t)$ and $a_{a}^{\dagger}(\vec{k}, t)$, are the same for (E) and (B) components of $A_{\mu \nu}(x)$. In the case of constraint (18), we can infer from Eq. (21) that

$$
\begin{equation*}
\vec{A}^{(B)}(x)=(+ \text { or }-) \vec{A}^{(E)}(x) \tag{22}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\vec{A}^{(B) 2}(x)=\vec{A}^{(E) 2}(x) \tag{23}
\end{equation*}
$$

Then, Eqs. (7) and (23) imply that the product

$$
\begin{equation*}
A_{\mu \nu}(x) A^{\mu \nu}(x)=2\left[\vec{A}^{(B) 2}(x)-\vec{A}^{(E) 2}(x)\right]=0 \tag{24}
\end{equation*}
$$

is relativistically covariant in a trivial manner.
Thus, in conclusion, the new natural option, accepting the constraint (18) for the polarizations $\vec{e}_{a}^{(E)}$ and $\vec{e}_{a}^{(B)}$ or, equivalently, the constraint (22) for the fields $\vec{A}^{(B)}(x)$ and $\vec{A}^{(E)}(x)$, may be satisfactory in describing polarizations of the mediating A bosons in our model of hidden sector (communicating with the Standard-Model sector through the photonic portal). In this option, the parity is preserved by the new weak coupling (1) or (9) in the hidden sector. It is a scheme practically realizing three axial $\vec{e}_{a}^{(B)}$ in terms of three polar $\vec{e}_{a}^{(E)}$ in a relativistically covariant, trivial way. From the methodological point of view, the constraint (18) (see also its form (16)) has the character of a definition of $\vec{e}_{a}^{(B)}$ in terms of $\vec{e}_{a}^{(E)}$ that, in consequence, is included in the definition of field $A_{\mu \nu}(x)$.

In Sections 4 and 5, we will describe as an illustration two simple particle processes that may be important for the hypothetic phenomenology of A bosons.

4. Illustration 1: annihilation of a pair $\boldsymbol{A} \boldsymbol{A}$ into a pair $\gamma \gamma$

To illustrate the working of our formalism consider in the lowest order the annihilation channel $A A \rightarrow \varphi_{\mathrm{ph}}^{*} \gamma \varphi_{\mathrm{ph}}^{*} \gamma \rightarrow \gamma \gamma$ induced by the coupling

$$
\begin{equation*}
-\frac{1}{2} \sqrt{f} \varphi_{\mathrm{ph}} F_{\mu \nu} A^{\mu \nu} \tag{25}
\end{equation*}
$$

following from the interaction Lagrangian (1) with $\varphi=\langle\varphi\rangle_{\mathrm{vac}}+\varphi_{\mathrm{ph}}$.
The corresponding S-matrix element reads (in an obvious notation):

$$
\begin{align*}
& S(A A \rightarrow \gamma \gamma)=-i f\left[\frac{1}{(2 \pi)^{12}} \frac{1}{16 \omega_{1} \omega_{2} \omega_{A 1} \omega_{A 2}}\right]^{1 / 2}(2 \pi)^{4} \delta^{4}\left(k_{1}+k_{2}-k_{A 1}-k_{A 2}\right) \\
& \times \frac{1}{4}\left[\frac{1}{i} e_{2}^{\mu \nu}\left(k_{2 \mu} e_{2 \nu}-k_{2 \nu} e_{2 \mu}\right) \frac{1}{\left(k_{1}-k_{A 1}\right)^{2}-m_{\varphi}^{2}} \frac{1}{i}\left(k_{1 \rho} e_{1 \sigma}-k_{1 \sigma} e_{1 \rho}\right) e_{1}^{\rho \sigma}+\right. \\
& \left.+\frac{1}{i} e_{2}^{\mu \nu}\left(k_{1 \mu} e_{1 \nu}-k_{1 \nu} e_{1 \mu}\right) \frac{1}{\left(k_{2}-k_{A 1}\right)^{2}-m_{\varphi}^{2}} \frac{1}{i}\left(k_{2 \rho} e_{2 \sigma}-k_{2 \sigma} e_{2 \rho}\right) e_{1}^{\rho \sigma}\right], \tag{26}
\end{align*}
$$

where according to the matrix (14) for the antisymmetric polarization tensor $e_{\mu \nu}$ of A bosons we put

$$
e^{\mu \nu}=\left\{\begin{array}{ll}
e_{k}^{(E)} & \mu \nu=k 0, \tag{27}\\
-\varepsilon_{k l m} e_{m}^{(B)} & \mu \nu=k l, \\
-e_{l}^{(E)} & \mu \nu=0 l
\end{array} \quad(k, l=1,2,3)\right.
$$

