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Dynamical properties of diffusion process on complex networks with ar-
bitrary degree distribution are investigated. The rule of the diffusion pro-
cess encompasses both the structural characteristics and the information
processing dynamics. Considering the influence of a node on the global dy-
namical behavior, the dynamical generating function of the process, which
is deeply reflecting the basic characteristic of the process and mutually de-
cided with the dynamical process, is proposed. Based on the analysis of the
dynamical generating function we introduce dynamical centrality for each
node, which determines the relative importance of nodes and the capability
of the given node to collect and communicate information with its neigh-
bouring environment in the network via the diffusion process. Furthermore,
a new parameter, dynamical entropy, is proposed to measure the interplay
between dynamical centrality and diffusion dynamics. The experimental
results on large-scale complex networks with Poisson distribution confirm
our analytical prediction.

PACS numbers: 89.75.Hc, 05.40.Fb, 05.60.Cd

1. Introduction

In the past decades, various topological and dynamical properties of net-
works resulting from real systems have attracted many researchers in diverse
fields [1–5]. The inherent complexity of networks results in rich behaviors
in the dynamical processes of the physical systems depending on the topo-
logical structure of networks. For example, random walk [5–8], in addition
to biased random walk [9], has been widely investigated to understand the
† zhangzhl@pku.edu.cn

(1355)



1356 Z. Zhang et al.

essential dynamical properties of physical systems on networks [10–12] and
also has many practical applications to real networks such as information
searching in the Internet, and so on [13–16].

Based on the random walk on complex networks, evaluation of the im-
portance of nodes and edges is widely used in analysis of complex networks.
To evaluate the importance, various centrality measures, e.g., degree cen-
trality, closeness centrality, and betweenness centrality, have been proposed
[17–19]. For example, betweenness centrality (BC) [20] is introduced as a
good approximation for the quantity of information passing through a node
in communication networks [21,22]. However, BC is just relying on the short-
est paths that is the unbiased dynamical process with treating the neighbors
equally.

In the informational sense, the entropy is a measure of the uncertainty
about dynamical behaviors of the network. In a network with higher en-
tropy, more information is needed to describe its future behavior, and its
effective complexity is higher [23,24]. In the field of complex networks, en-
tropy has been applied to characterize the topological properties, such as the
degree distribution [25], the shortest paths between couples of nodes [26],
and even more the dynamical processes on complex networks [27]. Recently,
the entropy rate of a diffusion process was introduced in Ref. [28] to char-
acterize a diffusion process. Combining the maximum entropy principle, it
is possible to design optimal diffusion processes. Furthermore, in Ref. [29],
a new class of random walk processes was introduced, the maximal entropy
random walk (MERW), which induced a surprising effect of localization in
the presence of weak disorder. Alternatively, many results on entropy are
associated with the structure of the network, or the information flow on the
network respectively. They are rarely functions comprehending the structure
and the information flow on the network.

The main theoretical and empirical problem in the study of complex
networks is how to construct a function which can closely incorporate the
structure of the network and the dynamical process on it. Many interaction
dynamics in social, biological and technological systems can be analyzed in
terms of diffusion processes on complex networks, e.g., information diffusion
and disease spreading [30,31]. It is, therefore, utmost important to relate the
properties of a diffusion process with network structure and the information
flow on it.

In this paper, we investigate the dynamical properties of the diffusion
process on complex networks. The structure of this paper is as follows. In
Section 2, we review the diffusion process on complex networks, in which the
rule of the diffusion process comprehends both the structural characteristics
and the information flow. In Section 3, we discuss the dynamical generat-
ing function for diffusion process, which can be mutually decided with the
dynamical process. For special cases, the dynamical generating function is
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evolved to the generating function of the topological structure and the infor-
mation function of the dynamical process. In Section 4, the dynamical cen-
trality, which exhibits the capability of a node collecting and communicating
information with its neighbor environment over the network in the diffusion
process is proposed. Furthermore, to measure the interplay between dynam-
ical centrality and diffusion process, a new parameter, dynamical entropy,
is deeply investigated and the experimental results on large-scale complex
networks with Poisson distribution are given. In Section 5, the conclusion
is given and the prospect is deeply discussed.

