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We investigate the role of the choice of the upper phase space limit Q
in the Curci–Furmanski–Petronzio (CFP) factorization scheme, which ex-
ploits dimensional regularization MS scheme. We examine how the choice
of Q influences the evaluation of the standard DGLAP (inclusive) evolu-
tion kernels, gaining experience needed in the construction of the exclusive
Monte Carlo modelling of the NLO DGLAP evolution. In particular, we
uncover three types of mechanisms which assure the independence on Q of
the inclusive DGLAP kernels calculated in the CFP scheme. We use the
examples of three types of the Feynman diagrams to illustrate our analysis.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

1. Introduction

This study is part of an effort aiming at construction of an exclusive
Monte Carlo modeling of DGLAP [1] evolution of the parton distribution
functions (PDFs) in the Next-to-Leading-Order (NLO) approximation using
work of Curci–Furmanski–Pertonzio (CFP) [2] as a starting point. Standard
inclusive PDFs are defined within the framework of the collinear factoriza-
tion theorems [3–5]. The ongoing project of defining and implementing in the
Monte Carlo (MC) form exclusive PDFs (ePDFs), see Refs. [6,7], sometimes
also referred to as fully unintegrated PDFs [8], is based on the older formula-
tion of the collinear factorization of Ref. [3] reformulated later on by CFP [2].
The CFP work uses dimensional regularization in MS scheme and physical
axial gauge.
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The construction of ePDFs in the Monte Carlo form requires defining and
calculating new exclusive evolution kernels. Moreover, it is critical to under-
stand and analyse the properties of exclusive kernels, especially cancellations
of the infrared singularities diagram by diagram due to gauge invariance, see
study in Ref. [9].

In this contribution we comment on the issue of the independence of in-
clusive/exclusive kernels on the choice of the upper phase space limit Q in
their evaluation based on the Feynman diagrams. Of course, the indepen-
dence of the inclusive DGLAP evolution kernels in the CFP may be regarded
as obvious and trivial. However, in the actual calculation of the kernel from
Feynman diagrams the genuine mechanism which protects its independence
on Q looks rather mysterious and not obvious at all. The choice of Q turns
out to be important in the analytical evaluation of the NLO kernels in the
CFP scheme, because it determines quite rigidly the parametrization of the
two-parton phase space. In addition, in the construction of Monte Carlo
model for ePDF the same upper phase space limit variable Q is closely re-
lated to the evolution time variable. It is therefore quite interesting to have
a closer look into the above phenomena.

In the following we will show that there are three different mechanisms
which assure the independence of inclusive NLO DGLAP evolution kernels
on the upper phase space limit Q in the CFP scheme. We demonstrate each
mechanism using an example of the Feynman diagram contributing to NLO
DGLAP kernel. We shall use subset of diagrams shown in Fig. 1.

P

+

Fig. 1. Example Feynman diagrams contributing to NLO DGLAP kernel.

2. Notation

We consider two-gluon real emission diagrams. For the four-momentum
parametrization we use Sudakov variables:

ki = αip+ βin+ ki⊥ , i = 1, 2 , (1)
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with p being the four-momentum of the incoming quark and n a light-cone
vector. Four-vectors of two emitted gluons are k1 and k2, with their trans-
verse parts being k1⊥ and k2⊥ respectively, and k2 = (k1 + k2)2 being
their effective mass. Since the emitted gluons are on mass shell and we
are in the massless theory, βi are fixed and equal to βi = −k2

i⊥/(2αi(pn))
= k2

i⊥/(2αi(pn)). We will also use symbol q for the off-shell momentum
q = p− k = p− k1 − k2.

In the CFP scheme [2] the contribution of each Feynman diagram to the
DGLAP kernel is extracted from the phase space integral:

P (x) = Res0

(∫
dΦ δ(1− x− α1 − α2) ρ(k1, k2) Θ(s(k1, k2) ≤ Q)

)
, (2)

where Res0 is the residue at ε = 0 (the coefficient in front of 1/ε pole in
the dimensional regularization), δ(1 − x − α1 − α2) is the definition of the
Bjorken variable, ρ is a contribution from a Feynman diagram (originating
from γ-traces, etc.). The element of the two gluon phase space dΦ is given
by:

dΦ =
dnk1

(2π)n
2πδ+

(
k2

1

) dnk2

(2π)n
2πδ+

(
k2

2

)
. (3)

The theta function in equation (2) encloses the phase space from above using
dedicated kinematical variable s(k1, k2). The choice of phase space enclosing,
s(k1, k2), determines the choice of evolution time variable in the construction
of the MC implementation of ePDF. There are many possible choices for
s(k1, k2) function, here we will concentrate on two of them: s(k1, k2) =
max{|k1⊥|, |k2⊥|}, which corresponds to the transverse momentum evolution
time and s(k1, k2) = max{|a1|, |a2|}, which corresponds to rapidity related
evolution time. Scalar quantity ai is defined as a modulus of the vector
variable:

ai =
ki⊥
αi

(4)

and we call it angular scale variable. It is related to rapidity via yi =
ln |ai|. These two cases will be respectively referred to as phase space with
k⊥-ordering and angular-ordering (a-ordering). Other popular choices
of s-function include total virtuality

√
−q2 and maximum k-minus,

max(k−1 , k
−
2 ).