and, subsequently, take into account the constraint (18)

$$
\begin{equation*}
\vec{e}^{(B)}= \pm \vec{e}^{(E)} \tag{28}
\end{equation*}
$$

in a right- or left-handed frame of reference, respectively. Then, in Eq. (26) there appears four times the expression of the type

$$
\begin{equation*}
\frac{1}{i} e^{\mu \nu}\left(k_{\mu} e_{\nu}-k_{\nu} e_{\mu}\right)=-\frac{1}{i} 2 \vec{e}^{(E)} \cdot(\omega \vec{e} \pm \vec{k} \times \vec{e}) \tag{29}
\end{equation*}
$$

Here, $\omega=|\vec{k}|$ and $\omega_{A}=\sqrt{\vec{k}_{A}^{2}+M^{2}}$, giving $\left(k-k_{A}\right)^{2}-m_{\varphi}^{2}=-2\left(\omega \omega_{A}-\vec{k}\right.$. $\left.\vec{k}_{A}\right)+M^{2}-m_{\varphi}^{2}$ with $\vec{k} \cdot \vec{k}_{A}=\omega \sqrt{\omega_{A}^{2}-M^{2}} \cos \theta_{\vec{k}}$.

From Eq. (26) we calculate the differential and total cross-sections for the channel $A A \rightarrow \gamma \gamma$:

$$
\begin{equation*}
\frac{d^{6} \sigma(A A \rightarrow \gamma \gamma)}{d^{3} \vec{k}_{1} d^{3} \vec{k}_{2}}=\frac{(2 \pi)^{6}}{v_{\mathrm{rel}}} \sum_{e_{1}} \sum_{e_{2}} \frac{1}{3} \sum_{e_{1}^{(E)}} \frac{1}{3} \sum_{e_{2}^{(E)}} \frac{|S(A A \rightarrow \gamma \gamma)|^{2}}{(2 \pi)^{4} \delta^{4}(0)} \tag{30}
\end{equation*}
$$

and (two photons are indistinguishable)

$$
\begin{equation*}
\sigma(A A \rightarrow \gamma \gamma)=\frac{1}{2} \int d^{3} \vec{k}_{1} d^{3} \vec{k}_{2} \frac{d^{6} \sigma(A A \rightarrow \gamma \gamma)}{d^{3} \vec{k}_{1} d^{3} \vec{k}_{2}} \tag{31}
\end{equation*}
$$

The result we obtain in the centre-of-mass frame, where $\vec{k}_{A 1}+\vec{k}_{A 2}=0$ and $v_{\text {rel }}=2 \sqrt{\omega_{A 1}^{2}-M^{2}} / \omega_{A 1}=2\left|\vec{k}_{A 1}\right| / \omega_{A 1}=2 v_{A 1}$, is

$$
\begin{equation*}
\sigma(A A \rightarrow \gamma \gamma) 2 v_{A 1}=\frac{1}{144 \pi \omega_{A 1}^{2}} \frac{\xi}{v_{A 1}^{2}}\left(\frac{\xi}{1-\xi^{2}}+\frac{1}{2} \ln \frac{1+\xi}{1-\xi}\right) \tag{32}
\end{equation*}
$$

with

$$
\begin{equation*}
\xi \equiv \frac{2 \omega_{A 1} \sqrt{\omega_{A 1}^{2}-M^{2}}}{2 \omega_{A 1}^{2}-M^{2}+m_{\varphi}^{2}}=\frac{2 \omega_{A 1}^{2}}{2 \omega_{A 1}^{2}-M^{2}+m_{\varphi}^{2}} v_{A 1} \tag{33}
\end{equation*}
$$

(here, of course, $\omega_{A 1}=\omega_{A 2}=\omega_{1}=\omega_{2}$ and $v_{A 1}=v_{A 2}$).
Note that for nonrelativistic A bosons (when $\omega_{A 1} \rightarrow M$) we get $\xi \rightarrow$ $\left[2 M^{2} /\left(M^{2}+m_{\varphi}^{2}\right)\right] v_{A 1}$. If it happens that $M^{2} \sim m_{\varphi}^{2}$ or $\gg m_{\varphi}^{2}$, then $\xi \rightarrow v_{A 1}$ or $2 v_{A 1}$, respectively. Thus, in the nonrelativistic case, we have from Eq. (32)

$$
\begin{equation*}
\sigma(A A \rightarrow \gamma \gamma) 2 v_{A 1} \rightarrow \frac{f^{2}}{72 \pi M^{2}}\left(\frac{2 M^{2}}{M^{2}+m_{\varphi}^{2}}\right)^{2} \sim \frac{f^{2}}{72 \pi M^{2}} \tag{34}
\end{equation*}
$$

the last step working if it happens that $M^{2} \sim m_{\varphi}^{2}$.

