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We compare impulsively generated vertical oscillations in three-dimen-
sional (3D) and two-dimensional (2D) solar coronal arcade loops. 3D and
2D magnetohydrodynamic equations are solved numerically in the limit of
ideal plasma. Numerically obtained wave signatures are analyzed to reveal
characteristic spatial and temporal scales. The numerical results show that
in 2D case wave period is slightly longer than in 3D one. These results are
reminiscent of the recent Hinode data.
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1. Introduction

Coronal loops are dense magnetic structures that reside in the solar
corona. Because of strong magnetic forces compared to the hydrostatic pres-
sure mater is trapped along the the field lines creating characteristic smooth
bands. These structures are able to sustain various types of oscillations some
of which are interpreted as magnetohydrodynamic (MHD) waves [1]. Among
these waves standing fast magnetoacoustic kink oscillations were detected
in horizontal [2, 3] and vertical polarizations [4].

Recently, these standing fast magnetoacoustic oscillations became a sub-
ject of intensive theoretical investigations. For instance, Verwichte et al. [5]
considered the loop as a 2D curved magnetic slab and showed that the kink
oscillations can be a subject to lateral wave leakage. Andries et al. [6] showed
numerically that the frequency and spatial structure of the trapped modes
were affected by density variations along the loop. Then Andries and also
Diáz [6,7] addressed this problem analytically. Gruszecki [8] included a dense
photosphere-like layer and found that energy leakage into this layer results
in stronger wave attenuation than in the case line-tying boundary condi-
tions, action of this layer is mimicked by implementation [9]. In another
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approach, Gruszecki, Murawski [10] showed that in the 2D curved coronal
loop the effect of gravity results in a decrease of a wave period and in an
increase of attenuation time. Ofman [11] discussed horizontal oscillations of
an active region loop that was embedded in an isothermal plasma. He found
that these oscillations were rapidly attenuated. Pascoe [12] considered, by
numerical simulations, impulsively generated horizontal oscillations of a 3D
loop. They showed that the fundamental mode of these oscillations exhibited
a 30% smaller wave period than the theoretically predicted value [13].

Vertical oscillations of a 3D loop in a gravitationally stratified solar
corona have not been studied so far. A main goal of this paper is to perform
such studies here and compare the 3D and 2D cases. As analytical treatment
does not seem to be amenable we refer to numerical simulations.

This paper is organized as follows. The numerical model is described in
Sec. 2. The numerical results are presented and discussed in Sec. 3. This
paper is concluded by a presentation of the main results in Sec. 4.

2. Numerical model

Our coronal system is taken to be modeled by the ideal MHD equations:

∂%

∂t
+∇ · (%V ) = 0 , (1)

%
∂V

∂t
+ (%V · ∇) V = −∇p+ %g +

1
µ

(∇×B)×B , (2)

∂p

∂t
+
(
~V · ∇

)
p = −γp∇ · ~V , (3)

∂B

∂t
= ∇× (V ×B) , (4)

∇ ·B = 0 , (5)

p =
kB

m
%T . (6)

Here γ = 5/3 is the adiabatic index, µ is the magnetic permeability, % is mass
density, V is flow velocity, p is gas pressure, g = (0, 0, g) is gravitational
acceleration of its value g = 274 m s−2, B is magnetic field, T is temperature,
m is mean particle mass, and kB is Boltzmann’s constant.

2.1. Equilibrium state

In both 2D and 3D cases we assume that at the equilibrium state the
coronal plasma is still (V = 0). Then from Eq. (2) we get that

−∇pe + %eg +
1
µ

(∇×Be)×Be = 0 .
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We assume now that the pressure gradient force is balanced by the grav-
ity. As a result, the Lorentz force has to disappear and the equilibrium is
described by the following equations:

−∂pe

∂z
= %eg , (7)

1
µ

(∇×Be)×Be = 0 , (8)

∇ ·Be = 0 . (9)

With a use of the equation of state, Eq. (6), and hydrostatic pressure balance
(7) we find:

pe(z) = p0 exp

− z∫
zr

dz
′

Λ̃(z′)

 , %e(z) =
pe(z)
gΛ̃(z)

. (10)

Here
Λ̃(z) =

kBT (z)
mg

is the pressure scale-height, and p0 denotes the gas pressure at the reference
level, z = zr = 10 Mm. It is noteworthy that gas pressure pe(z) and mass
density %e(z) profiles are determined by a temperature profile Te(z) which
in our case is adopted as (see e.g., [14])

T (z) =
1
2
Tc

[
1 +

Tch

Tc
+
(

1 +
Tch

Tc

)
tanh

(
z − zt
zw

)]
. (11)

Here Tch = 104 K denotes chromospheric temperature and Tc = 106 K is
temperature of the solar corona that is separated from the chromosphere at
the level z = zt = 4 Mm by a transition region of its width zw = 0.2Mm.
Despite of its simplicity the above temperature profile is sufficient to ad-
equately describe the solar corona and the chromospheric top layer at the
transition region. As a result, a coronal loop can be modeled appropriately.

