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Discussed is a model of the two-dimensional affinely-rigid body with the
double dynamical isotropy. We investigate the systems with potential en-
ergies for which the variables can be separated. The special stress is laid on
the model of the harmonic oscillator potential and certain anharmonic al-
ternatives. Some explicit solutions are found on the classical, quasiclassical
(Bohr–Sommerfeld) and quantum levels.
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1. Introduction

The mechanics of an affinely-rigid body was discussed in various aspects
in [3,15–24]. In this paper, we intend to investigate qualitatively the doubly-
isotropic dynamical models in two dimensions, having in view applications
in macroscopic elasticity and the theory of molecular vibrations. We expect
also applications in dynamics of nanotubes; more precisely, we mean vibra-
tions of their transversal cross-sections. On the classical level our models
are completely integrable and may show some degeneracy properties follow-
ing from hidden symmetries. In the two-dimensional theory there exists a
relatively wide class of isotropic potentials which admit analytical calcula-
tions based on the separation of variables method [15, 16]. In this paper,
the special stress is laid on the model of the harmonic oscillator potential
and certain anharmonic models. The action-angle analysis and discussion of
degeneracy as well as the quasiclassical Bohr–Sommerfeld quantization are
also presented. Next, we discuss the Schrödinger quantization procedure for
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such an object. We follow the standard procedure of quantization in Rie-
mannian manifolds [8], i.e. we use the L2-Hilbert space of wave functions in
the sense of the usual Riemannian measure (volume element). Some explicit
solutions are found using the Sommerfeld polynomial method [13,14].

Certain of our ideas are somehow related to those underlying the papers
[6, 7].

2. Geometric description of the affinely-rigid body

We are given two Euclidean spaces (N,U, η) and (M,V, g), respectively
the material and physical spaces. Here N and M are the basic point spaces,
U and V are their linear translation spaces, and η ∈ U∗ ⊗ U∗, g ∈ V ∗ ⊗ V ∗
are their metric tensors. The space N is used for labelling the material
points, and elements of M are geometric spatial points.

The configuration space of the affinely-rigid body

Q := AfI(N,M)

consists of affine isomorphisms of N onto M . The material labels a ∈ N are
parametrised by Cartesian coordinates aK (Lagrange variables). Cartesian
coordinates in M will be denoted by yi and the corresponding geometric
points by y. The configuration Φ ∈ Q is to be understood in such a way
that the material point a ∈ N occupies the spatial position y = Φ(a).

Let µ denote the co-moving (Lagrangian) mass distribution in N ; obvi-
ously, it is constant in time. Lagrange coordinates aK in N will be always
chosen in such a way that their origin aK = 0 coincides with the centre of
mass C: ∫

aKdµ(a) = 0 .

The configuration space may be identified then with M × LI(U, V ),

Q = AfI(N,M) 'M × LI(U, V ) = M ×Qint ,

where LI(U, V ) denotes the manifold of all linear isomorphisms of U onto V .
The Cartesian product factors refer respectively to the translational motion
(M) and the internal or relative motion (LI(U, V )). The motion is described
as a continuum of instantaneous configurations:

Φ(t, a)i = φiK(t)aK + xi(t) , (1)

where x(t) is the centre of mass position and φ(t) tells us how constituents
of the body are placed with respect to the centre of mass. The quantities(
xi, φiK

)
are our generalised coordinates.
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Obviously, if we put U = V = Rn, then Qint reduces to GL(n,R) and Q
becomes the semi-direct product Rn ×s GL(n,R); Rn is then interpreted as
an Abelian group with addition of vectors as a group operation.

Inertia of affinely-constrained systems of material points is described by
two constant quantities:

m =
∫
dµ(a) , JKL =

∫
aKaLdµ(a) ,

i.e. the total mass m and the co-moving second-order moment J ∈ U ⊗ U .
More precisely, it is so in the usual theory based on the d’Alembert principle,
when the kinetic energy is obtained by summation (integration) of usual
(based on the metric g) kinetic energies of constituents [16–21],

T =
1
2
gij

∫
∂Φi

∂t

∂Φj

∂t
dµ(a) .

Substituting to this general formula the above affine constraints (1) we ob-
tain:

T = Ttr + Tint =
m

2
gij
dxi

dt

dxj

dt
+

1
2
gij
dφiA
dt

dφiB
dt

JAB.

Certainly, if we analytically identify U and V with Rn and LI(U, V ) with
GL(n,R), then

Tint = 1
2Tr

(
φ̇T φ̇J

)
.

3. Some two-dimensional problems

Now, let us discuss the two-dimensional affinely-rigid body. Considered
is a discrete or continuous system of material points subject to constraints
according to which during any admissible motion all affine relations between
constituents of the body are invariant (the material straight lines remain
straight lines, their parallelism is conserved, and all mutual ratios of seg-
ments placed on the same straight lines are constant). The conception of
the affinely-rigid body is a generalisation of the usual metrically-rigid body,
in which during any admissible motion all distances (metric relations) be-
tween its constituents are constant [2]. We do not take into account the
motion of the centre of mass. When translational motion is neglected, the
configuration space Q may be analytically identified with the linear group
GL(2,R), i.e., the group of non-singular real 2 × 2 matrices. The most
adequate description of degrees of freedom is that based on the two-polar
decomposition of matrices:

φ = ODRT , (2)
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where

O =
[

cosϕ − sinϕ
sinϕ cosϕ

]
, D =

[
D1 0
0 D2

]
, R =

[
cosψ − sinψ
sinψ cosψ

]
.

This decomposition is connected with the algebraic Gram–Schmid orthog-
onalisation. It is also known in literature as the “singular value decompo-
sition”. The matrices O,R ∈ SO(2,R) are orthogonal (OTO = RTR = Id,
detO = detR = 1), D is diagonal and positive. The orthogonal group
SO(2,R) is a commutative group of plane rotations. Spatial rotations are
described by the action of SO(2,R) on GL(2,R) through the left regular
translations, material rotations are represented by the action of the rota-
tion subgroup through the right multiplication. In the non-degenerate case
(D1 6= D2), the decomposition (2) is unique up to the permutation of the
diagonal elements of D accompanied by the simultaneous multiplying of
O and R on the right-side by the appropriate special orthogonal matrices
(ones having in each row and column zeros but once ±1 as elements). This
implies that the potential energy of doubly isotropic models depends only
on D and is invariant with respect to the permutations of its non-vanishing
matrix elements [16]. The deformation invariants D1, D2 are important me-
chanical quantities. They are scalar measures of deformation, i.e. tell us
how strongly the body is deformed, but do not contain any information con-
cerning the orientation of deformation in the physical or material space. The
orthogonal matrices O and R describe the space and body orientations of the
strain. Incidentally, let us mention that the complexification of GL(2,R) to
GL(2,C) and then the restriction to the other, completely opposite (because
compact), real form U(2) sheds some light on our model and establishes also
certain kinship with the three-dimensional rigid body.

We shall consider only highly symmetric model, where J is isotropic,
i.e., its matrix has the form µI, µ denoting a positive constant, and I is the
2× 2 identity matrix. The isotropic kinetic energy is as follows:

T =
µ

2

[(
D1

2 +D2
2
)((dϕ

dt

)2

+
(
dψ

dt

)2
)
− 4D1D2

dϕ

dt

dψ

dt

+
(
dD1

dt

)2

+
(
dD2

dt

)2
]
. (3)

The matrices O and R do not enter into this equation, hence the angles ϕ,
ψ are cyclic variables. In these coordinates the Hamilton–Jacobi equation
is non-separable even in the interaction-free case. However, the separability
becomes possible in new variables, obtained by the π/4-rotation in the plane
of the deformation invariants D1, D2 and by an appropriate modification of
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the angular variables. Thus, we introduce the following new coordinates:

α =
1√
2

(D1 +D2) , β =
1√
2

(D1 −D2) , η = ϕ− ψ , γ = ϕ+ ψ .

In the macroscopic, phenomenological elasticity theory D1 > 0 , D2 > 0,
thus, α > 0, |β| < α. However, describing discrete or finite systems of
material points (e.g. molecules), one can admit singular and mirror-reflected
configurations. Then, to some extent D1, D2, α, β may be arbitrary. The
kinetic energy becomes then

T =
µ

2

[
α2

(
dη

dt

)2

+ β2

(
dγ

dt

)2

+
(
dα

dt

)2

+
(
dβ

dt

)2
]
. (4)

This form is both diagonal and separable. The classical Stäckel theorem
leads to the following general form of separable potentials:

V (ϕ,ψ, α, β) =
Vη (ϕ− ψ)

α2
+
Vγ (ϕ+ ψ)

β2
+ Vα(α) + Vβ(β) . (5)

In this formula Vη, Vγ , Vα, Vβ are arbitrary (but regular enough) functions of
a single variable (indicated as an argument). We consider doubly-isotropic
models in which the potential energy does not depend on variables ϕ, ψ
(equivalently η, γ), i.e. Vη = 0 and Vγ = 0. Performing the Legendre
transformation we obtain the corresponding Hamiltonian H = Hα + Hβ in
the form:

H=
1

2µ

(
(pϕ−pψ)2

4α2
+pα2

)
+

1
2µ

(
(pϕ+pψ)2

4β2
+pβ2

)
+ Vα(α) + Vβ(β) , (6)

where pϕ, pψ, pα, pβ are the canonical momenta conjugate to ϕ, ψ, α, β,
respectively, and

Hα =
1

2µ

(
(pϕ − pψ)2

4α2
+ pα

2

)
+ Vα(α) ,

Hβ =
1

2µ

(
(pϕ + pψ)2

4β2
+ pβ

2

)
+ Vβ(β) . (7)

The quantities Hα, Hβ, pϕ, pψ form a Poisson-involutive system of constants
of motion.