5. Illustration 2: decay of an \boldsymbol{A} boson into a fermion pair $\bar{f} f$

In contrast to sterinos, sterons and A bosons are not stable. For an illustration consider in the lowest order the decay channel $A \rightarrow \gamma^{*} \rightarrow \bar{f} f$, where f is a charged fermion (e.g. $f=e^{-}, \mu^{-}, p$). This process is induced by the coupling

$$
\begin{equation*}
-\frac{1}{2} \sqrt{f}\langle\varphi\rangle_{\mathrm{vac}} F_{\mu \nu} A^{\mu \nu}-e_{f} \bar{\psi}_{f} \gamma^{\mu} \psi_{f} A_{\mu} \tag{35}
\end{equation*}
$$

where the first term follows from the interaction Lagrangian (1) with $\varphi=$ $\langle\varphi\rangle_{\mathrm{vac}}+\varphi_{\mathrm{ph}}$, while the second presents the Standard-Model electromagnetic interaction for f fermions (e.g. $e_{f}=-e,-e, e$).

The corresponding S-matrix element reads (in an obvious notation):

$$
\begin{align*}
S(A \rightarrow \bar{f} f)= & -i e_{f} \sqrt{f}\langle\varphi\rangle_{\mathrm{vac}}\left[\frac{1}{(2 \pi)^{9}} \frac{m_{f}^{2}}{E_{1} E_{2} 2 \omega_{A}}\right]^{1 / 2}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-k_{A}\right) \\
& \times \frac{1}{2} \bar{u}\left(p_{1}\right) \frac{1}{i}\left(k_{A}^{\mu} \gamma^{\nu}-k_{A}^{\nu} \gamma^{\mu}\right) v\left(p_{2}\right) \frac{1}{k_{A}^{2}} e_{\mu \nu} \tag{36}
\end{align*}
$$

where the A-boson antisymmetric polarization tensor $e_{\mu \nu}$ is given as in Eq. (27) and the constraint (28) is taken into account. Then,

$$
\begin{equation*}
\left(k_{A}^{\mu} \gamma^{\nu}-k_{A}^{\nu} \gamma^{\mu}\right) e_{\mu \nu}=2\left[\omega_{A} \vec{\gamma}-\vec{k}_{A} \beta \mp\left(\vec{k}_{A} \times \vec{\gamma}\right)\right] \cdot \vec{e}^{(B)}=2 M \vec{\gamma} \cdot \vec{e}^{(E)} \tag{37}
\end{equation*}
$$

the last step being valid for the A boson at rest, where $\vec{k}_{A}=0$ and so, $\omega_{A}=M$. In this case, in consequence of energy-momentum conservation, $\vec{p}_{1}+\vec{p}_{2}=0$ and $E_{1}=E_{2}=\omega_{A} / 2=M / 2$.

From Eq. (36) we calculate the differential and total decay rates in the channel $A \rightarrow \bar{f} f$:

$$
\begin{equation*}
\frac{d^{6} \Gamma(A \rightarrow \bar{f} f)}{d^{3} \vec{p}_{1} d^{3} \vec{p}_{2}}=(2 \pi)^{3} \frac{1}{3} \sum_{e^{(E)}} \sum_{u} \sum_{v} \frac{|S(A \rightarrow \bar{f} f)|^{2}}{(2 \pi)^{4} \delta^{4}(0)} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma(A \rightarrow \bar{f} f)=\int d^{3} \vec{p}_{1} d^{3} \vec{p}_{2} \frac{d^{6} \Gamma(A \rightarrow \bar{f} f)}{d^{3} \vec{p}_{1} d^{3} \vec{p}_{2}} \tag{39}
\end{equation*}
$$

For the A boson at rest, we obtain

$$
\begin{equation*}
\Gamma(A \rightarrow \bar{f} f)=\frac{e_{f}^{2} f\langle\varphi\rangle_{\mathrm{vac}}^{2}}{12 \pi M} \frac{\left(M^{2}+2 m_{f}^{2}\right) \sqrt{M^{2}-4 m_{f}^{2}}}{M^{3}} \tag{40}
\end{equation*}
$$