We assume that equilibrium magnetic field of Eq. (8) is satisfied by
current-free (1/µ∇ × Be = 0) and potential (Be = ∇ × (A ŷ)) coronal
arcade such as [15]

[Bx, By, Bz] = B0

[
cos
(
x

ΛB

)
, 0, sin

(
x

ΛB

)]
exp

(
−z
ΛB

)
. (12)

Here A is a magnetic flux function

A(x, y, z) = B0ΛB cos
(
x

ΛB

)
exp

(
−z
ΛB

)
,
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B0 is the magnetic field at, z = zr, ΛB = 2L/π is the magnetic scale-height,
and L = 50 Mm is the horizontal half-width of the arcade. We define the
plasma β as the ratio of gas to magnetic pressures,

β =
p0

B2
0/2µ0

=
γ

2

(
csc
cAc

)2

,

where csc and cAc denote respectively sound and Alfvén speeds in the solar
corona. We choose and hold fixed csc = 100 km s−1 and cAc = 103 km s−1.
These values give β = 0.012 at the reference level. At higher altitudes β
grows reaching a value of 0.0277 at the loop apex. Fig. 1 shows altitude
profile of β. Other equilibrium parameters are listed out in Table I.
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Fig. 1. Plasma β profile.

TABLE I

Equilibrium parameters.

Parameter Value Description

g 274m s−2 gravitational acceleration
zr 10Mm reference level
cAc 1× 106 m s−1 Alfvén speed in the corona
csc 1× 105 m s−1 sound speed in the corona
L 50 Mm a half-width of the arcade
Trat 1× 10−2 temperature ratio, Tch/Tc

zw 2× 10−1 Mm width of the transition region
zt 4 Mm altitude of the transition region
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2.2. A coronal loop

We consider a loop that is embedded in the coronal arcade of Eq. (12).
A mass density profile of this loop in the 3D case is expressed as

%l(x, y, z) = %e + 1
2 %e (d− 1) h(x, z) exp

(
−(y − y0l)2

2S2
y

)
, (13)

and in the 2D case:

%l(x, z) = %e + 1
2 %e (d− 1) h(x, z) , (14)

where
h(x, z) =

∣∣∣∣erf
(
A−A1

SA

)
− erf

(
A−A2

SA

)∣∣∣∣ .
This profile of h(x, z) means that in the x–z plane the loop is placed be-
tween two magnetic field lines corresponding to two values of magnetic flux
functions A1 and A2. Those values determine loop’s inner and outer edges,
respectively and parameter SA determines how narrow or sharp is the border
of the loop. Along the y-direction the profile of the loop is defined by the
Gauss function with parameter Ay. The left foot of the loop is located at
y = y0l =7.5 Mm.

The mass density is enhanced in the loop comparing to the ambient
medium. We choose the mass density contrast d = %i/%e = 10, where %i

denotes the mass density within the loop and %e corresponds to the ambient
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Fig. 2. Mass density profiles at t = 100 s for the 2D (top panel) and 3D (bottom
panel) cases.
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medium. Such a loop does not correspond to any exact equilibrium and for
a strongly magnetized plasma, such as the solar corona, it slowly decays in
time. The effect is more significant in the 3D case Fig. 2.

Both in the 2D and 3D cases the loops do not have a perfect circular
shape (Fig. 3), but their average radius and length can be estimated as
20Mm and 63Mm, respectively. These values are close to the observationally
determined data of Ofman, Wang [16].

Fig. 3. A general structure of 2D (top panel) and 3D (bottom panel) loops. The
density unit is [10−12 kg m−3].
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2.3. Impulsive perturbations

To trigger vertical loop oscillations we launch initially at t = 0, the
Gaussian pulse in a velocity component δV⊥ that is perpendicular to B. In
both 2D and 3D cases we choose

δV⊥(x, y, z, t = 0) = Am f(x, y, z)
B

Bφ
, (15)

where

f(x, y, z) = exp

[
−
(
x− x0

w2
x

)2

−
(
y − y0

w2
y

)2

−
(
z − z0
w2
z

)2
]
.

The initial pulse is launched below the transition region at (x0, z0). Its
widths along the x- and z-directions are denoted by by wx and wz, respec-
tively. In both cases wy tends to infinity (for better comparison). Parameters
of the initial pulse are summarized in Table II.