Since we will show calculations in both angular ordered and k⊥-ordered
phase space we give the phase space parametrization in both sets of variables
(remembering that we work in dimensional regularization with number of
dimensions equal to n = 4 + 2ε, ε > 0):
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dΦk⊥ =
1

4µ4ε

Ω1+2ε

(2π)6+4ε

dα1

α1

dα2

α2
dΩ1+2ε dk1⊥ dk2⊥ k

1+2ε
1⊥ k1+2ε

2⊥ , (5)

and

dΦa =
1

4µ4ε

Ω1+2ε

(2π)6+4ε

dα1

α1

dα2

α2
α2+2ε

1 α2+2ε
2 dΩ1+2ε da1 da2 a

1+2ε
1 a1+2ε

2 . (6)

3. General structure of kernel contribution

Having in mind that we want to investigate the mechanism of the inde-
pendence of evolution kernels on the choice of the variable s used to enclose
phase space, let us look more closely into the phase space integral of kernel
contribution using k⊥-ordering and a-ordering.

General structure of kernel contribution is given by equation (2). The
presence of the residue Res0 ensures that only part proportional to single
pole 1/ε contributes — this has to be kept in mind. For k⊥-ordering the
distribution ρ(k1, k2) has general form:

ρ(k1, k2) = Cg4 1
q4(k1, k2)

T (k1, k2) , (7)

where C is the color factor specific for each diagram, g is related to strong
coupling by g2 = 2(2π)αS, T (k1, k2) is dimensionless function and q2 =
(1− α2)/α1 k2

1⊥ + (1− α1)/α2 k2
2⊥ + 2k1⊥k2⊥. For a-ordering we have:

ρ(a1, a2) = Cg4 1
α2

1α
2
2

1
q̃4(k1, k2)

T̃ (a1, a2) , (8)

where T̃ (a1, a2) is dimensionless and q̃2 = (1− α2)/α2 a2
1+(1− α1)/α1 a2

2+
2a1a2. The above specific form of ρ enables immediate factorization of
one ε-pole due to integration over the overall scale variable Q̃, which we
explicitly introduce by means of the identity 1 ≡

∫ Q
0 dQ̃δ(Q̃ = s(k1, k2)).

The remaining integral is parametrized using dimensionless variables y′i =
ki⊥/Q̃ or yi = ai/Q̃:

P k⊥(x) = Res0

{(αS

2π

)2
C

Ω1+2ε

(2π)2+4ε

∫
dα1

α1

dα2

α2
δ(1−x−α1−α2)

∫
dΩ

(12)
1+2ε

× 1
µ4ε

Q∫
0

dQ̃Q̃4ε−1

1∫
0

dy′1dy
′
2(y
′
1y
′
2)

1+2ε T (y′1, y
′
2, θ)

q4(y′1, y
′
2, θ)

δ(1−max{y′1, y′2})
}
, (9)
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and

P a(x) = Res0

{(αS

2π

)2
C

Ω1+2ε

(2π)2+4ε

∫
dα1

α1

dα2

α2
(α1α2)2εδ(1− x− α1 − α2)

×
∫
dΩ

(12)
1+2ε

1
µ4ε

Q∫
0

dQ̃Q̃4ε−1

×
1∫

0

dy1dy2(y1y2)1+2ε T̃ (y1, y2, θ)
q̃4(y1, y2, θ)

δ(1−max{y1, y2})
}
. (10)

Now in Eqs. (9) and (10) the pole 1/ε gets explicitly factorized off in form
of the integral

∫ Q
0 dQ̃Q̃4ε−1 = Q4ε/(4ε) and it is now transparent that the

integrals of the above equations feature at least single 1/ε pole.
Possible additional 1/ε poles may arise from internal singularities of the

integrands of Feynman diagrams. They are always connected with integra-
tions over transverse degrees of freedom (yi). The longitudinal components
can also lead to infra-red (IR) singularities, when αi → 0 but this type of
singularities do not lead to additional ε-poles, because in the CFP scheme
they are regularized in a non-dimensional manner1.