When $M^{2} \gg m_{f}^{2}$, then Eq. (40) gives

$$
\begin{equation*}
\Gamma(A \rightarrow \bar{f} f) \simeq \frac{e_{f}^{2} f\langle\varphi\rangle_{\mathrm{vac}}^{2}}{12 \pi M} \sim \frac{e_{f}^{2} f M}{12 \pi} \tag{41}
\end{equation*}
$$

the last step applying if it happens that $M^{2} \sim\langle\varphi\rangle_{\mathrm{vac}}^{2}$.
Stable sterinos are candidates for thermal cold dark matter. In this case, under the tentative assumption that

$$
\begin{equation*}
m_{\psi}^{2} \sim\left(10^{-3} \text { to } 1\right)\langle\varphi\rangle_{\mathrm{vac}}^{2} \sim m_{\varphi}^{2}, \quad M^{2} \sim\langle\varphi\rangle_{\mathrm{vac}}^{2} \tag{42}
\end{equation*}
$$

and putting boldly

$$
\begin{equation*}
f \sim e^{2} \simeq 0.0917, \quad \zeta \sim 1 \tag{43}
\end{equation*}
$$

we estimate (in a similar way as in the third Ref. [1]) that

$$
\begin{equation*}
m_{\psi} \sim(13 \text { to } 770) \mathrm{GeV} \tag{44}
\end{equation*}
$$

This gives $M^{2} \sim(400 \text { to } 770)^{2} \mathrm{GeV}^{2}$. Here, the experimental value $\Omega_{\mathrm{DM}} h^{2} \sim 0.11$ is taken for the dark-matter relic abundance [4]. Then, the annihilation cross-section for an antisterino-sterino pair (improved in comparison with the third Ref. [1]) is equal to

$$
\begin{equation*}
\sigma_{\mathrm{ann}}(\bar{\psi} \psi) v_{\mathrm{rel}} \sim\left[\sigma\left(\bar{\psi} \psi \rightarrow \varphi_{\mathrm{ph}} \gamma\right)+(20 / 3 \text { to } 8) \sigma\left(\bar{\psi} \psi \rightarrow e^{+} e^{-}\right)\right] 2 v_{\psi} \sim \mathrm{pb} \tag{45}
\end{equation*}
$$

$\left(\mathrm{pb}=10^{-12} \mathrm{~b}=10^{-36} \mathrm{~cm}^{2}\right)$, where $3 \cdot[1+3 \cdot(4 / 9+1 / 9)]=8$ for $m_{t}<m_{\psi}$ $\sim 770 \mathrm{GeV}$ and without top quark $3+2 \cdot 3 \cdot(4 / 9+1 / 9)+3 \cdot(1 / 9)=20 / 3$ for $m_{t}>m_{\psi} \sim 13 \mathrm{GeV}$ (masses of active leptons and quarks are neglected versus $\left.E_{\psi} \sim m_{\psi}\right)$.

In the case of these assumptions, we can estimate from Eqs. (34) and (41) that

$$
\begin{equation*}
\sigma(A A \rightarrow \gamma \gamma) 2 v_{A 1} \sim(2.3 \text { to } 0.62) \times \frac{10^{-4}}{\mathrm{TeV}^{2}}=(0.088 \text { to } 0.024) \mathrm{pb} \tag{46}
\end{equation*}
$$

and

$$
\begin{align*}
& \quad \Gamma(A \rightarrow \bar{f} f) \sim(90 \text { to } 170) \mathrm{MeV}=\left(\frac{1}{0.72} \text { to } \frac{1}{0.38}\right) \times \frac{10^{23}}{\mathrm{~s}} \tag{47}\\
& (\hbar=1=c)
\end{align*}
$$

Appendix

Option of a dimensionless vector field gauging our mediating field
The sterile mediating field $A_{\mu \nu}$ of dimension one, discussed in this paper, is not gauged in the conventional manner i.e., it is not the four-dimensional curl of a vector field of dimension one, as in the case of electromagnetic field $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ gauged by the vector field A_{μ}. In this Appendix, we ask the question, what would happen, if the mediating field $A_{\mu \nu}$ (still of dimension one) were the four-dimensional curl of a new dimensionless vector field χ_{μ},

$$
\begin{equation*}
A_{\mu \nu}=\partial_{\mu} \chi_{\nu}-\partial_{\nu} \chi_{\mu} \tag{A.1}
\end{equation*}
$$

where, for simplicity, we would apply the analogue of electromagnetic Lorentz gauge

$$
\begin{equation*}
\partial_{\mu} \chi^{\mu}=0 \tag{A.2}
\end{equation*}
$$

giving $\partial^{\nu} A_{\mu \nu}=-\partial^{\nu} \partial_{\nu} \chi_{\mu}=\square \chi_{\mu}$.
In the case of option (A.1), the hidden-sector interaction Lagrangian (1) in Section 1 takes the form