TABLE II
Parameters of the initial pulse in the 2D and 3D cases.

Am 0.5 csc

x0 25 Mm
y0 —
z0 2 Mm

wx 2 Mm
wz 2 Mm

3. Numerical results

We obtain numerical results with a use of the code ATHENA which was
developed by Gardiner and Stone [17]. Athena is based on a single step,
second-order accurate Godunov scheme for ideal MHD. This scheme com-
bines the corner transport upwind method for multidimensional integration,
and the constrained transport algorithm for preserving the divergence-free
constraint on the magnetic field.

To represent a 3D (2D) physical region we use an Eulerian box 50 Mm×
40 Mm×15 Mm (50 Mm×40 Mm) which is covered by 500×600×30 (500×
600) grid points. We set magnetohydrostatic boundary conditions for all
plasma quantities along the x- and z-directions and, if applicable, outflow
boundary conditions along the y-direction.
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Figures 4 and 5 show mass density and velocity in the loop plane for
the 2D and 3D cases, respectively. A length of arrow is proportional to a
magnitude of velocity which is expressed in units of 1 Mm s−1. The moments
of time on both figures are chosen as t = 100 s (top panels) and t = 250 s
(bottom panels).
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Fig. 4. Mass density and overlying velocity vectors for the 2D loop at t = 100 s
(top panel) and t = 250 s (bottom panel).

Figure 6 illustrates gas pressure (left panels), mass density (right panels)
and overlaying velocity vectors for the 3D loop at t = 100 s (top panels) and
t = 250 s (bottom panels). Slices are drawn in the y–z plane that crosses
its apex. It is discernible that the movement of the loop is accompanied by
the eddies. Such eddies are well known in hydrodynamics.

Figure 7 displays time-signatures of the mass density for the 2D (top
panel) and 3D (bottom panel) cases. Numerical data was collected along the
line x = 25Mm, y = 7.5Mm which passes through the loop apex. Spatial
coordinate z and time t are measured in Mm and in seconds, respectively.
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Fig. 5. Mass density and velocity vectors in the x − z plane for the 3D loop for
t = 100 s (top panel) and t = 250 s (bottom panel).

Mass density % is expressed in the unit of 10−15 kgm−3. This time-signatures
exhibit oscillations which are triggered by the initial pulse. These oscillations
decay fast in time.

Figure 8 displays Fourier power spectra of the oscillations of Fig. 7.
In the case of 2D and (3D) a main period is 93 s (188 s).

For the straight slab the wave period can be estimated from

Pslab ≈
2l
c̄Ac
≈ 120 s , (16)

where l is the initial length of the loop and c̄Ac is the average Alfvén speed
within the loop. In case of the loops considered in this paper cAc = 1 ×
103km s−1 However, although for the curved slab the above formula is too
approximate, it can be used for a qualitative estimation of a wave period for
the curved slab.
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Fig. 6. Slices in the y–z plane (perpendicular to the 3D loop) at x = 30Mm.
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Fig. 7. Time-signatures of a mass density % for the 2D (top panel) and 3D (bottom
panel) oscillating coronal loop.
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Fig. 8. Fourier spectra of time-signatures of Fig. 7 for the 2D (top panel) and 3D
(bottom panel) loops.

4. Summary and discussion

We performed 3D and 2D numerical simulations of vertical oscillations
of a solar corona loop. The results are summarized as follows. The initial
pulse that is launched below the loop apex triggers a vertical mode of the
coronal loop. The amplitude of this mode decays in time. A wave period P
of this mode is different in the 3D and 2D cases (Fig. 9).

We found that P scales as P ∼ %loop, where %loop denotes a loop density.
As a result, P attains different values than theoretically expected. A similar
scenario was observed in the case of horizontally polarized loop oscillations
which were recently showed by Pascoe and De Moortel [12,13]).

The numerically obtained values of wave periods are smaller than those
reported by Ofman and Wang [16] from the Hinode data by about 20%.
They specified P = 1.88 m±2 s and τ = 9.3 m±4.3 m, while the numerical
data reveals that P ' 1.5 m and τ ' 1m. The reason of this departure
between the numerical and observational data may lie in a smaller loop
we implemented into our model. The observed length was estimated to
be 71Mm with uncertainty about 10–20%, however it may still fit into our
simulation where the length was 63Mm. Also in our case the loop disappears
quicker partially because of diffuseness of numerical code we have used and
partially because of the way oscillations were excited. After hitting the loop
by the initial pulse we observed outflow of plasma from its apex. This on
the other case may cause lowered value of damping time τ .
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Fig. 9. Wave period P versus a loop mass density d for 2D (upper panel) and 3D
(lower panel) cases.
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