The stationary Hamilton–Jacobi equation has the following form:(
1

4α2
+

1
4β2

)((
∂S

∂ϕ

)2

+
(
∂S

∂ψ

)2
)

+
(

1
2β2
− 1

2α2

)
∂2S

∂ϕ∂ψ

+
(
∂S

∂α

)2

+
(
∂S

∂β

)2

= 2µ (E − (Vα(α) + Vβ(β))) , (8)
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where E is a fixed value of the energy. Due to the fact that the variables ϕ,
ψ have the cyclic character, we may write:

S = Sϕ(ϕ) + Sψ(ψ) + Sα(α) + Sβ(β) = aϕ+ bψ + Sα(α) + Sβ(β)

and the action variables are as follows:

Jϕ =
∮
pϕdϕ=2πa , Jα=±

∮ √
2µ (Eα−Vα(α))−

(Jϕ−Jψ)2

16π2α2
dα , (9)

Jψ =
∮
pψdψ=2πb , Jβ=±

∮ √
2µ (Eβ−Vβ(β))−

(Jϕ+Jψ)2

16π2β2
dβ , (10)

where Eα, Eβ , a, b are separation constants.
Remark. Let us observe that the isotropic kinetic energy

T =
µ

2
Tr
(
φ̇T φ̇

)
(11)

may be simply written as

T =
µ

2
(
ẋ2 + ẏ2 + ż2 + u̇2

)
, (12)

where x, y, z, u are simply the matrix elements of φ,

φ =
[
x y
z u

]
. (13)

This is formally the expression for the material point with the mass µ in R4

or the quadruple of such material points in R. However, in the mechanics
of deformable bodies these generalised coordinates are not very useful for
dynamical models.

It is both convenient and instructive to use also other generalized coordi-
nates in the affine kinematics. We mean coordinates in which the problem is
separable; as mentioned, the separability in various coordinates corresponds
geometrically to some degeneracy of the problem. And besides, those coor-
dinates suggest some modifications of the potential V leading to new models
of deformative dynamics, more realistic than the harmonic oscillator and at
the same time admitting also some analytical treatment. As expected, in
doubly isotropic models the most natural candidates are to be sought among
orthogonal coordinates on the plane of the deformation invariants (D1, D2).
The most natural of them are just the variables α, β introduced above: they
are obtained from D1, D2 by the rotation by π/4 in R2. Together with the
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modified angular variables η, γ they provide a system of T -orthogonal coor-
dinates in R4, i.e., in the space of variables x, y, z, u. To be more precise,
they are orthogonal coordinates for the metric element dx2 +dy2 +dz2 +du2

on which the kinetic energy T is based. And moreover, as said above, they
are the nice separation variables for T in the Stäckel sense. Other natural
T -separating variables are obtained as some byproducts of α, β. The most
natural of them are polar variables in the R2-plane of the pairs (α, β). In
certain problems it is analytically convenient to use the modified “polar”
variables r, ϑ given by

α =
√
r cos

ϑ

2
, β =

√
r sin

ϑ

2
.

Obviously, the “literal” polar variables ρ, ε are defined by

α = ρ cos ε , β = ρ sin ε ; ρ =
√
r , ε =

ϑ

2
.

The natural metric on the manifold of 2× 2 matrices,

ds2 = Tr
(
dφTdφ

)
= dx2 + dy2 + dz2 + du2 ,

becomes then

ds2 = r cos2 ϑ

2
dη2 + r sin2 ϑ

2
dγ2 +

1
4r
dr2 +

r

4
dϑ2

= dρ2 + ρ2dε2 + ρ2 cos2 ε dη2 + ρ2 sin2 ε dγ2

= dρ2 +
1
4
ρ2dϑ2 + ρ2 cos2 ϑ

2
dη2 + ρ2 sin2 ϑ

2
dγ2 .

Evidently, kinetic energy is then expressed as follows

T =
µ

2

(
1
4r

(
dr

dt

)2

+
r

4

(
dϑ

dt

)2

+ r cos2 ϑ

2

(
dη

dt

)2

+ r sin2 ϑ

2

(
dγ

dt

)2
)

=
µ

2

((
dρ

dt

)2

+ ρ2

(
dε

dt

)2

+ ρ2 cos2 ε

(
dη

dt

)2

+ ρ2 sin2 ε

(
dγ

dt

)2
)

=
µ

2

((
dρ

dt

)2

+
1
4
ρ2

(
dϑ

dt

)2

+ ρ2 cos2 ϑ

2

(
dη

dt

)2

+ ρ2 sin2 ϑ

2

(
dγ

dt

)2
)
.

The above crowd of expressions is due to the fact that different conventions
are better suited to different analogies: the two-dimensional homogeneously
deformable body and three-dimensional spherical top with dilatations. Phys-
ically we are interested here in the first problem, however, certain aspects of
the second one (spherical top with dilatations) are formally useful and the
mysterious link between them is interesting in itself.
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Let us notice that (r, ϑ) may be interpreted as polar coordinates in the
two-dimensional space of quantities 2D1D2, D1

2 −D2
2,

2D1D2 = r cosϑ , D1
2 −D2

2 = r sinϑ , (14)

or, inverting these formulas,

r = ρ2 = D1
2 +D2

2 , tanϑ = tan(2ε) =
1
2

(
D1

D2
− D2

D1

)
. (15)

Therefore, ϑ refers to the shear degrees of freedom, whereas r = ρ2 is some
kind of the measure of size. More precisely, dilatation is measured by the
product D1D2, thus,

r =
2D1D2

cosϑ
(16)

contains an “admixture” of the shear parameter ϑ. Nevertheless, just like
D1D2 it is a homogeneous function of degree 2 of (D1, D2). The shear
parameter ϑ is evidently a homogeneous function of degree zero.

It is also convenient to parametrise deformation invariants as follows:

D1 = exp
(
a+ b

2

)
, D2 = exp

(
a− b

2

)
.

Then

α =
1√
2

(D1+D2) =
√

2ea/2 cosh
b

2
, β =

1√
2

(D1−D2) =
√

2ea/2 sinh
b

2
,

D1D2 = ea , D1
2+D2

2 = 2ea cosh b , D1
2−D2

2 = 2ea sinh b ,
D1

D2
= eb ,

sinϑ = tanh b , cosϑ =
1

cosh b
, tanϑ = sinh b .

These simple formulas shed some light onto the link between two-dimensional
homogeneously deformable body and three-dimensional top. Nevertheless,
this link is still rather mysterious and obscure.

For the completeness let us also mention about other orthogonal coordi-
nates on the plane of deformation invariants:

(i) Elliptic variables (κ, λ), where

α =
√

2 coshκ cosλ , β =
√

2 sinhκ sinλ .

(ii) Parabolic variables (ξ, δ), where

α = 1
2

(
ξ2 − δ2

)
, β = ξδ .
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(iii) Two-polar variables (e, f), where

α =
c sinh e

cosh e− cos f
, β =

c sin f
cosh e− cos f

,

and c is a constant.
For our analysis of the deformative motion the parabolic (ξ, δ) and two-

polar variables (e, f) are non-useful, because the corresponding Hamilton–
Jacobi equations are non-separable even in the non-physical geodetic models,
i.e., ones with vanishing potentials. In the elliptic coordinates (κ, λ) the
metric underlying the kinetic energy takes on the form:

ds2 = Tr
(
dφTdφ

)
=
(
cosh2 κ− cos2 λ

)
dκ2

+
(
cosh2 κ− cos2 λ

)
dλ2 + cosh2 κ cos2 λdη2 + sinh2 κ sin2 λdγ2 .