$$
\begin{equation*}
-\frac{1}{2} \sqrt{f}\left(\varphi F^{\mu \nu}+\zeta \bar{\psi} \sigma^{\mu \nu} \psi\right)\left(\partial_{\mu} \chi_{\nu}-\partial_{\nu} \chi_{\mu}\right) \tag{A.3}
\end{equation*}
$$

that up to a four-divergence can be replaced by the coupling

$$
\begin{equation*}
-\sqrt{f}\left[\partial_{\nu}\left(\varphi F^{\mu \nu}+\zeta \bar{\psi} \sigma^{\mu \nu} \psi\right)\right] \chi_{\mu} \tag{A.4}
\end{equation*}
$$

Here, the formal current $\partial_{\nu}\left(\varphi F^{\mu \nu}+\zeta \bar{\psi} \sigma^{\mu \nu} \psi\right)$ (of dimension four) is identically conserved,

$$
\begin{equation*}
\partial_{\mu}\left[\partial_{\nu}\left(\varphi F^{\mu \nu}+\zeta \bar{\psi} \sigma^{\mu \nu} \psi\right)\right] \equiv 0 \tag{A.5}
\end{equation*}
$$

not providing a new gauge charge (of dimension one), since

$$
\begin{equation*}
Q^{(\chi)} \equiv \int d^{3} \vec{x} \partial_{\nu}\left(\varphi F^{0 \nu}+\zeta \bar{\psi} \sigma^{0 \nu} \psi\right)=0 \tag{A.6}
\end{equation*}
$$

$\left(F^{00}=0\right.$ and $\left.\sigma^{00}=0\right)$ due to the presence of ∂_{ν} at front of the integrand. However, this guarantees a trivial gauge invariance with respect to χ_{μ}, when the kinetic Lagrangian (of dimension four) for χ_{μ} is built up only from $A_{\mu \nu}$ (of dimension one) in the conventional way:

$$
\begin{equation*}
-\frac{1}{4}\left[\left(\partial_{\lambda} A_{\mu \nu}\right)\left(\partial^{\lambda} A^{\mu \nu}\right)-M^{2} A_{\mu \nu} A^{\mu \nu}\right] \tag{A.7}
\end{equation*}
$$

Then, the field equations (2) and (3) in Section 1 transit respectively into the forms
$\partial^{\nu}\left[F_{\mu \nu}+\sqrt{f} \varphi\left(\partial_{\mu} \chi_{\nu}-\partial_{\nu} \chi_{\mu}\right)\right]=-j_{\mu} \quad$ or $\quad \square A_{\mu}=-j_{\mu}-\sqrt{f} \partial^{\nu}\left[\varphi\left(\partial_{\mu} \chi_{\nu}-\partial_{\nu} \chi_{\mu}\right)\right]$
(with $\partial^{\nu} A_{\nu}=0$) and

$$
\begin{equation*}
\left(\square-M^{2}\right) \square \chi_{\mu}=-\sqrt{f} \partial^{\nu}\left(\varphi F_{\mu \nu}+\zeta \bar{\psi} \sigma_{\mu \nu} \psi\right) \tag{A.9}
\end{equation*}
$$

(with $\partial^{\nu} \chi_{\nu}=0$). We can derive Eq. (A.9) either applying the EulerLagrange equations to the Lagrangian involving $\chi_{\mu}, \partial_{\mu} \chi_{\nu}-\partial_{\nu} \chi_{\mu}$ and $\partial_{\lambda}\left(\partial_{\mu} \chi_{\nu}-\partial_{\nu} \chi_{\mu}\right)$ or acting on both sides of the field equation (3) with the operator ∂^{ν}. Note that in the low-momentum-transfer approximation, when \square can be neglected versus the large mass scale squared M^{2}, we obtain from Eq. (A.9)

$$
\begin{equation*}
\square \chi_{\mu} \simeq \frac{\sqrt{f}}{M^{2}} \partial^{\nu}\left(\varphi F_{\mu \nu}+\zeta \bar{\psi} \sigma_{\mu \nu} \psi\right) \tag{A.10}
\end{equation*}
$$

In contrast, for processes near the mass shell, $\square \sim M^{2}$, we can write $\left(\square-M^{2}\right) \chi_{\mu} \simeq\left(\sqrt{f} / M^{2}\right) \partial^{\nu}\left(\varphi F_{\mu \nu}+\zeta \bar{\psi} \sigma_{\mu \nu} \psi\right)$.