2. Diffusion process on complex networks

We consider a connected undirected graph G with nodes {1, 2, · · · , N}
and m links, described by the adjacency matrix A = (aij)N×N and degree
sequence {k1, · · · , kN} which satisfies ki =

∑
j aij and

∑
i ki = 2m.

Consider a packet as a random walker that hops at discrete time series:
a packet at node i and time t will choose one of its neighbors j to hop to
with some probability pij . Here, take

pij =
aijk

α
j

N∑
j=1

aijkαj

, (1)

where α is the adjustment parameter between the global structure and the
degree of a node [9]. If the random walker deals with the neighbor nodes
indiscriminately, that is, it does not consider the properties of the neighbors,
but the connectedness of the graph, we take α = 0. But if the walker is
predisposed to the degree of the nodes, we take α > 0 (α < 0) for the trend
to the high (low) degree nodes.

We denote P = (pij)N×N as the probability transition matrix. Supposing
the packet starts at node i0 at time t = 0, we define fi0j(t) as the probability
that the packet stays at node j and time t with the initial state i0. Then
the master equation [6] for the probability fi0j(t) is

fi0j(t+ 1) =
N∑
l=1

plj fi0l(t) . (2)

Let f(t) = (f1(t), f2(t), · · · , fN (t)), where fj(t) = fi0j(t) is the probability
that the random walker locates at node j at time t, we obtain that f(t+1)
= Pf(t). Denote f∞j = limt→∞ fi0j(t), which is the probability that the
random walker stays at node j in the stationary state. By Parron–Frobenius
theorem, f∞j uniquely exists and has no correlation with the initial position
of the random walker [32].
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As the adjacency matrix of undirected graph is symmetric, if there is
a path from i to j represented as (i, j1, j2, · · · , jt−1, j), there must be the
corresponding path from j to i (j, jt−1, · · · , j2, j1, i). Then

fij(t) =
∑

j1,j2,···,jt−1

kαj1∑
l ailk

α
l

· · ·
kαj∑

l ajt−1lk
α
l

, (3)

and

fji(t) =
∑

j1,j2,···,jt−1

kαjt−1∑
l ajlk

α
l

· · · kαi∑
l aj1lk

α
l

. (4)

Denoting di(α) =
∑

l ailk
α
l , we get

di(α)kαi fij(t) = dj(α)kαj fji(t) .

Let t→∞, then
di(α)kαi f

∞
j = dj(α)kαj f

∞
i .

Hence
f∞i =

di(α)kαi∑
i di(α)kαi

. (5)

By equation (5), we can calculate the probability that the random walker
stays at node i in the stationary state. Especially, when α = 0, di(0) =∑

j aij = ki, it is just the stationary distribution of the unbiased random
walk [6]

f∞i =
ki∑
i ki

=
ki
2m

, (6)

which shows that the biased random walk is popularization of unbiased
random walk on complex networks.

3. Dynamical generating function of diffusion process

The main theoretical and empirical interest in the study of complex
networks is how to construct a function which can closely comprehend the
structure of the network and the dynamical process on it. As the dynamical
process of the physical systems depending on the structure of the under-
ling networks can be expressed by the diffusion process, we can analyze
the properties of diffusion process to comprehend the dynamical process.
The dynamical generating function F (x, t) of the diffusion process is defined
as follows,

F (x, t) =
N∑
i=1

∞∑
k=1

p(k) [fi(t)x]
k , (7)
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in which p(k) is the degree distribution of G (we just consider connected
undirected networks, then p(0) = 0).