The general Stäckel-separable Hamiltonians H = T + V in variables
(α, β, η, γ), (r, ϑ, η, γ) and (κ, λ, η, γ) have respectively the form:

H =
1

2µ

((
pα

2 +
pη

2

α2

)
+
(
pβ

2 +
pγ

2

β2

))
+Vα(α) + Vβ(β) +

Vη(η)
α2

+
Vγ(γ)
β2

, (17)

H =
1

2µ

(
4rpr2 +

1
r

(
pϕ

2 + pψ
2 + 2pϕpψ cosϑ
sin2 ϑ

+ 4pϑ2

))
+Vr(r) +

Vϑ(ϑ)
r

+
Vη(η)
r cos2 ϑ

2

+
Vγ(γ)
r sin2 ϑ

2

, (18)

H =
1

4µ

(
pκ

2(
cosh2 κ− cos2 λ

) +
pλ

2(
cosh2 κ− cos2 λ

)
+

pη
2

cosh2 κ cos2 λ
+

pγ
2

sinh2 κ sin2 λ

)
+

Vκ(κ)
2
(
cosh2 κ− cos2 λ

) +
Vλ(λ)

2
(
cosh2 κ− cos2 λ

)
+

Vη(η)
2 cosh2 κ cos2 λ

+
Vγ(γ)

2 sinh2 κ sin2 λ
. (19)

Let us observe that, obviously,

cosh2 κ− cos2 λ = sinh2 κ+ sin2 λ

and it does not matter what is written in the corresponding denominators
above. Making use of this fact we immediately see that when the problem
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is doubly isotropic, i.e., Vη, Vγ are constant, then obviously (pη, pγ), equiv-
alently (pϕ, pψ), are constants of motion but also there is a separation of
the Hamilton–Jacobi equation in the variables κ, λ. Therefore, there are
two additional constants of motion and the problem is integrable. Those
constants of motion are given by

K =
hκ cos2 λ− hλ cosh2 κ

2
(
cosh2 κ− cos2 λ

) =
hκ cos2 λ− hλ cosh2 κ

2
(
sinh2 κ+ sin2 λ

) ,

L =
hκ sin2 λ− hλ sinh2 κ

2
(
sinh2 κ+ sin2 λ

) =
hκ sin2 λ− hλ sinh2 κ

2
(
cosh2 κ− cos2 λ

) ,

where the auxiliary quantities hκ, hλ are not constants of motion and are
respectively given by

hκ =
1

2µ

(
pκ

2 + 2µVκ −
1
4(pϕ − pψ)2 + 2µVκ

cosh2 κ
+

1
4(pϕ + pψ)2 + 2µVκ

sinh2 κ

)
,

hλ =
1

2µ

(
pλ

2 + 2µVλ +
1
4(pϕ − pψ)2 + 2µVλ

cos2 λ
+

1
4(pϕ + pψ)2 + 2µVλ

sin2 λ

)
;

we remember that Vκ, Vλ are constants here.
Therefore, we have the involutive system of constants of motion (their

Poisson brackets do vanish), and

H = K + L

has the vanishing Poisson brackets with all of them, i.e., with pϕ, pψ (i.e.,
with pη, pγ), K, L.

The elliptic coordinates and the corresponding separable models are not
very interesting for applications. From this point of view the “polar” coordi-
nates (r, ϑ), or equivalently (ρ, ε), are much more useful. The configurational
metric tensor is then expressed as follows:

ds2 = Tr
(
dφTdφ

)
=

1
4r
dr2 +

r

4
dϑ2 + rdϕ2 − 2r cosϑdϕdψ + rdψ2

= dρ2 +
1
4
ρ2
(
dϑ2 + d(2ϕ)2 − 2 cosϑd(2ϕ)d(2ψ) + d(2ψ)2

)
=

1
4r
(
dr2 + r2

(
dΘ2 + dΦ2 − 2 cosΘdΦdΨ + dΨ2

))
,

where, obviously, the doubled angles are used, Θ = ϑ, Φ = 2ϕ, Ψ = 2ψ.
This expression is very interesting in itself. We used here three alternative
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systems of symbols, each of them convenient and suggestive in some areas
of applications. It is seen that the expression

dσ2 = dΘ2 + dΦ2 − 2 cosΘdΦdΨ + dΨ2

is exactly, up to a constant multiplier, identical with the doubly-invariant
(i.e., both left- and right-invariant) squared metric element on the rotation
group in three dimensions, SO(3,R), or on its covering group SU(2). This
identification is based on interpreting Φ,Θ, Ψ as Euler angles. More precisely,
to be literal in this analogy, one should change the sign at Ψ , then one obtains
the usual expression

dσ2 = dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2 .

This metric underlies the kinetic energy expression for the spherical top,

T =
I

2

((
dΘ

dt

)2

+
(
dΦ

dt

)2

+ 2 cosΘ
dΦ

dt

dΨ

dt
+
(
dΨ

dt

)2
)
.

In mechanics of gyroscopic systems Φ,Θ, Ψ are referred to respectively as
the precession, nutation and rotation angles. This, of course, has nothing to
do with our object, i.e., homogeneously deformable two-dimensional body;
such a body has only one rotational degree of freedom. The analogy is for-
mal, nevertheless instructive and effective in the computational sense. The
idea has to do with the “concentric” parametrisation of R4. As mentioned,
the Cartesian variables x, y, z, u, i.e., matrix elements of the configuration
matrix φ, are non-effective when investigating deformations. This was just
the reason to use the two-polar decomposition and the corresponding co-
ordinates (D1, D2, ϕ, ψ) or (α, β, ϕ, ψ). The two “radii” (D1, D2) or (α, β)
have to do with the purely scalar deformation; (ϕ,ψ) (equivalently (η, γ))
are angular variables of compact topology (orientation of deformations in
the physical space and in the body). The “concentric” parametrization con-
sists in encoding the possibility of unbounded motion in the radial variable
in R4,

ρ =
√
r =

√
x2 + y2 + z2 + u2 =

√
D1

2 +D2
2 =

√
Tr(φTφ) =

√
TrG ,

where the symbol G is used for the Green deformation tensor expressed in
the Cartesian coordinates. More geometrically, we are dealing here with the
deformation invariant:

ρ =
√
ηABGAB =

√
gijφiAφjBηAB ,

g, η denotes respectively the spatial and material (reference) metric tensors.
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Degrees of freedom orthogonally transversal to the radial variable ρ
(or equivalently r) describe the geometrically bounded aspect of motion.
Those modes of motion are encoded in the concentric spheres in R4, in par-
ticular, in the unit sphere given by equation ρ = 1, i.e., r = 1. But it is
well-known that the group SU(2), i.e., the group of unitary unimodular ma-
trices and the covering group of SO(3,R), may be naturally identified with
the unit sphere S3(0, 1) ⊂ R4. In this way this sphere may be parametrized
with the use of the Euler angles Φ, Θ, Ψ . The parametrization of R4 with the
use of variables (ρ, Φ,Θ, Ψ) or (r, Φ,Θ, Ψ) is rather unusual, however well-
suited to the description of the three-dimensional rigid body with imposed
dilatations or, as we see, to the description of the two-dimensional homo-
geneously deformable body. In other applications one uses rather spherical
systems of coordinates in R4, e.g., r, λ, µ, ν, where

x1 = r sinλ cosµ cos ν ,
x2 = r sinλ cosµ sin ν ,
x3 = r sinλ sinµ ,
x4 = r cosλ .

Let us mention that the isotropic harmonic oscillator may be described
obviously in terms of those variables, and the expression of Hamiltonian
through the action variables Jr, Jλ, Jµ, Jν , in analogy to (32) below, is
given by

H = ω(2Jr + Jλ + Jµ + Jν) , (20)

where the degeneracy, i.e., the resonance between Jr, Jλ, Jµ, Jν is explicitly
seen.

One can also use certain mixed type parametrizations in R4, e.g., rep-
resenting it as R3 × R, R2 × R2 and taking spherical coordinates in R3 or
polar ones in one or two copies of R2. In all such coordinate systems the
isotropic harmonic oscillator is separable and this is some aspect of its very
high, total degeneracy.

However, it is hard to realize a wider class of realistic applications of
these coordinates, e.g., in elastic and similar problems. Unlike this, the
apparently exotic parametrization in terms of the “radial distance” ρ and
“Euler angles” Φ,Θ, Ψ offers certain models of potentials which are both
separable and qualitatively physical.

We have quoted the general Stäckel-separable Hamiltonian in variables
(r, ϑ, ϕ, ψ) (18). It is doubly isotropic when the shape functions Vη, Vγ
are put as constants. Obviously, the corresponding terms Vη/ cos2(ϑ/2),
Vγ/ sin2(ϑ/2) may be simply included into Vϑ(ϑ). We have the following
four constants of motion in involution, responsible for separability:
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• pϕ, pψ, i.e., equivalently pη, pγ ,

• hϑ = 1
2µ

1
sin2 ϑ

(
pϕ

2 + pψ
2 + 2pϕpψ cosϑ

)
+ 2

µpϑ
2 + Vϑ(ϑ) ,

• H = T + V = Hr + hϑ
r , where however, the two indicated terms in H,

namely

Hr =
2
µ
rpr

2 + Vr(r) ,
hϑ
r

are not constants of motion when taken separately.