Now, consider for χ_{μ} the vacuum solution $\chi_{\mu}^{(\mathrm{vac})}$ to the field equation (A.9) (with $\langle\varphi\rangle_{\mathrm{vac}} \neq 0$ and $\varphi_{\mathrm{ph}}=0$ as well as $\psi=0$), satisfying, therefore, the simpler field equation

$$
\begin{equation*}
\left(\square-M^{2}\right) \square \chi_{\mu}^{(\mathrm{vac})}=-\sqrt{f}\langle\varphi\rangle_{\mathrm{vac}} \square A_{\mu}^{(\mathrm{vac})}=\sqrt{f}\langle\varphi\rangle_{\mathrm{vac}} j_{\mu}+f\langle\varphi\rangle_{\mathrm{vac}}^{2} \square \chi_{\mu}^{(\mathrm{vac})} \tag{A.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\square-\tilde{M}^{2}\right) \square \chi_{\mu}^{(\mathrm{vac})}=\sqrt{f}\langle\varphi\rangle_{\mathrm{vac}} j_{\mu} \tag{A.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{M}^{2}=M^{2}+f\langle\varphi\rangle_{\mathrm{vac}}^{2} \tag{A.13}
\end{equation*}
$$

In the particular case of electrically charged particle at rest at the point \vec{x}_{0}, where

$$
\begin{equation*}
j^{\mu}(\vec{x})=e_{0} g^{\mu 0} \delta^{3}\left(\vec{x}-\vec{x}_{0}\right) \tag{A.14}
\end{equation*}
$$

we get from Eq. (A.12)

$$
\begin{align*}
\chi_{\mu}^{(\mathrm{vac})}(\vec{x}) & =-\left(\frac{1}{\Delta}-\frac{1}{\Delta-\tilde{M}^{2}}\right) \frac{1}{\tilde{M}^{2}} \sqrt{f}\langle\varphi\rangle_{\mathrm{vac}} e_{0} g_{\mu 0} \delta^{3}\left(\vec{x}-\vec{x}_{0}\right) \\
& =\frac{e_{0} \sqrt{f}\langle\varphi\rangle_{\mathrm{vac}}}{\tilde{M}^{2}} \frac{g_{\mu 0}}{4 \pi\left|\vec{x}-\vec{x}_{0}\right|}\left(1-e^{-\tilde{M}\left|\vec{x}-\vec{x}_{0}\right|}\right) \tag{A.15}
\end{align*}
$$

$\left(\square=\Delta-\partial_{0}^{2}\right)$. We can see that here $\chi_{\mu}^{(\mathrm{vac})}$ is spontaneously generated by $\langle\varphi\rangle_{\text {vac }} \neq 0$ via the field equation (A.12). In the low-momentum-transfer approximation, we can put $\tilde{M}\left|\vec{x}-\vec{x}_{0}\right| \gg 1$ and hence obtain

$$
\begin{equation*}
\chi_{\mu}^{(\mathrm{vac})}(\vec{x}) \simeq \frac{e_{0} \sqrt{f}\langle\varphi\rangle_{\mathrm{vac}}}{\widetilde{M}^{2}} \frac{g_{\mu 0}}{4 \pi\left|\vec{x}-\vec{x}_{0}\right|} . \tag{A.16}
\end{equation*}
$$

Thus, in this approximation, the Coulomb-like dependence on $\left|\vec{x}-\vec{x}_{0}\right|$ dominates in $\chi_{\mu}^{(\mathrm{vac})}$ given in Eq. (A.15).

The space-integrated interaction energy of two charged particles at rest at the points \vec{x}_{0} and \vec{x}_{0}^{\prime}, corresponding to the solution (A.15) for $\chi_{\mu}^{(\mathrm{vac})}$, is equal to (cf. Eq. (A.4)):

$$
\begin{align*}
V^{(\mathrm{vac})} & =-\int d^{3} \vec{x} \sqrt{f}\langle\varphi\rangle_{\mathrm{vac}} \partial_{\nu}\left[F^{0 \nu}(\vec{x})\right] \chi_{0}^{\prime(\mathrm{vac})}(\vec{x}) \\
& =\int d^{3} \vec{x} \sqrt{f}\langle\varphi\rangle_{\mathrm{vac}} j^{0}(\vec{x}) \chi_{0}^{\prime(\mathrm{vac})}(\vec{x})+O\left(f^{2}\right) \\
& =\frac{e_{0} e_{0}^{\prime}}{4 \pi} \frac{f\langle\varphi\rangle_{\mathrm{vac}}^{2}}{\tilde{M}^{2}} \frac{1}{\left|\vec{x}_{0}-\vec{x}_{0}^{\prime}\right|}\left(1-e^{-\tilde{M}\left|\vec{x}_{0}-\vec{x}_{0}^{\prime}\right|}\right)+O\left(f^{2}\right) \\
& =V^{(\mathrm{vac})}\left(\left|\vec{x}_{0}-\vec{x}_{0}^{\prime}\right|\right) \tag{A.17}
\end{align*}
$$

