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We consider the nonrelativistic particle moving on noncommutative
space-time in the presence of constant force ~F . Further, following the
paper M. Daszkiewicz, C.J. Walczyk, Phys. Rev. D77, 105008 (2008),
we recall that the considered noncommutativity generates additional force
terms, which appear in the corresponding Newton equation. We demon-
strate that the same force terms can be generated by the proper noninertial
transformation of classical nonrelativistic space-time.

PACS numbers: 02.20.Uw, 02.40.Gh

The suggestion to use noncommutative coordinates goes back to Heisen-
berg and was firstly formalized by Snyder in [1]. Recently, there were also
found formal arguments based mainly on Quantum Gravity [2,3] and String
Theory models [4, 5], indicating that space-time at Planck scale should be
noncommutative, i.e. it should have a quantum nature. Consequently, there
appeared a lot of papers dealing with noncommutative classical and quan-
tum mechanics (see e.g. [6, 7]) as well as with field theoretical models (see
e.g. [8, 9]), in which the quantum space-time is employed.

In accordance with the Hopf-algebraic classification of all deformations
of relativistic [10] and nonrelativistic [11] symmetries, one can distinguish
three basic types of space-time noncommutativity:

1. The canonical (soft) deformation

[xµ, xν ] = iθµν , (1)

with constant and antisymmetric tensor θµν . The explicit form of
corresponding Poincare Hopf algebra has been provided in [12, 13],
while its nonrelativistic limit has been proposed in [14].

(1881)
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2. The Lie-algebraic case

[ xµ, xν ] = iθρµνxρ , (2)

with particularly chosen constant coefficients θρµν . Particular kind of
such space-time modification has been obtained as representations of
κ-Poincare [15, 16] and κ-Galilei [17] Hopf algebras. Besides, the Lie-
algebraic twist deformations of relativistic and nonrelativistic symme-
tries have been provided in [18,19] and [14], respectively.

3. The quadratic deformation

[ xµ, xν ] = iθρτµνxρxτ , (3)

with constant coefficients θρτµν . Its Hopf-algebraic realization was pro-
posed in [20], [21] and [19] in the case of relativistic symmetry, and
in [22] for its nonrelativistic counterpart.

Recently, in paper [23], there has been investigated the impact of men-
tioned above space-time deformations (with commuting time direction) on a
dynamics of simplest classical system — the nonrelativistic particle moving
in a field of constant force ~F 1. Particulary, it has been demonstrated that
for hamiltonian function

H(~p, ~x) =
~p2

2m
+ V (~x) , V (~x) =

3∑
i=1

Fixi , Fi = const. , (4)

in the case of canonically deformed phase space2

{xi, xj } = θij , { pi, pj } = 0 , {xi, pj } = δij , (5)

the corresponding Newton equation remains undeformed3

mẍi = Fi . (6)
1 We consider in [23] four noncommutative space-times (see (5), (7), (9) and (11)),
which represent the mentioned above classes of quantum spaces. All of them corre-
spond to the proper quantum Galilei groups provided in [14] and [22] respectively.

2 The relation between commutator and classical Poisson bracket is given by { a, b } →
1
i~ [ â, b̂ ] (~ = 1). It should be also noted that all provided below phase spaces satisfy
Jacobi identity.

3 We find all equations of motion (for all deformed phase spaces) following the standard
procedure [24]. Due to the linearity of equations (6), (8), (10) and (12) with respect
(quantum) spatial (xi) directions, their form is the same on noncommutative as well
as on commutative space-time. Hence, we pass with the above equations of motion
to the classical space without any their modification.
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In other words, it has been indicated that in such a case the space-time
noncommutativity (1) does not generate any additional force term.

More interesting situation appears for the Lie-algebraic modification of
nonrelativistic space-time (2). Then, in the case of the following phase space
(ρ, τ — fixed, x0 = ct.)

{xi, xj } =
1
κ
t(δiρδjτ − δiτδjρ) , { pi, pj } = 0 , {xi, pj } = δij , (7)

with two spatial directions commuting to time direction t, we get
mẍi = Fi ,

mẍρ = −m
κ Fτ + Fρ ,

mẍτ = m
κ Fρ + Fτ ,

(8)

with index i different than ρ and τ . Hence, we see that in such a case
there appear additional constant force terms associated with deformation
parameter κ. Similarly, for the second Lie-algebraically deformed phase
space (k, l, γ — fixed and different, i, j 6= γ)

{xk, xγ} =
1
κ̂
xl , {xl, xγ} = −1

κ̂
xk , {xk, xl} = 0 , {pk, xγ} =

1
κ̂
pl ,

{pl, xγ} = −1
κ̂
pk , {xi, pj} = δij , {xγ , pγ} = 1 , {pa, pb} = 0 , a, b=1, 2, 3

(9)

with two spatial directions commuting to space, we get the following modi-
fication of Newton equation (6)

mẍγ = Fγ + m
κ̂ Fkẋl −

m
κ̂ Flẋk ,

mẍl = Fl + 2m
κ̂ Fγ ẋk +m

(
Fγ
κ̂

)2
xl ,

mẍk = Fk − 2m
κ̂ Fγ ẋl +m

(
Fγ
κ̂

)2
xk .

(10)

The above result means, that the space-time noncommutativity (9) generates
additional position and velocity dependent force terms (10).