The term Vr stabilizes the radial mode of motion which without this term
would be unbounded, therefore physically non-applicable in elastic problems.
The term Vϑ is responsible for the shear dynamics. Let us stress that in
spite of the “angular” character of ϑ the shear mode of motion is also non-
compact. It is just seen from the fact that the shear is algebraically expressed
by the quantity tanϑ, which is unbounded. Therefore, in certain problems
some non-constant expression for Vϑ is also desirable. Even if we use Vr
proportional to r = ρ2, any model with non-vanishing Vϑ introduces some
anharmonicity. Particularly interesting is the following simple model:

V = Vr(r) +
Vϑ(ϑ)
r

=
C

2
r +

2C
r cosϑ

= C

(
1

D1D2
+
D1

2 +D2
2

2

)
. (21)

The model is perhaps phenomenological and academic, however, from the
“elastic” point of view it has very physical properties: it prevents the collapse
to the point or straight-line, because the term 1/D1D2 is singularly repulsive
there, and at the same time it prevents the unlimited expansion, because the
harmonic oscillatory term C(D1

2 +D2
2)/2 = C(α2 + β2)/2 grows infinitely

then. There is a stable continuum of relative equilibria at the non-deformed
configurations when D1 = D2 = 1. Expansion along some axis results in
contraction along the perpendicular axis, because

∂2V

∂D1∂D2
> 0

at D1 = D2 = 1. This qualitatively physical potential of nonlinear hypere-
lastic vibrations is separable, therefore, at the same time it is also in principle
analytically treatable. Its structure seems to suggest some three-dimensional
models with the attractive harmonic term proportional to (D1

2+D2
2+D3

2)
and some collapse-preventing term, e.g., one proportional to (D1D2D3)−p

or (D1D2)−p + (D3D1)−p + (D2D3)−p, p > 0, however, there is no chance
then for separability and integrability.
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In the chapter below we begin with some problems concerning the har-
monic oscillator,

V (α, β) =
C

2
(
α2 + β2

)
=
C

2
(
D1

2 +D2
2
)

=
C

2
(
x2 + y2 + z2 + u2

)
=
C

2
Tr
(
φTφ

)
, C > 0 (22)

and then discuss some natural anharmonic modifications.

4. Harmonic oscillator and certain anharmonic alternatives

The expressions Jα, Jβ depend on potentials Vα(α), Vβ(β), respectively.
After specifying the form of these potentials we can obtain the Hamilton
functionH as some function of our action variables, i.e., H = E(Jα, Jβ,
Jϕ, Jψ). We can find the explicit dependence of the energy E on the ac-
tion variables and the possible further degeneracy. We will also perform the
usual Bohr–Sommerfeld quantization procedure for our model.

Hence, we consider the model of the harmonic oscillator potential (22).
Some physical comments are necessary here. Namely, the potential (22) de-
scribes only the attractive forces which prevent the unlimited expansion
of the body. Its non-physical feature is that it does not prevent the col-
lapse, i.e., the contraction to the null-dimensional singularity. It attracts
to the configuration D1 = D2 = 0 instead than to the non-deformed state
D1 = D2 = 1. Nevertheless, the model may be useful in some range of initial
conditions. Except the subset of measure zero in the manifold of those con-
ditions, the collapse to D1D2 = 0 is prevented by the centrifugal repulsion.
And the collapse misbehaviour of (22) is not very malicious when the system
is discrete. Obviously, (11) and (22) describe the isotropic harmonic oscil-
lator in R4 or the quadruple of identical one-dimensional oscillators in R.
In this sense the solution is obvious and a priori known. Nevertheless, the
model is a useful step towards investigating more realistic ones. And another
point is very important. Namely, the very strong degeneracy of this model
has to do, as usually, with the separability of the Hamilton–Jacobi equation
in several coordinate systems.

After some calculations we obtain the dependence of the energy E =
Eα + Eβ on the action variables as follows:

E =
ω

4π
[4J + |Jϕ − Jψ|+ |Jϕ + Jψ|] , J = Jα + Jβ , (23)

where ω =
√
C/µ and

Eα =
ω

4π
(4Jα + |Jϕ − Jψ|) ,

Eβ =
ω

4π
(4Jβ + |Jϕ + Jψ|) .
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Then performing the Bohr–Sommerfeld quantisation procedure, i.e. sup-
posing that J = nh, Jϕ = mh, Jψ = lh, where h is the Planck constant
and n = 0, 1, . . . ; m, l = 0,±1, . . ., we obtain the energy spectrum in the
following form:

E = 1
2~ω [4n+ |m− l|+ |m+ l|] . (24)

We may rewrite this formula as follows:

(i) if |m| > |l|, then m2 > l2 and

E = ~ω (2n±m) , (25)

(ii) if |m| < |l|, then m2 < l2 and

E = ~ω (2n± l) , (26)

(iii) if |m| = |l|, then m2 = l2 and

E = ~ω (2n±m) = ~ω (2n± l) . (27)

And similarly, on the purely classical level of the action variables we have
the following formulas:

(i) in the phase space region, where |Jϕ| > |Jψ|:

E =
ω

2π
(2J ± Jϕ) =

ω

2π
(2Jα + 2Jβ ± Jϕ) , (28)

(ii) in the region, where |Jϕ| < |Jψ|:

E =
ω

2π
(2J ± Jψ) =

ω

2π
(2Jα + 2Jβ ± Jψ) , (29)

(iii) on the submanifold, where Jϕ = Jψ:

E =
ω

2π
(2J ± Jϕ) =

ω

2π
(2J ± Jψ) . (30)

The total degeneracy of the doubly invariant model with the potential
(22) is a priori obvious because in coordinates (x, y, z, u) it is explicitly seen
that we deal with four-dimensional isotropic harmonic oscillator (equiva-
lently — with the quadruple of identical non-interacting oscillators). If we
use coordinates (D1, D2, ϕ, ψ), or equivalently (α, β, ϕ, ψ), then the total
degeneracy is visualized by the fact that the action variables Jα, Jβ , Jϕ, Jψ
enter (28) with integer coefficients, Jψ with the vanishing one. Similarly, in
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(29) they are also combined with integer coefficients, but now the coefficient
at Jϕ does vanish. The third case (30) is, so to speak, the seven-dimensional
“separatrice” submanifold. The existence of those regions with various ex-
pressions for the functional dependence of energy on the action variables is
due to the fact that the coordinate system (D1, D2, ϕ, ψ) is not regular in the
global sense and has some very peculiar singularities. Nevertheless, it is just
those coordinates that are more natural and physically lucid in dynamical
problems.

The quasi-classical degeneracy of the Bohr–Sommerfeld energy levels is
due to the fact that the quantum numbers may be combined in a single
one, although in slightly different ways in three possible ranges. Let us
observe that in (25) the quantum number l still does exist, although does
not explicitly occurs in the formula for E. It runs the range |l| < |m| and
labels quasiclassical states within the same energy levels, and analogously
in the remaining cases (26), (27). The action variables Jϕ, Jψ and the
corresponding quantum numbers m, l take symmetrically the positive and
negative values, thus, as a matter of fact, the ambiguity of signs in the above
formulas (25)–(27) does not matter when the values of energy in stationary
states are concerned. Nevertheless, this ambiguity is essential for classical
trajectories, namely, for different signs the orbits, or rather their angular
cycles are, “swept” in opposite directions.

Let us observe that the formulas (28)–(30) resemble the action-angle
description of the two-dimensional isotropic harmonic oscillator in terms of
usual polar coordinates (r, ϕ) on R2. Namely, the Cartesian formula

E = ω(Jx + Jy) (31)

is then alternatively reformulated as

E = ω(2Jr + Jϕ) . (32)

The ratio 2 : 1 of coefficients is due to the fact that the total angular rotation
in the ϕ-variable is accompanied by the exactly two total cycles of “libration”
in the r-variable. The analogy is neither accidental nor superficial. For the
deformative motion the deformation invariants D1, D2, i.e., stretchings,
are analogues to the radial variable r, whereas the two-polar angles ϕ, ψ
describing the spatial and material orientation of stretchings play a role
similar to the polar angle ϕ in material point dynamics on R2 (do not confuse
— the symbol ϕ is used in two different meanings). This is just the reason
for the 2 : 1 ratio in (20) and (28)–(30).

Let us now review certain still isotropic, but anharmonic modifications
of the harmonic model of affine vibrations (11) and (22). They are based on
the use of variables (α, β, ϕ, ψ) or (ρ, ϑ, ϕ, ψ). The corresponding potentials



Affinely-rigid Body and Oscillatory Dynamical Models on GL(2,R) 1863

are given by

V (α, β) =
C

2

(
α2 +

4
α2

)
+
C

2
β2 =

C

2
(
α2 + β2

)
+

2C
α2

, (33)

V (ρ, ϑ) =
C

2

(
ρ2 +

4
ρ2

)
+

2C
ρ2

tan2 ϑ

2
=
C

2
ρ2 +

2C
ρ2

1
cos2 ϑ

2

, (34)

where in both formulas C denoting some positive constant.
Using the former symbols we have

Vα =
C

2

(
α2 +

4
α2

)
, Vβ =

C

2
β2 , Vr =

C

2
r , Vϑ =

2C
cos2 ϑ

2

.

An important peculiarity of these models is that they have the stable
equilibria in the natural configuration D1 = D2 = 1, so they are viable
from the elastic point of view. Both of them are separable ((33) in the
obvious additive sense), therefore, the corresponding Hamiltonian systems
are integrable.