where $\chi_{0}^{\prime(\text { vac })}(\vec{x})=\left(e_{0}^{\prime} \sqrt{f}\langle\varphi\rangle_{\mathrm{vac}} / \tilde{M}^{2}\right)\left[1-\exp \left(-\tilde{M}\left|\vec{x}-\vec{x}_{0}^{\prime}\right|\right)\right] /\left(4 \pi\left|\vec{x}-\vec{x}_{0}^{\prime}\right|\right)$ due to Eq. (A.15). For $\tilde{M}\left|\vec{x}_{0}-\vec{x}_{0}^{\prime}\right| \rightarrow 0$ or ∞, the energy (A.17) tends to $\left(e_{0} e_{0}^{\prime} / 4 \pi\right) f(\varphi\rangle_{\text {vac }}^{2} / \tilde{M}$ or $\left(e_{0} e_{0}^{\prime} / 4 \pi\right) f\langle\varphi\rangle_{\text {vac }}^{2} /\left(\tilde{M}^{2}\left|\vec{x}_{0}-\vec{x}_{0}^{\prime}\right|\right) \rightarrow 0$, respectively.

This not-observed-yet correction to the Coulomb energy $e_{0} e_{0}^{\prime} /\left(4 \pi \mid \vec{x}_{0}-\right.$ $\left.\vec{x}_{0}^{\prime} \mid\right)$ of two charged particles, generated spontaneously by $\langle\varphi\rangle_{\mathrm{vac}} \neq 0$, would require a really small value for the constant $f\langle\varphi\rangle_{\text {vac }}^{2} /\left(M^{2}+f\langle\varphi\rangle_{\text {vac }}^{2}\right)$ (multiplied by $\left.1-\exp \left(-\tilde{M}\left|\vec{x}_{0}-\vec{x}_{0}^{\prime}\right|\right)\right)$ in order to be potentially acceptable. In the case of tentative assumption (42) in Section 5, where $M^{2} \sim\langle\varphi\rangle_{\mathrm{vac}}^{2}$ and boldly $f \sim e^{2} \simeq 0.0917$, the value of $f\langle\varphi\rangle_{\text {vac }}^{2} / \tilde{M}^{2} \sim e^{2} /\left(1+e^{2}\right) \simeq 0.0840$ is dangerously large, so that our correction to the Coulomb energy ought to be seen in experiment. Since it is not yet, this may suggest a smaller value for f. Then, $m_{\psi} \propto f$ becomes also smaller.

Finally, we would like to point out that our previous option discussed in Section 3, based on the constraint (22), $\vec{A}^{(B)}(x)=(+$ or -$) \vec{A}^{(E)}(x)$, is in contradiction with the new option (A.1) which can be considered as an "orthogonal" proposal. In fact, making use of the relations $A_{k}^{(E)}=A_{0 k}$ and $A_{k}^{(B)}=-(1 / 2) \varepsilon_{k l m} A_{l m}(k=1,2,3)$ (cf. Eq. (7)), we obtain from Eq. (A.1) that

$$
\begin{equation*}
\vec{A}^{(E)}=-\partial_{0} \vec{\chi}-\vec{\partial} \chi_{0}, \quad \vec{A}(B)=\vec{\partial} \times \vec{\chi} \tag{A.18}
\end{equation*}
$$

where $\vec{A}(E, B)=\left(A_{k}^{(E, B)}\right),\left(\chi^{\mu}\right)=\left(\chi^{0}, \vec{\chi}\right),\left(\partial_{\mu}\right)=\left(\partial_{0}, \vec{\partial}\right)$. Hence, applying also Eq. (A.2), we get two pairs of Maxwell-type equations (but of dimension two instead of dimension three):

$$
\begin{equation*}
\vec{\partial} \times \vec{A}^{(E)}=-\partial_{0} \vec{A}^{(B)}, \quad \vec{\partial} \cdot \vec{A}^{(B)}=0 \tag{A.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{\partial} \times \vec{A}^{(B)}=\partial_{0} \vec{A}^{(E)}-\square \vec{\chi}, \quad \vec{\partial} \cdot \vec{A}^{(E)}=-\square \chi^{0} \tag{A.20}
\end{equation*}
$$

where $-\left(\square-M^{2}\right) \square \chi^{\mu}$ is equal to the formal current $\sqrt{f} \partial_{\nu}\left(\varphi F^{\mu \nu}+\zeta \bar{\psi} \sigma^{\mu \nu} \psi\right)$ (of dimension four) according to Eq. (A.9).