Furthermore, equations (9) and (10) show explicitly the differences be-
tween exclusive kernel contributions (integrands). This means that exclusive
MS evolution kernels do depend on evolution time variable.

Equations (9) and (10) are the starting point for the investigation of
the dependence of inclusive evolution kernels on the upper phase space
limit/evolution time variable. There will be at least two cases to be con-
sidered: (i) with no additional internal singularities present, hence terms
originating form the expansion of (α1α2)2ε = 1 + 2ε ln(α1α2) can be ne-
glected, (ii) with the additional ε-poles due to internal singularities present,
hence the expansion term 2ε ln(α1α2) is contributing.

4. Kernels independence on the evolution time variable

In this section we shall comment on three mechanisms which in the CFP
factorization scheme actually protect the independence of the inclusive NLO
DGLAP kernels of the way the phase space is closed from above. It will be
demonstrated using example Feynman diagrams.

1 For regularization of IR singularities CFP use principal value prescription: 1
α
→

α
α2+δ2

. We also use the following notation of CFP for divergent integrals:R 1

0
dα α

α2+δ2
≡ I0 and

R 1

0
dα lnα α

α2+δ2
≡ I1.
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4.1. Case 1 — no internal singularities

Here, the independence will be demonstared using the example inter-
ference diagram of Fig. 2. Starting with the expression of Eq. (10) the
calculations can be carried out in 4 dimensions:

P aBx(x) = N

∫
dα1

α1

dα2

α2
δ(1− x− α1 − α2)

2π∫
0

dφ

×
∫
dy1dy2 y1y2

T̃ (y1, y2, φ)
q̃4(y1, y2, φ)

δ (1−max{y1, y2}) , (11)

where N is normalization constant. In massless QCD the integrand has a
nice property that y1 and y2 integrals can be combined together into one
integral over the whole space2 by means of a simple change of variables
y1 = y, y2 = 1/y, then:

P aBx(x) = N

∫
dα1

α1

dα2

α2
δ(1−x−α1−α2)

2π∫
0

dφ

∞∫
0

dy y
T̃ (y, 1, φ)
q̃4(y, 1, φ)

. (12)

Fig. 2. “Crossed ladder graph”, free from any internal singularities.

Since the change of the phase space enclosure from angular scale to transverse
momentum translates into linear change of variables, ki⊥ = αiai, y′i = αiyi,
and now the y integral extends from zero to ∞, hence the joint integral is
manifestly the same for both kinds of phase space enclosure.

Since we did not employ the explicit form of the diagram the argument
presented in the above example holds for all kernel contributions free from
internal singularities.

4.2. Case 2 — diagram with internal singularity minus counterterm

Second case is represented by the double bremsstrahlung diagram, see
Fig. 3. It has an internal singularity when one of the emitted gluons is
collinear (the other one being non-collinear). The additional contribution to

2 It results from the fact that T̃ or T depend on the ratio y1/y2 only, i.e. T̃ (y1, y2, φ) =

T̃ (λy1, λy2, φ).
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the residue due to the internal collinear singularity is of a type 2ε ln(α1α2)×
1/ε2. This diagram is special because it is accompanied by the soft coun-
terterm, which is simply a square of leading-order (LO) diagram. The soft
counterterm is present due to the factorization scheme (by construction), see
Refs. [2,6,10]. We will show, that in this case, the independence of inclusive

P

Fig. 3. Bremsstrahlung graph accompanied by its soft counterterm, both featuring
double ε-poles.

kernel contribution on the upper phase space limit/future evolution time
variable is assured by the presence of the counterterm, which will cancel the
additional ∼ ln(α1α2) term.

Since we have shown in Section 4.1 that only terms leading to additional
ε-poles can lead to differences between the two choices of evolution time
variable now we will concentrate only on them. The singular contribution
of the double bremsstrahlung diagram is of a form:

P a sing
Br (x) = Res0

{
N

ε

∫
dα1

α1

dα2

α2
δ(1− x− α1 − α2)(α1α2)2ε

×
∫
dΩ

(12)
1+2ε

1∫
0

dy1dy2(y1y2)1+2ε

× 1
q̃4(y1, y2, θ)

T̃2
y2
2

y2
1

δ
(
1−max{y1, y2}

)}
. (13)

Now, combining the two phase space integrals is not possible any more3 due
to the presence of the term (y1y2)2ε (coming from phase space) and regulariz-
ing 1/y2

1 singularity. There will be differences between k⊥ and a parametriza-
tions. There are two sources of this differences. The first one is simply the
difference between the integrals in both parametrizations. The second is the
mixing of double pole and ε terms from the phase space factor (α1α2)2ε. The
difference between the two phase space enclosures (parametrizations) is:

3 In n = 4 gluing two yi-integrals is still possible using the cut-off regularization.
However, one has to watch out for the cut-off dependent integration’s limits.
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P a−k⊥Br (x) = Res0

{
C2

F

ε

(αS

2π

)2
∫
dα1

α1

dα2

α2
δ(1− x− α1 − α2)2T̃2

×
[

ln
(
α2

α1

)
− ln

(
α1

α2

)
+ 2ε ln(α1α2)

1
ε

]}
, (14)

where coefficient T̃2 = 1
4(1 + (1 − α1)2)(1 + x2/(1 − α1)2) comes from the

product of the numerators of two LO kernels.
For the counterterms, which are much simpler, due to their LO structure,

the difference between integrals in k⊥ and a space is only due to the phase
space factor α2ε

2 :

P a−k⊥ct (x)=Res0

{
C2

F

(αS

2π

)2
∫
dα1dα2δ(1−x−α1−α2)2 ln(α2)

2T̃2

α1α2

}
. (15)

It is manifest that the integrals of Eqs. (14) and (15) are the same, which
means that

P a−k⊥Br (x) = P a−k⊥ct (x) . (16)

Summarizing, there is an exact cancellation of differences between the two
choices of upper phase space limit among the bremsstrahlung diagrams and
their soft counterterms. It results in the independence of the kernel con-
tribution on the two choices of the phase space enclosure variable under
consideration. On general ground, the same statement should hold for other
choices, for example for the total virtuality. However, in case of virtuality it
is much more difficult to show, without actually performing the integration,
that the final result for the inclusive NLO kernel is the same as in the above
cases of k⊥-ordering or a-ordering.

We want to emphasize the crucial role of MS-like terms ((α1α2)2ε and
α2ε

2 ) in restoring the independence of the kernel contribution on the choice of
phase space enclosure, which can be seen explicitly from Eqs. (14) and (15).

In the above discussion we were analyzing certain contributions from
double bremsstrahlung diagrams and soft counterterms as representing the
difference between the cases of phase space enclosure using maximum k⊥ or,
alternatively, maximum angular scale a. In fact, these terms are completely
absent in the case of maximum k⊥, which means that the maximum k⊥ is
effectively representing formal scale parameter µ of the dimensional regular-
ization MS. These terms are also nonzero for other popular choices of the
phase space enclosure like maximum k-minus and total virtuality.
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4.3. Case 3 — two-real-gluon internal singularity versus virtual diagrams

The third case is a class of diagrams with an internal singularity due
to parton pair emission from the ladder, for which the independence of the
evolution time variable in assured by the corresponding virtual diagrams.
The example diagram of this type is shown in Fig. 4. This is a diagram

+

Fig. 4. Gluon pair production diagram and the corresponding virtual diagram
(vacuum polarization).

with gluon pair production, where the internal singularity occurs when the
invariant mass of the produced pair goes to zero. The additional ε-pole
originating from the singularity 1/k2 = 1/(k1 +k2)2, together with (α1α2)2ε

factor, will lead to a familiar mixing terms in the residue. This mixing
terms leads to the differences between real parton integrals once the different
choices of the upper phase space enclosure are applied. Of course, in CFP
scheme there is a mechanism which brings back the independence of the
inclusive kernels on that. In this case the contribution of the corresponding
divergent virtual diagram does this job.

In this case the calculations are technically more complicated and have
to remain beyond the scope of this contribution. In fact the independence
was explicitly checked by means of switching from the angular scale to the
overall virtuality as the upper phase space limiting variable as they are best
suited for the singularity structure of these diagrams.

5. Conclusions

We investigate the mechanism which ensures the independence of the
NLO DGLAP evolution kernels calculated within Curci–Furmanski–Petron-
zio scheme on the choice of the upper phase space limiting variable s(k1, k2).

It was shown that for different groups of Feynman diagrams there are
three mechanisms which work in order to compensate the differences due
to change of the type of s(k1, k2). The independence is demonstrated ex-
plicitly in case of transverse momentum and rapidity related variable a.
(The investigation has been carried out also for different choices like over-
all virtuality q2, maximum light-cone variable k-minus, but no details are
reported here.)
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We have shown that the mechanisms protecting this property involve
either soft counterterms of CFP scheme or virtual diagrams.

In the case of Monte Carlo implementation of the exclusive PDFs, see
Refs. [6, 7, 10], keeping track of these phenomena in the kernel calculations
is useful for understanding what happens while switching from one version
of the evolution time variable in the Monte Carlo to the other, more details
will be provided in Ref. [11].
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