One can calculate explicitly the action variables (Jα, Jβ, Jϕ, Jψ) and
(Jr, Jϑ, Jϕ, Jψ) that correspond to (33) and (34). They are some functions
of the separation constants (one of them is the energy E). Eliminating
other constants one obtains the expression of E, or more precisely, of the
Hamiltonian H, as a function of action variables.

For the model (33) one obtains

E =
ω

4π

(
4(Jα + Jβ) + |Jϕ + Jψ|+

√
64µπ2C + (Jϕ − Jψ)2

)
,

where, as usually, we denote

ω =

√
C

µ
.

It is seen that the collapse-preventing term C/α2 in Vα partially removes the
degeneracy. Evidently, there is no longer resonance between ϕ and ψ. The
resonance between α and β obviously survives; their conjugate actions Jα,
Jβ enter the energy formula through the rational combination J = Jα + Jβ
and the corresponding frequencies are equal:

να = νβ =
ω

π
.

We use here the standard formulas:

να =
∂E

∂Jα
, νβ =

∂E

∂Jβ
, νϕ =

∂E

∂Jϕ
, νψ =

∂E

∂Jψ
.
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There are two phase-space regions given respectively by Jϕ + Jψ > 0 and
Jϕ+Jψ < 0. In each of these regions there is a resonance between γ = ϕ+ψ
and α, β. This is seen from the formulas

Jϕ = Jη + Jγ , Jψ = −Jη + Jγ .

In the mentioned regions we have respectively

E =
ω

4π

(
4Jα + 4Jβ ± 2Jγ +

√
16µπ2C + Jη2

)
.

This implies the following independent resonances:

να − νβ = 0 , να ∓ 2νγ = 0

or, equivalently,
να − νβ = 0 , νβ ∓ 2νγ = 0 .

Therefore, in any of the mentioned regions, where Jγ > 0 or Jγ < 0,
the system is twice degenerate and the closures of its trajectories are two-
dimensional isotropic tori in the eight-dimensional phase space.

Using the primary variables ϕ, ψ, we have the following expressions for
νϕ, νψ:

νϕ =
ω

4π

(
±1 +

2(Jϕ − Jψ)√
64µπ2C + (Jϕ − Jψ)2

)
,

νψ =
ω

4π

(
±1 +

2(Jψ − Jϕ)√
64µπ2C + (Jψ − Jϕ)2

)
,

the ± signs respectively in the regions, where Jϕ + Jψ > 0 or Jϕ + Jψ < 0.
Then, taking into account that

ω = πνα = πνβ = πν =
∂E

∂J
,

we have the following degeneracy conditions:

να − νβ = 0 , να ∓ 2νϕ ∓ 2νψ = 0 ,

respectively in the regions, where Jα + Jβ > 0 or Jα + Jβ < 0. Obviously,
in the second equation, να may be equivalently replaced by νβ .

The corresponding quasi-classical Bohr–Sommerfeld spectrum is given
by

E = 1
2~ω

(
4n+ |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
. (35)
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Another interesting model is (34), separable in the variables (ρ, ϑ), i.e.,
equivalently (r, ϑ). Then we obtain

E =
ω

4π

(
4(Jr + Jϑ) + |Jϕ + Jψ|+

√
64µπ2C + (Jϕ − Jψ)2

)
=

ω

4π

(
4(2Jρ + Jϑ) + |Jϕ + Jψ|+

√
64µπ2C + (Jϕ − Jψ)2

)
.

Again there is only a two-fold degeneracy and the system is not peri-
odic. Trajectories are dense in two-dimensional isotropic tori. Degeneracy
is described by the following pair of independent equations:

νρ − 2νϑ = 0 , νϑ ∓ 2νϕ ∓ 2νψ = 0 ,

respectively in the phase-space regions, where Jϕ + Jψ > 0 or Jϕ + Jψ < 0.
Obviously, the second equation may be alternatively replaced by

νρ ∓ 4νϕ ∓ 4νψ = 0 .

The corresponding quasiclassical Bohr–Sommerfeld spectrum is given by

E = 1
2~ω

(
4n+ |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
,

where the quantum numbers n,m, l, refer respectively to the action variables
J , Jϕ, Jψ, and the system is twice degenerate. Quasiclassical energy levels
are labelled by two effective quantum numbers, namely, (4n + m + l) and
(m− l), and there is also an obvious degeneracy with respect to the simul-
taneous change of signs of m and l.

Let us mention that some anharmonic potentials independent of ϑ, e.g.,
the first term in (34), are also of some practical utility as models of a bounded
motion. The point is that, as seen in formula (15), the variable r depends
both on the area of the body (its “two-dimensional volume”) and on the shear
parameter. Therefore, to be bounded in r implies to be bounded both in the
“volume” and shear degrees of freedom. Due to the separability, the motion
in (ϕ, ϑ, ψ)-variables is geodetic in the sense of invariant metric tensors on
SO(3,R) or SU(2). And this problem is mathematically isomorphic with the
motion of the free spherically-symmetric rigid body in the three-dimensional
space (purely rotational one, without translations in R3).

Another helpful model would be one with Vϑ(ϑ) = A cosϑ, where A
denotes some constant. The resulting problem is isomorphic with that of
the three-dimensional heavy top.

It is not excluded that some more general problems from the realm of
three-dimensional gyroscopic dynamics, e.g., symmetric top, might be also
of some mathematical usefulness when studying the two-dimensional affine
motion.
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5. Quantised problems

Classical dynamical models described above may be easily quantized in
the sense of Schrödinger wave mechanics on manifolds. Those rigorously
solvable on the classical level are so as well, on the quantum level.

Let us fix some notation. Let Q be a differential manifold of dimension n
with the metric tensor G. The components of G with respect to some local
coordinates q1, . . . , qn will be denoted by Gij and the components of the con-
travariant inverse of G will be denoted by Gij ; by definition, GikGkj = δi

j .
The determinant of the matrix [Gij ] will be briefly denoted by the symbol |G|
(no confusion between two its meanings); it is well-known that this determi-
nant is an analytic representation of some scalar density of weight two; the
square root

√
|G| is a scalar density of weight one. The invariant measure

induced by G will be denoted by µ̃; analytically its element is given by

dµ̃(q) =
√
|G(q)|dq1 . . . dqn .

Operators of the covariant differentiation induced in the Levi–Civita sense
by G will be denoted by ∇i. The corresponding Laplace–Beltrami operator
∆ is analytically given by

∆ = Gij∇i∇j
or explicitly, when acting on scalar fields,

∆Ψ =
1√
|G|

∑
i,j

∂

∂qi

(√
|G|Gij ∂Ψ

∂qj

)
,

Ψ denoting a twice differentiable complex function on Q.
Wave mechanics is formulated in L2(Q, µ̃), the space of square-integrable

functions on Q with the scalar product meant as follows:

〈Ψ |Φ〉 :=
∫

Ψ(q)Φ(q)dµ̃(q) .

The operator ∆ is symmetric with respect to this product, and ∇i are
skew-symmetric. The metric G underlies the classical kinetic energy, there-
fore, the classical energy/Hamiltonian function

H =
µ

2
Gij(q)

dqi

dt

dqj

dt
+ V (q) =

1
2µ
Gij(q)pipj + V (q)

becomes the operator

Ĥ = − ~
2µ
∆+ V .
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Then, denoting and ordering our coordinates qi as (ϕ,ψ, α, β) in the Carte-
sian case we have for explicitly separable isotropic potentials:

[Gij ] =


α2 + β2 β2 − α2 0 0
β2 − α2 α2 + β2 0 0

0 0 1 0
0 0 0 1

 , (36)

Ĥ = Ĥα + Ĥβ = − ~2

2µ
∆+ V (α, β) , (37)

where

Ĥα =
1

2µ

(
1
α2

(
Ŝ − Σ̂

)2
− ~2

(
∂2

∂α2
+

1
α

∂

∂α

))
+ Vα(α) , (38)

Ĥβ =
1

2µ

(
1
β2

(
Ŝ + Σ̂

)2
− ~2

(
∂2

∂β2
+

1
β

∂

∂β

))
+ Vβ(β) , (39)

and Ŝ = (~/i)∂/∂ϕ is the spin operator, the generator of spatial rota-
tions about the current spatial position of the centre of mass, whereas
Σ̂ = (~/i)∂/∂ψ is the “vorticity” operator, the generator of material ro-
tations. Operators Ĥα, Ĥβ , Ŝ, Σ̂ are the quantum constants of motion.
They also commute with each other (they represent co-measurable physical
quantities).

Those formulas follow from the expression of∆ in coordinates (ϕ,ψ, α, β)

∆Ψ =
∂2Ψ

∂α2
+
∂2Ψ

∂β2
+

1
α

∂Ψ

∂α
+

1
β

∂Ψ

∂β
+
(

1
4α2

+
1

4β2

)(
∂2Ψ

∂ϕ2
+
∂2Ψ

∂ψ2

)
+
(

1
2β2
− 1

2α2

)
∂2Ψ

∂ϕ∂ψ
. (40)

Separable solutions of the stationary Schrödinger equation ĤΨ = EΨ have
the form:

Ψ(ϕ,ψ, α, β) = fϕ(ϕ)fψ(ψ)fα(α)fβ(β) , (41)

where fϕ(ϕ) = eimϕ, fψ(ψ) = eilψ (m, l are integers) and fα(α), fβ(β) are
the deformative wave functions.