In the case of free wave functions (12) of an A boson, we infer from Eqs. (A.19) that

$$
\begin{equation*}
\vec{k}_{A} \times \vec{e}_{a}^{(E)}=\omega_{A} \vec{e}_{a}^{(B)}, \quad \vec{k}_{A} \cdot \vec{e}_{a}^{(B)}=0 \quad(a=1,2) \tag{A.21}
\end{equation*}
$$

(not $a=1,2,3$), where $\left(k_{A}^{\mu}\right)=\left(\omega_{A}, \vec{k}_{A}\right)$ with $\omega_{A}=\sqrt{\vec{k}_{A}^{2}+M^{2}}$. We choose $\vec{e}_{1}^{(E, B)} \cdot \vec{e}_{2}^{(E, B)}=0$. Now, the field operators $\vec{A}^{(E, B)}(x)$ in the Heisenberg picture are given as in Eq. (21), but with the summation over $a=1,2$. The first relation (A.21) is really "orthogonal" to the constraint (18), $\vec{e}_{a}^{(B)}=$ $(+$ or -$) \vec{e}_{a}^{(E)}(a=1,2,3)$, considered in Section 3. With the ansatz

$$
\begin{equation*}
\vec{k}_{A} \cdot \vec{e}_{a}^{(E)}=0 \quad(a=1,2) \tag{A.22}
\end{equation*}
$$

and the choice $\vec{e}_{a}^{(E) 2}=1$, the relations (A.21) define two orthogonal triplets $\vec{e}_{a}^{(E)}, \vec{e}_{a}^{(B)}, \vec{k}_{A} / \omega_{A}$, where $\vec{e}_{a}^{(B) 2}=1-M^{2} / \omega_{A}^{2}<1$ and $\left(\vec{k}_{A} / \omega_{A}\right)^{2}=1-$ $M^{2} / \omega_{A}^{2}<1$, so that the vectors $\vec{e}_{a}^{(B)}$ and $\left(\vec{k}_{A} / \omega_{A}\right)$ are not versors (they become such in the limit of $\left.\omega_{A}^{2} / M^{2} \rightarrow \infty\right)$. The versors $\vec{e}_{a}^{(E)}(a=1,2)$ can be treated as two independent linear polarizations of an A boson.

The first Eq. (A.21)together with Eq. (A.22) implies that

$$
\begin{equation*}
\vec{k}_{A} \times \vec{e}_{a}^{(B)}=-\omega_{A}\left(1-M^{2} / \omega_{A}^{2}\right) \vec{e}_{a}^{(E)} \quad(a=1,2) \tag{A.23}
\end{equation*}
$$

The last relation and the relation (22) show that the free gauging wave function $\chi_{a \vec{k}_{A}}^{\mu}(x)$ of an A boson may be presented as

$$
\begin{equation*}
\chi_{a \vec{k}_{A}}^{\mu}(x)=\frac{1}{(2 \pi)^{3 / 2}} \frac{1}{\sqrt{2 \omega_{A}}} \frac{1}{i \omega_{A}} e_{a}^{\mu} e^{-i k_{A} \cdot x} \tag{A.24}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(e_{a}^{\mu}\right)=\left(0, \vec{e}_{a}^{(E)}\right) \quad(a=1,2) \tag{A.25}
\end{equation*}
$$

Then, due to the first Eq. (A.21) and Eq. (A.22), it satisfies together with $A_{a \vec{k}_{A}}^{\mu \nu_{1}}(x)$ its defining formulae (A.1) and (A.2). Here, $\chi_{a \vec{k}_{A}}^{0}(x)=0$ in consequence of the ansatz (A.22).

REFERENCES

[1] W. Królikowski, arXiv:0803.2977[hep-ph]; Acta Phys. Pol. B 39, 1881 (2008); Acta Phys. Pol. B 40, 111 (2009); Acta Phys. Pol. B 40, 2767 (2009).
[2] W. Królikowski, arXiv:0909.2498[hep-ph]; arXiv:0911.5614[hep-ph].
[3] Cf. e.g. J. March-Russell, S.M. West, D. Cumberbath, D. Hooper, J. High Energy Phys. 0807, 058 (2008).
[4] C. Amsler et al., [Particle Data Group], Phys. Lett. B667, 1 (2008).