Regarding x ≤ 1, we get

F (x, t) =
N∑
i=1

∞∑
k=1

p(k) [fi(t)x]
k

≤
N∑
i=1

∞∑
k=1

p(k)fi(t)k

≤
N∑
i=1

∞∑
k=1

p(k)fi(t) = 1 . (8)

As a consequence, F (x, t) is convergent for all t ≥ 0 and x ≤ 1.
Further understanding of the dynamical generating function F (x, t)

can be achieved from the following two special cases.

Case 1: Generating function of topology structure
At time t = 0, there is only one walker at the initial node i0 and no

walkers at the other nodes, i.e.

fj(0) =
{

1 , for the initial node i0 ,
0 , j 6= i0 .

Then

F (x, 0) =
∞∑
k=1

p(k)xk = G(x)− p(0) , (9)

and

G(x) =
∞∑
k=0

p(k)xk = F (x, 0) + p(0) , (10)

which is exactly the generating function of the degree distribution. For the
structure of the underling networks, the mathematics of generating functions
can be used to calculate exactly many of the statistical properties of complex
networks [4].

Case 2: Information function of random walk
Since the dynamical process can be expressed by the diffusion process,

by the dynamical generating function, we define the information function
for any time t as

H(t) = F (1, t) =
N∑
i=1

∞∑
k=1

p(k)fi(t)k =
N∑
i=1

qi(t) , (11)



1360 Z. Zhang et al.

where qi(t) =
∑∞

k=1 p(k)fi(t)
k. After normalization, replace qi(t) with

hi(t) =
qi(t)∑
i qi(t)

=

∞∑
k=1

p(k)fi(t)k

N∑
i=1

∞∑
k=1

p(k)fi(t)k
. (12)

For node i with degree k, fi(t)k reflects the contribution of node i to its
neighbors. qi(t) is the average contribution of node i for different degrees,
and hi(t) is the normalized contribution which can be considered as the
dynamical centrality of vertex i.

Considering the case α = 0 when the random walk is unbiased, the
stationary distribution is

f∞i =
ki
2m

.

As an application, we analyze the random walk on a random graph,
the degree distribution of which is p(k) = e−cck/k! with average degree c.
If the graph is unconnected, we consider the random walk on each con-
nected component respectively, and then make a normalization over the
whole graph. The stationary distribution for a component with mc edges
is f∞ic = ki/(2mc). Normalizing it over the whole graph we get f∞i =
f∞ic (2mc)/2m = ki/2m, and then

qi(∞) =
∞∑
k=1

e−c
ck

k!

(
ki
2m

)k
= e

c
“
ki
2m
−1
”
− e−c , (13)

H(∞) =
N∑
i=1

ec(ki/2m−1) −Ne−c . (14)

To get the average degree c at which the information function reaches
the maximum value, let

∂H

∂c
=

N∑
i=1

e
c
“
ki
2m
−1
”(

ki
2m
− 1
)

+Nec = 0 , (15)

we apply mean field approximation to equation (15), then

c = ln
(

1 +
1

N − 1

)N
. (16)

From equation (16), we obtain that, the information function achieves
the maximum value at c = 1 when N →∞.
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For random graphs with N = 103 but different average degrees, we
simulate the information function H(∞) for different α = 0, 1, 2 and show
the corresponding results in Fig. 1 which satisfies our analysis perfectly. It
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Fig. 1. The information functionH(t) when t→∞ changes with the average degree
c of the random graph with N = 103 when α = 0, 1, 2.

reveals that the giant component appears when the average degree c gets
over 1 [33]. Once c < 1, the largest component increases quickly along
with the increase of the average degree c, and the amount of information
received by the random walker also increases. As c > 1, the increasing speed
of the giant component size slows down[33], and the amount of information
received by the random walker continues increasing. However, the increasing
rate is lower than that of the time consumed, which induces that the average
efficient information H(∞) decreases along with the increase of c. In the
detailed figure in Fig. 1, we can see that the information function increases
along with the increase of the adjustment parameter α. We verify it as
follows.