Hence, the stationary Schrödinger equation with an arbitrary potential
V (α, β) = Vα(α) + Vβ(β) leads after the standard separation procedure to
the following system of one-dimensional eigenequations:

d2fα(α)
dα2

+
1
α

dfα(α)
dα

− (m− l)2

4α2
fα(α) +

2µ
~2

(Eα − Vα(α)) fα(α) = 0 , (42)

d2fβ(β)
dβ2

+
1
β

dfβ(β)
dβ

− (m+ l)2

4β2
fβ(β) +

2µ
~2

(Eβ − Vβ(β)) fβ(β) = 0 . (43)
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It is natural to expect that for potentials (5) the resulting Schrödinger
equations should be rigorously solvable in terms of some standard special
functions. The most convenient way of solving them is to use the Sommer-
feld polynomial method [13,14]. In this method the solutions are expressed
by the usual or confluent Riemann P -functions. They are deeply related to
the hypergeometric functions (respectively usual F1 or confluent F2). If the
usual convergence demands are imposed, then the hypergeometric functions
become polynomials and our solutions are expressed by elementary func-
tions. At the same time the energy levels are expressed by the eigenvalues
of the corresponding operators. There exists some special class of potentials
to which the Sommerfeld polynomial method is applicable. The restriction
to solutions expressible in terms of Riemann P -functions is reasonable, be-
cause this class of functions is well investigated and many special functions
used in physics may be expressed by them. There is also an intimate rela-
tionship between these functions and representations of Lie groups.

Let us now quote some formulas for quantised problems separable in co-
ordinates (r, Φ,Θ, Ψ) (equivalently (ρ, Φ,Θ, Ψ)), namely, the quantum coun-
terparts of classical models (18). One can easily show that the Laplace
operators take on the form:

∆Ψ = 4r
∂2Ψ

∂r2
+ 8

∂Ψ

∂r
+

1
r sin2 ϑ

(
∂2Ψ

∂ϕ2
+ 2 cosϑ

∂2Ψ

∂ϕ∂ψ
+
∂2Ψ

∂ψ2

)
+

4
r

(
∂2Ψ

∂ϑ2
+ cotϑ

∂Ψ

∂ϑ

)
,

i.e.,

∆Ψ =
∂2Ψ

∂ρ2
+

3
ρ

∂Ψ

∂ρ
+

4
ρ2 sin2Θ

(
∂2Ψ

∂Φ2
+ 2 cotΘ

∂2Ψ

∂Φ∂Ψ
+
∂2Ψ

∂Ψ2

)
+

4
ρ2

(
∂2Ψ

∂Θ2
+ cotΘ

∂Ψ

∂Θ

)
.

We assume the doubly isotropic separable potential energy (21), i.e.,

V = Vr(r) +
Vϑ(ϑ)
r

= Vρ(ρ) +
Vϑ(ϑ)
ρ2

.

The corresponding Schrödinger equation separates and, taking into account
the cyclic character of angular variables ϕ,ψ, we put

Ψ(ϕ,ψ, r, ϑ) = eimϕeilψfr(r)fϑ(ϑ) = eimϕeilψfρ(ρ)fϑ(ϑ) , (44)

where m, l are integers.



Affinely-rigid Body and Oscillatory Dynamical Models on GL(2,R) 1869

Quantum integration constants responsible for this separability are given
by operators:

• p̂ϕ = ~
i
∂
∂ϕ = Ŝ — spin ,

• p̂ψ = ~
i
∂
∂ψ = V̂ — vorticity ,

• ĥϑ = 1
2µ sin2 ϑ

(
p̂ϕ

2 + 2 cosϑp̂ϕp̂ψ + p̂ψ
2
)
− 4~2

2µ

(
∂2

∂ϑ2 + cotϑ ∂
∂ϑ

)
+ Vϑ ,

• Ĥ = Ĥr + Ĥϑ = Ĥr + 1
r ĥϑ = Ĥρ + 1

ρ2
ĥϑ – energy ,

where the “radial energy” is given by

Ĥr = Ĥρ = − ~2

2µ

(
4r

∂2

∂r2
+ 8

∂

∂r

)
+ Vr(r) = − ~2

2µ

(
∂2

∂ρ2
+

3
ρ

∂

∂ρ

)
+ Vρ(ρ) .

The four mentioned constants of motion p̂ϕ, p̂ψ, ĥϑ, Ĥ are pairwise com-
muting and therefore they represent co-measurable physical quantities.
Warning: the two indicated contributions to Ĥ, i.e., Ĥr and Ĥϑ = ĥϑ/r
are not constants of motion.

The stationary Schrödinger equation for the factorized wave function
(44) reduces to the following pair of ordinary Schrödinger equations (Sturm–
Lioville equations) for the factors depending only on one variable, respec-
tively ϑ and r (or ρ):

ĥϑfϑ = eϑfϑ , (45)

Ĥrfr +
eϑ
r
fr = Efr , i .e. , Ĥρfρ +

eϑ
ρ2
fρ = Efρ . (46)

The procedure is first to solve the ϑ-equation and then to substitute the
resulting eigenvalues eϑ to the r/ρ-equation. Then one obtains (at least in
principle) the energy levels E.

It was mentioned that there exists some strange relationship between
the two-polar parametrisation of GL(2,R) and the Euler angles and scale
parameters of rigid body with dilatations. There is some very interesting
aspect of this link, which we noticed first quite accidentally, on the purely
analytical level, before the trivial geometric meaning of this surprise became
evident to us. This artificial detour (wandering about) was due to the fact
that by chance we invented our separating coordinates (r, ϑ) better (ρ, ϑ) just
where they are rather obscurely hidden, namely as polar parametrization of
the pair of quantities (2D1D2, D1

2 −D2
2) (14)–(16).
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Namely, differential eigenequations (45), (46) may be explicitly written
down as follows:

d2fϑ
dϑ2

+ cotϑ
dfϑ
dϑ
−
(
m2 + 2ml cosϑ+ l2

4 sin2 ϑ
+

µ

2~2
(Vϑ − eϑ)

)
fϑ = 0 , (47)

4r
d2fr
dr2

+ 8
dfr
dr

+
2µ
~2

(
E −

(
Vr +

eϑ
r

))
fr = 0 , (48)

where m, l are integers in Ψ as coefficients at the angles ϕ, ψ in complex
exponential functions (eigenfunctions of p̂ϕ, p̂ψ). Let us now divide by 4
the nominator and denominator in the bracket expression (47) and formally
admit half-integer coefficients. We can rewrite our equations as follows:

d2fϑ
dϑ2

+ cotϑ
dfϑ
dϑ
−
(
m2 + 2ml cosϑ+ l2

sin2 ϑ
+

µ

2~2
(Vϑ − eϑ)

)
fϑ = 0 , (49)

d2fρ
dρ2

+
3
ρ

dfρ
dρ

+
2µ
~2

(
E −

(
Vρ +

eϑ
ρ2

))
fρ = 0 , (50)

where now the numbers m, l are assumed to run over the set of non-negative
integers and half-integers, i.e., m, l = 0, 1

2 , 1,
3
2 , . . . .

Let us notice that when there is no purely shear-like potential, i.e.,
Vϑ = 0, then the ϑ-equation is just nothing else but the eigenequation for
the nutation ϑ-factor of the stationary states of the spherical top:

d2fϑ
dϑ2

+ cotϑ
dfϑ
dϑ
−
(
m2 + 2ml cosϑ+ l2

sin2 ϑ
− µ

2~2
eϑ

)
fϑ = 0 . (51)

The history of this equation traces back to the Reiche–Rademacher theory
of quantum top [10, 11, 27] and to the Wigner theory of irreducible unitary
representations of the group SU(2) [12, 25, 26], i.e., roughly speaking, to
the one-valued and two-valued irreducible unitary representations of the
rotation group SO(3,R). Then the quantised eigenvalues eΘ are given by
the expression

eΘj =
2~2

µ
j(j + 1)

labelled by non-negative half-integer and integer numbers, j = 0, 1
2 , 1,

3
2 ,

. . . , i.e., j ∈ {0} ∪ (N/2), N denoting the set of naturals.
The corresponding eigenfunctions djml(Θ) were found by Wigner as fac-

tors in expressions for the matrix elements of unitary irreducible represen-
tations of SU(2),

Dj
ml(Φ,Θ, Ψ) = eimΦdjml(Θ)eilΨ .
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Here, as mentioned, Φ, Θ, Ψ denote the Euler angles parametrization of
SU(2). Their range is twice larger than the range of Euler angles on the
quotient group SO(3,R); this is the reason why the half-integer quantum
numbers do appear.