Finally, it should be noted, that the (last) quadratically deformed phase
space considered in [23] (with k, l, γ fixed and different, i, j 6= γ and a, b =
1, 2, 3)

{xk, xγ} =
1
κ̄
txl , {xl, xγ} = −1

κ̄
txk , {xk, xl }=0 , {pk, xγ}=

1
κ̄
tpl ,

{pl, xγ} =−1
κ̄
tpk , {xi, pj} = δij , {xγ , pγ} = 1 , {pa, pb} = 0 ,

(11)
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leads to the following equation of motion
mẍk = Fk − m

κ̄ Fγ (tẋl + xl)− m
κ̄ Fγt

(
ẋl − 1

κ̄Fγtxk
)
,

mẍl = Fl + m
κ̄ Fγ (tẋk + xk) + m

κ̄ Fγt
(
ẋk + 1

κ̄Fγtxl
)
,

mẍγ = Fγ + m
κ̄ Fk (tẋl + xl)− m

κ̄ Fl (tẋk + xk) .

(12)

Hence, we see, that in the last case there are generated position and velocity
dependent forces as well, but this time, with time dependent coefficients
(12).

Obviously, for deformation parameter θ running to zero, and all three
parameters κ, κ̂ and κ̄ approaching infinity, the above phase spaces and
Newton equations become undeformed.

Let us now turn to the more conventional mechanism to generate new
force terms in Newton equation (6). First of all, we start with the classical
(commutative) phase space

{xi, xj } = { pi, pj } = 0 , {xi, pj } = δij , (13)

and the hamiltonian function (4). Obviously, in such a case we get the
undeformed equation of motion (6), and identify such a system with the
inertial (for example the rest) observer O(t, x1, x2, x3).

Let us consider the following noninertial transformation from the ob-
server O(t, x1, x2, x3) to the nonrelativistic observer O′(t′, x′

1, x
′
2, x

′
3)

t′ = t ,

x′
i = xi + vit+ yi ,

x′
τ = xτ + m

2κFρt
2 + vτ t+ yτ ,

x′
ρ = xρ − m

2κFτ t
2 + vρt+ yρ ,

(14)

where va and ya (a = i, ρ, τ) denote arbitrary constants. As one can easily
see, the above transformation connects the inertial observer O(t, x1, x2, x3)
with the uniformly accelerated (in directions ρ and τ) observer
O′(t′, x′

1, x
′
2, x

′
3). By simple calculation one can also check that after trans-

formation (14) the Newton equation (6) takes the form
mẍ′

i = Fi ,

mẍ′
ρ = −m

κ Fτ + Fρ ,

mẍ′
τ = m

κ Fρ + Fτ ,

(15)

i.e. there appear the (additional) inertial force terms which are the same
as in equation (8). Hence, we see that from such a point of view, one can
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identify the dynamical effects of space-time noncommutativity (7) with the
ones generated by noninertial transformation (14), while the deformation
parameter κ describes the degree of noninertiality.

Similarly, in the case of phase space deformation (9) and (11), one can
check that the additional force terms which appear in Newton equations
(10) and (12) are generated by the following noninertial transformations of
commutative space-time



t = t′ ,

xγ = x′
γ − m

κ̂ Fk
t∫

0

x′
l(τ)dτ + m

κ̂ Fl
t∫

0

x′
k(τ)dτ ,

xl = x′
l −

2m
κ̂ Fγ

t∫
0

x′
k(τ)dτ −m

(
Fγ
κ̂

)2 t∫
0

τ2∫
0

x′
l(τ1)dτ1dτ2 ,

xk = x′
k + 2m

κ̂ Fγ
t∫

0

x′
l(τ)dτ −m

(
Fγ
κ̂

)2 t∫
0

τ2∫
0

x′
k(τ1)dτ1dτ2 ,

(16)

and 

t = t′ ,

xk = x′
k + m

κ̄ Fγ
t∫

0

(τx′
l(τ)) dτ + m

κ̄ Fγt
t∫

0

x′
l(τ)dτ

−2m
κ̄ Fγ

t∫
0

τ2∫
0

x′
l(τ1)dτ1dτ2 +Aκ̄,k(t) ,

xl = x′
l −

m
κ̄ Fγ

t∫
0

(τx′
k(τ)) dτ − m

κ̄ Fγt
t∫

0

x′
k(τ)dτ

+2m
κ̄ Fγ

t∫
0

τ2∫
0

x′
k(τ1)dτ1dτ2 +Aκ̄,l(t) ,

xγ = x′
γ − m

κ̄ Fk
t∫

0

(τx′
l(τ)) dτ + m

κ̄ Fl
t∫

0

(τx′
k(τ)) dτ ,

(17)

with d2

dt2
Aκ̄,k(l)(t) = − 1

κ̄2F
2
γ t

2x′
k(l), respectively. It means, that both effects

of deformations can be identified with the consequences of noninertial trans-
formations (16), (17), which connect the observer O(t, x1, x2, x3) with the
observer O′(t′, x′

1, x
′
2, x

′
3). From such point of view the deformation param-

eters κ̂ and κ̄ describe the degree of noninertiality as well.
Of course, for all three parameters κ, κ̂ and κ̄ approaching infinity, the

above transformations become identity.
In this short article we demonstrate, that the additional force terms

which appear in Newton equations (8), (10) and (12), can be generated
equivalently in two ways — by the presence of space-time noncommutativity
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(7), (9) and (11), or by the noninertial transformation of classical space (14),
(16) and (17). In such a way we did show that these two approaches lead to
the same additional force term (8), (10) and (12).

The above results have been obtained for nonrelativistic particle moving
in the presence of constant force ~F , but in principle, it can be extended to
an arbitrary potential function V (x). However, due to the nonlinear form of
the noncommutative space-time function V (x), such a generalization seems
to be quite complicated from calculational point of view.

The author would like to thank J. Lukierski and Z. Haba for valuable dis-
cussions. This paper has been financially supported by the Polish Ministry
of Science and Higher Education grant NN202318534.
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