For α 6= 0 ,

f∞i =
di(α)kαi∑
i
di(α)kαi

,

the average contribution of node i is

qi(∞) =
N∑
k=1

e−c
ck

k!

 di(α)kαi∑
i
di(α)kαi

k

= e
c

 
di(α)kαiP
i
di(α)kα

i
−1

!
− e−c , (17)
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and the relative information function is

H(∞) =
N∑
i=1

e
c

 
di(α)kαiP
i
di(α)kα

i
−1

!
−Ne−c . (18)

When the random walk is unbiased, the diffusion behavior just relates
to the structure of the random graph and does not reflect the information
flow on it, which makes the total amount of information small. When the
parameter α increases, behaviors of the information do not only depend
on the structure, but also rely on the information flow, which leads to the
value of information increase along with the increase of parameter α. The
information function H(∞) on the random graph for different adjustment
parameter α is shown in Fig. 2, which fits our analysis very well.
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Fig. 2. The information function H(t) when t → ∞ changes with the adjustment
parameter α of the random graph with N = 103 when c = 2.

4. The dynamical centrality and entropy

From equation (12), hi(t) is the normalized contribution which is defined
as the dynamical centrality of vertex i. Considering the biased random walk
on random networks with different α, the dynamical centrality is

hi(∞) =
e
c

 
di(α)kαiP
i
di(α)kα

i
−1

!
− e−c

N∑
i=1

e
c

 
di(α)kα

iP
i
di(α)kα

i
−1

!
−Ne−c

. (19)
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In Fig. 3, for α = −100, −2, 0, 2, 100, the dynamical centrality h for the
nodes with different degrees is shown.
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Fig. 3. The dynamical centrality h changes with the degree of node k when
α = −100, −2, 0, 2, 100.

When α < 0, the random walker tends to visit the low degree nodes which
have more chance to attract the random walker, and then the dynamical
centrality of such nodes is relatively larger than that of the nodes with higher
degrees. When α = 0, there is no difference between nodes, and the random
walker hops to the neighbors with equal probability. The higher the degree,
the more important the node, i.e., the dynamical centrality is decided by
the degree directly. In contrast to the case of α < 0, when α > 0 the
random walker is attracted by the nodes with high degrees which perfom
more importance than those with low degrees. For the extreme cases of
α→ ±∞ represented in Fig. 3 as α = ±100, the most dynamical important
nodes are just focused on very few nodes whose dynamical centrality is
nonzero, while others are zero. That is, when α → ±∞, these few nodes
play the critical role in the dynamical process.

Generally, different cases of α result in different rules of the diffusion
process. The stationary distribution depends on not only the degree, but also
the information flow. Thus, nodes with the same degree can have different
dynamical centrality h which is an exact annotation for the importance
of node in the dynamical process. In summary, α can be modulated to
distinguish the different important nodes in the dynamical process.
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Entropy is a measure of randomness and confusion. To measure the
interplay between dynamical centrality and diffusion dynamics, the dynam-
ical properties can be accounted by dynamical entropy which is defined as
follows:

RWE(t) = −
N∑
i=1

hi(t) ln(hi(t)) , (20)

where hi(t) is the dynamical centrality of node i. Since hi(t) reflects the
importance of node i attracting the random walker, RWE(t) measures the
confusion state of the walker at time t.

For different α,

hi(∞) =

∞∑
k=1

p(k)

(
di(α)kαiP
i
di(α)kαi

)k
N∑
i=1

∞∑
k=1

(
di(α)kαiP
i
di(α)kαi

)k . (21)

For the random graph, we have

hi(∞) =
e
c

 
di(α)kαiP
i
di(α)kα

i
−1

!
− e−c

N∑
i=1

e
c

 
di(α)kα

iP
i
di(α)kα

i
−1

!
−Ne−c

. (22)

Applying equation (22) into equation (20), experimental results of the dy-
namical entropy for α = 0, 1, 2 and the average trend for RWE along with
average degree c are shown in detail in Fig. 4.