The celebrated functions Dj
ml appear also as stationary states of the

quantized spherical free top. Energy levels are then given by

Ej =
~2

2I
j(j + 1) , j = 0, 1

2 , 1,
3
2 , . . . ,

I denoting the main moment of inertia, and of course they are (2j + 1)2-
fold degenerate. The labels of basic j-states, m, l, are quantum numbers of
projections of the angular momentum respectively on the space-fixed and
body-fixed z-axes:

~
i

∂

∂Φ
Dj

ml = ~mDj
ml ,

~
i

∂

∂Ψ
Dj

ml = ~lDj
ml .

Obviously, m, l run over the range −j,−j + 1, . . . , j − 1, j, jumping by
one. Strictly speaking, in applications concerning the rotational spectra of
molecules, one has to restrict ourselves to integer values of j, m and l. There
are, however, some arguments that perhaps the half integer values might be
also acceptable [1, 5].

Let us also mention that m, l are good quantum numbers also for a more
general free symmetric top, not necessarily the spherical one. If I, K are
two main moments of inertia, I doubly degenerate one, then Dj

ml are still
basic eigenfunctions corresponding to the energy levels

Ej,l =
~2

2I
j(j + 1) + ~2

(
1
2I
− 1

2K

)
l2 .

They are 2(2j + 1)-fold degenerate, namely with respect to the quantum
number m and to the sign of l.

One can wonder whether such a symmetric free top in three dimensions,
or more general three-dimensional top with some external potential, first of
all one of the shape U(Θ) (e.g., heavy top), might be useful as a tool for
analyzing the two-dimensional affinely-rigid body. This is just a question
worth to be analyzed.

6. Quantized harmonic and anharmonic vibrations

The Schrödinger equations from the previous section may be solved only
when the explicit form of potential energy is specified. It is clear that simple
solutions in terms of known special functions may be expected only when
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the potential has some particular geometric interpretation. For example,
this is the case when the corresponding classical problem is degenerate and
has some hidden symmetries.

First, let us consider the model of the harmonic oscillator potential (22).
Applying the Sommerfeld polynomial method we obtain the energy levels
E = Eα + Eβ as follows:

E = 1
2~ω (4n+ 4 + |m− l|+ |m+ l|) , (52)

where

Eα =
~ω
2

(4nα + 2 + |m− l|) , Eβ =
~ω
2

(4nβ + 2 + |m+ l|) , (53)

and ω =
√
C/µ, n = nα+nβ , n = 0, 1, . . . , m, l = 0,±1, . . . . We may write:

(i) if |m| > |l|, then m2 > l2 and

E = ~ω (2n+ 2±m) ,

(ii) if |m| < |l|, then m2 < l2 and

E = ~ω (2n+ 2± l) ,

(iii) if |m| = |l|, then m2 = l2 and

E = ~ω (2n+ 2±m) = ~ω (2n+ 2± l) .

After some calculations we obtain the deformative wave functions fα(α)
and fβ(β) in the form:

fα(α) = ασκ
1
4
+σ

2 e−
κ
2
α2
F2

(
−nα; 1 + σ;κα2

)
, (54)

fβ(β) = βγκ
1
4
+ γ

2 e−
κ
2
β2
F2

(
−nβ; 1 + γ;κβ2

)
, (55)

where σ = 1
2 |m− l|, κ =

√
Cµ/~2, γ = 1

2 |m+ l|.
The constant term 4 occurring in the rigorous quantum formula (52)

and absent in the quasi-classical one (24) was in principle expected. This re-
sembles the difference between Schrödinger and Bohr–Sommerfeld-quantised
harmonic oscillators. This is an essentially quantum effect.

In the classical part we mentioned that the harmonic oscillator model, in
spite of its academic character, may have some practical utility, and besides,
it suggests some reasonable anharmonic corrections well suited to certain
of its degeneracy properties. The mentioned corrections reduce degeneracy
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in some characteristic way and at the same time the model becomes more
realistic. On the classical and quasi-classical level we discussed the potential
(33), i.e.,

V (α, β) =
C

2

(
α2 +

4
α2

)
+
C

2
β2 .

The model may be rigorously solved on the quantum level and one obtains
the following formula for the energy levels:

E = 1
2~ω

(
4n+ 4 + |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
. (56)

The energy in (56) depends on an integer combination of the quantum num-
bers, i.e., n = nα + nβ . The wave functions are as follows:

fα(α) = αχκ
1
4
+χ

2 e−
κ
2
α2
F2

(
−nα; 1 + χ;κα2

)
, (57)

fβ(β) = βγκ
1
4
+ γ

2 e−
κ
2
β2
F2

(
−nβ; 1 + γ;κβ2

)
, (58)

where

χ = 1
2

√
(m− l)2 +

16Cµ
~2

.

It is seen that the formula for the energy levels is structurally “almost”
identical with the quasiclassical one (35), i.e.,

E = 1
2~ω

(
4n+ |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
.

This is rather typical for systems invariant under “large” symmetry groups
and based on interesting geometric structures. There is a characteristic shift
of energy levels, corresponding to the “null vibrations” of the harmonic part
of the system. Just like on the classical and quasiclassical levels, the system
is twice degenerate and its energy levels are essentially controlled by two
effective quantum numbers: nα + nβ + |m+ l| and |m− l|.

Using the formulas (47), (48), i.e., (49), (50), we can also quantize the
model (34), i.e.,

V (r, ϑ) =
C

2

(
r +

4
r

)
+

2C
r
tg2ϑ

2
.

The expression for the energy levels E is as follows:

E = 1
2~ω

(
4n+ 4 + |m+ l|+

√
(m− l)2 +

16Cµ
~2

)
, (59)
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where n = nr + nϑ. The functions fr(r), fϑ(ϑ) have the form:

fr(r) = r−
1
2
+εκ

1
2
+εe−

κ
2
rF2 (−nr; 1 + 2ε;κr) , (60)

fϑ(ϑ)=
(

cos
ϑ

2

)χ(
sin

ϑ

2

)γ
F1

(
−nϑ, 1 + nϑ + γ + χ; 1 + χ; cos2 ϑ

2

)
, (61)

where
ε = 1

2

√
1 +

2µ
~2
eϑ +

2Cµ
~2

,

eϑ =
~2

8µ

(4nϑ + 2 + |m+ l|+
√

(m− l)2 +
16Cµ

~2

)2

− 4− 16Cµ
~2

 .

For many physical reasons it would be interesting to discuss the model (21),
however, we were not yet successful in solving explicitly the corresponding
Schrödinger equation.

Rigorous solutions for two-dimensional problems may be useful in micro-
scopic physical problems (vibrations of planar molecules such as S8, C6H6)
and in macroscopic elasticity (cylinders with homogeneously-deformable
cross-sections). Applications in dynamics of nanotubes seem to be possible.

The next important thing to be done is a more comprehensive analysis
of the status of analogy with Euler angles and the related complexification
problems. This will be done in a subsequent paper. Some introductory
analysis is outlined below.

7. Planar affine body versus spatial rigid body

It was mentioned above about certain interesting links between mechan-
ics of isotropic affine body in two dimension and the dynamics of three-
dimensional rigid body, more precisely, rigid body with imposed dilatations.
Only certain analytical aspects, useful in calculations, were stressed there.
However, the problem is geometrically interesting in itself and has to do
with certain complexification procedures on Lie groups used as configura-
tion spaces. We shall analyse this problem in more detail in a forthcoming
paper; here we mention only a few simple analytical relationships.

Let us remind that the metric tensor underlying kinetic energy of the
planar isotropic affine body was given by

ds2 = Tr
(
dφTdφ

)
= dx2 + dy2 + dz2 + du2 ; (62)

the corresponding kinetic energy form reads

T =
µ

2
Tr
(
dφT

dt

dφ

dt

)
=
µ

2

((
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

+
(
du

dt

)2
)
, (63)

where µ denotes the scalar inertial moment.
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For certain reasons it is convenient to use some modified parametrisation
of the two-polar decomposition

φ = ODR−1 , (64)

where O, R are proper orthogonal and D is diagonal, namely,

O =
[

cos Φ2 − sin Φ
2

sin Φ
2 cos Φ2

]
, D =

[
D1 0
0 D2

]
, R =

[
cos Ψ2 sin Ψ

2
− sin Ψ

2 cos Ψ2

]
andD1 = exp (a+ b/2), D2 = exp (a− b/2). It is convenient and instructive
from the point of view of our analogies to write these matrices as:

O=exp
(
Φ

1
2i
σ2

)
, R−1 =exp

(
Ψ

1
2i
σ2

)
, D=exp

(
a

1
2
σ0

)
exp
(
b
1
2
σ3

)
,

where σν (ν = 0, 1, 2, 3) are Pauli matrices; more precisely, σa (a = 1, 2, 3)
are “true” Pauli matrices, so

σ0 =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (65)

The crucial point for our analogies and links is that the matrices

τa =
1
2i
σa , a = 1, 2, 3 , (66)

are generators of the group SU(2), the universal covering of SO(3,R), with
standard commutation rules

[τ1, τ2] = τ3 , [τ2, τ3] = τ1 , [τ3, τ1] = τ2 . (67)

And similarly, the matrices

τ̃1 = iτ1 , τ̃2 = τ2 , τ̃3 = iτ3 (68)

are generators of SL(2,R) with the standard structure constants,

[τ̃1, τ̃2] = τ̃3 , [τ̃2, τ̃3] = τ̃1 , [τ̃3, τ̃1] = −τ̃2 . (69)

Obviously, the matrix

τ0 = τ̃0 =
1
2

[
1 0
0 1

]
(70)

generates real dilatations. So, the matrices τ̃ν generate the group GL(2,R),
the configuration space of the planar affine body, and τν generate R+SU(2),
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the 2 : 1 covering of the configuration space of rigid body with admitted
dilatations (“breathing top”). The rough symbol R+SU(2) denotes the man-
ifold of all matrices obtained as products of special unitary matrices by
positive real numbers, R+SU(2) := {λu : λ ∈ R+, u ∈ SU(2)}.

In our models of the doubly isotropic planar affine body, with the metric
element (62) we were used rather to parametrize the plane of deformation
invariants (D1, D2) by r = ρ2 = (D1)2 + (D2)2 and the angle ϑ such that
sinϑ =

(
D1

2 −D2
2
)
/
(
D1

2 +D2
2
)
so that the relationships (14)–(16) and

those following them are satisfied. However, in models with affinely-invariant
kinetic energies the variables a, b as deformation invariants are more conve-
nient. As mentioned, one can show that

ds2 = dρ2 + 1
4ρ

2
(
dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2

)
=

1
4r
(
dr2 + r2

(
dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2

))
. (71)

We easily recognize the term characteristic for the spherical top described
in terms of the “Euler angles” (Φ,Θ, Ψ) and the term corresponding to the
evolution of the invariant r, a kind of “dilatation” (not in a rigorous sense).
Using the more geometric variables a, b and the auxiliary, literally dilata-
tional variable

δ =
√
D1D2 = exp (a/2) , (72)

we express (71) as follows:

ds2 = cosh b dδ2 + δ sinh b dδdb+ 1
4δ

2 cosh b db2

+1
4δ

2 cosh b
(
dΦ2 +

2
cosh b

dΦdΨ + dΨ2

)
. (73)

This is an ugly non-diagonal form; the reason is that ds2 is not affinely-
invariant, but only isotropic. The “Euler angles” term is readable, because,
as we saw, (cosh b)−1 = cosΘ. There are no essential geometric arguments
against modifying (71) by some extra term proportional to dρ2.

Let us compare these formulas with those for the spherical three-dimen-
sional rigid body with dilatations. More precisely, we write down the formu-
las on the group R+SU(2), the universal (2 : 1) covering group of R+SO(3,R)
(roughly speaking, the spinorial breathing-rigid-body). Again the rough
symbol R+SO(3,R) denotes the group of all matrices which are products
of proper rotations (special orthogonal matrices) by positive real numbers,
R+SO(3,R) := {λA : λ ∈ R+, A ∈ SO(3,R)}. Then φ ∈ R+SU(2) is “Euler-
parametrised” as follows:

φ = exp(aτ0)exp(Φτ2)exp(Θτ3)exp(Ψτ2) . (74)
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More precisely, historical term “Euler angles” is used when the following
convention is used:

φ̃′ = exp(aτ0)exp(Φτ3)exp(Θτ1)exp(Ψτ3) , (75)

or similarly, (more popular in textbooks),

φ̃“ = exp(aτ0)exp(Φτ3)exp(Θτ2)exp(Ψτ3) . (76)

If (74)–(76) are identified, then, obviously, (Φ,Θ, Ψ) in those formulas de-
note numerically different functions on SU(2). Nevertheless, there is no
essential difference between them. What matters is that the SU(2)-matrices
are factorised into products of three elements taken from two orthogonal
one-parameter subgroups. This is only the question how those three one-
parameter subgroups are called (ordered). The non-historical, apparently
exotic convention (74) is optimally adapted to our programme of exhibiting
some links between planar affine body and spatial rigid body.

Namely, let us take the following metric on R+SU(2), underlying the
kinetic energy of the spherical breathing top:

ds2 = Tr
(
dφ†dφ

)
, (77)

where the “†-symbol” denotes Hermitian conjugation of matrices. Denoting
again:

δ = exp (a/2) , λ = δ2 = exp(a) , (78)

we obtain:

ds2 = dδ2 + 1
4δ

2
(
dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2

)
, (79)

i.e., equivalently,

ds2 =
1

4λ
(
dλ2 + λ2

(
dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2

))
, (80)

or,
ds2 = 1

4e
a
(
da2 + dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2

)
. (81)

Obviously, the R+-factor in R+SU(2) is a normal divisor and from the purely
geometrical point of view of two-side invariant metrics on R+SU(2), there
are no obstacles against modifying ds2 by adding an arbitrary correction
term ds2corr = c dδ2, c being a constant. This means that (79)–(81) may be
replaced by

ds2 = (1 + c)dδ2 + 1
4δ

2
(
dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2

)
, (82)

ds2 =
1

4λ
(
(1 + c)dλ2 + λ2

(
dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2

))
, (83)

ds2 = 1
4e
a
(
(1 + c)da2 + dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2

)
. (84)
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Concerning the extra dilatational term in dynamics of the breathing top,
cf., e.g., [9]. Replacing the real parameter a in (77), (78) by imaginary one ia,
one obtains instead (84) the following arc element for the two-side invariant
Riemannian metric on the unitary group U(2):

ds2 = 1
4

(
(1 + c)da2 + dΘ2 + dΦ2 + 2 cosΘdΦdΨ + dΨ2

)
. (85)

For some application or just comparison purposes one can admit in (77),
(78) the general complex parameter a. This results in the doubly-invariant
Riemannian metric on (C / {0})SU(2) = R+U(2).

This was, so to speak, “one side” of injecting geometry and dynam-
ics of the “breathing top” into those of planar affine body (or conversely).
There is also another aspect, namely one based on affinely-invariant met-
ric tensors on GL+(2,R) [22–24]. Such metric tensors, of non-definite sig-
nature (SL(2,R),GL+(2,R) are non-compact, SL(2,R) is semi-simple, and
GL+(2,R) is the direct product of R+SL(2,R)) are linear combinations of
those given by the arc element

ds2 = Tr
(
Ω2
)

= Tr
(
Ω̂2
)

(86)

and the purely dilatational correction term

ds2corr = Tr (Ω)2 = Tr
(
Ω̂
)2

, (87)

where the Lie-algebraic Cartan one-forms Ω, Ω̂ on GL(2,R) are given by
the usual formulas:

Ω = (dφ)φ−1 , Ω̂ = φ−1dφ = φ−1Ωφ . (88)

Of course, (86) is the main, non-degenerate term of signature (+ + +−).
Killing tensor on GL(2,R) is degenerate; the singular direction is that of the
one-dimensional centre R+Id2. This Killing case corresponds to the ratio
4 : (−2) of coefficients at (86), (87).

For calculations we need the following parametrisation of φ ∈ GL+(2,R),
analogous to (74)

φ=exp(aτ̃0)exp(Φτ̃2)exp(bτ̃3)exp(Ψτ̃2)=δexp(Φτ̃2)exp(bτ̃3)exp(Ψτ̃2) , (89)

where, evidently,
δ = exp (a/2) =

√
λ . (90)
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Combining (86), (87) with appropriate coefficients (that at the main term
(86) must be non-vanishing), we finally obtain:

ds2 = (1 + c)dδ2 + 1
4δ

2
(
db2 − dΦ2 − 2 cosh b dΦdΨ − dΨ2

)
=

1
4λ
(
(1 + c)dλ2 + λ2

(
db2 − dΦ2 − 2 cosh b dΦdΨ − dΨ2

))
= 1

4e
a
(
(1 + c)da2 + db2 − dΦ2 − 2 cosh b dΦdΨ − dΨ2

)
. (91)

The relationship between these formulas (as a matter of fact, one for-
mula written in three alternative forms) and (71), (73), (79)–(81) is obvious.
Namely, the last four terms in any form of (91) become the “minus” terms of
the spherical top, when some complexification procedure is performed, i.e.,
when we put b = iΘ, Θ being real. Then, obviously, the last four terms
become the spherical top expression with reversed sign,

−dΘ2 − dΦ2 − 2 cosΘdΦdΨ − dΨ2 , (92)

and no wonder, because SL(2,R) and SU(2) are two different (and in a
sense, having opposite properties) real forms of the same complex Lie group
SL(2,C). The over-all minus term of the Killing metric on SU(2) is due
to its compactness. Performing a similar “imaginarization” of a, we obtain
just the “minus” expression (85), the doubly invariant metric on U(2). This
also expresses the fact that GL+(2,R), U(2) are two different real forms of
GL(2,C).

The research presented above was supported by the Ministry of Science
and Higher Education grant No 501 018 32/1992 and the Institute of Fun-
damental Technological Research PAS internal project 203.
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