As the average degree c increases, the random walker can arrive at more
and more nodes, and the final state is more and more jumbled, which in-
duce the increase of the dynamical entropy RWE. As the scale of the giant
component increases slowly when c > 1 [33], the dynamical entropy RWE
performs little increase. According to the Maximum Entropy Principle [34],
to investigate dynamical process on the network globally, we can add edges
into the network until the giant cluster appears.

In intuition, the RWE decreases along with the increase of α in Fig. 4.
To show the detailed difference of the RWE among different adjustment
parameter α, numerical verifications are carried out at c = 3, 4, 5 and the
average trend for RWE along with the adjustment parameter α is described,
see Fig. 5.
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Fig. 4. The dynamical entropy RWE(t) when t → ∞ as a function of the average
degree c of the random graph with N = 103 when α = 0, 1, 2 is in the main graph,
and the subgraph is the average dynamical entropy as a function of c.
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in the main graph, and the subgraph is the average dynamical entropy as a function
of α.
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When α increases, the random walker is more inclined to access the nodes
with high degrees. A little change of degree can lead to enormous change
of the attracting ability. Thus, the nodes with large dynamical centrality
concentrates on fewer high-degree nodes as α increases, and the walker is
more inclined to such more dynamical important nodes, which cause decrease
of the level of the confusion and the dynamical entropy RWE decreases, too.

To measure the dynamical centrality on the complex networks, we con-
sider the diffusion process on networks with 1000 nodes and the average
degree c = 5, and remove either (i) the most dynamically important nodes,
(ii) the nodes with highest degree ki, (iii) random nodes. After remov-
ing m nodes, we recalculate the dynamical entropy RWE(m). In Fig. 6,
RWE(m)/RWE(0) is shown as a function of m. When α < 0, the nodes
with low degree contribute more in the dynamical process. In contrary, the
nodes with high degree contribute more when α > 0, and the degree central-
ity is just a special situation of the dynamical centrality when α = 0, which
is reflected in Fig. 6. All these numerical figures show that the dynami-
cal centrality has great influence on the dynamical process on the complex
networks.
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centrality, degree, and random.

5. Conclusion

In summary, we have investigated in detail the dynamical properties of
the diffusion process on complex networks, in which the rule of the diffusion
process comprehends both the structural characteristics and the informa-
tion flow. Contrast to the generating function of the topological structure,
the dynamical generating function for the diffusion process, which is mutu-
ally decided with the dynamical process, is introduced and deeply analyzed.
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Specially, the dynamical generating function can be evolved to the generat-
ing function of the topological structure and the information function of the
information flow. For various discussed centrality measures mainly based on
unbiased dynamical process with treating the neighbors equally, the dynam-
ical centrality of nodes, exhibiting the capability of a node collecting and
communicating information with its neighbor environment over the network
in the diffusion process is introduced and employed to evaluate the average
contribution of node during the biased process. Furthermore, a new pa-
rameter, dynamical entropy, is proposed to measure the interplay between
dynamical centrality and diffusion dynamics that can measure the confu-
sion at the stationary state. Experimental results on large-scale complex
networks confirm our analytical prediction.

In this paper, the parameter α is considered as a constant all over the
process, but in the diffusion process of realistic self-adaptive networks, e.g.
traffic network and World Wide Web, it has to regulate itself in the diffusion
process to optimize the transmission capability over the network. That is,
when there are some nodes overloaded, we should modulate α to mitigate
the transmission loads to others. In the future work, dynamical self-adaptive
parameter α(t) will be considered to realize the network optimization.

This work is supported by the National Key Basic Research Project of
China, grant No. 2005CB321902, the National Natural Foundation of China,
grant No. 60473019.
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