
Vol. 41 (2010) ACTA PHYSICA POLONICA B No 8

THE MASS AND LEPTONIC DECAY CONSTANT
OF Ds0(2317) MESON IN THE FRAMEWORK

OF THERMAL QCD SUM RULES

Elşen Veli Veliev†, Gülşah Kaya‡

Physics Department, Kocaeli University, Umuttepe Yerleşkesi
41380 Izmit, Turkey

(Received April 7, 2010; revised version received July 1, 2010)

In the present work, we assume Ds0(2317) meson as the cs state and
study its parameters at finite temperature using QCD sum rules. It is calcu-
lated the annihilation and scattering parts of spectral function in the lowest
order of perturbation theory. Taking into account perturbative two-loop
order αs corrections and nonperturbative corrections up to the dimension
six condensates it is investigated the temperature dependences of mass and
leptonic decay constant of Ds0(2317) meson.
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1. Introduction

In 2003 BaBar Collaboration discovered a positive-parity scalar charm
strange meson Ds0(2317) with a very narrow width [1], which was con-
firmed by CLEO Collaboration [2] and BELLE Collaboration [3] later. This
observed state has attracted much attention because its measured mass and
width do not match the predictions from potential-based quark models [4].
To resolve the difficulties, many theoretical models have appeared in the
literature. Various theoretical models, based on the cs quark structure, are
suggested to explain the low mass and the narrow width for the Ds0(2317)
meson [5–10]. QCD sum rule analysis in [11,12] supports the cs postulation
of nature Ds0(2317). Apart from the quark–antiquark interpretation, this
state has been interpreted as a DK molecule [13], a Dsπ molecule [14], a
csqq four-quark state [15], and a mixing of the conventional state and the
four-quark state [16]. Also this state was investigated in the framework of
chiral symmetry considerations [17].
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The discussion of D mesons properties in literature has a rather long his-
tory and in our understanding of nonperturbative dynamics of QCD these
mesons play an important role. The first determinations of leptonic decay
constants of these mesons were made twenty years ago [18–21] and due to fur-
ther theoretical and experimental progress, this problem was reconsidered,
taking into account the running quark masses and perturbative three-loop
α2

s corrections to the correlation function [22, 23]. Recently, first attempts
have been made to calculate the leptonic decay constants of some D mesons
at finite temperature in the framework of thermal QCD sum rules [24,25].

At high temperature the restoration of chiral symmetry and deconfine-
ment are expected. In this connection the study of scalar mesons at finite
temperature receives special attention. The study of temperature depen-
dence of physical parameters of these mesons can give us hints of a possible
restoration of symmetries [17]. Although the scalar mesons have been stud-
ied for several decades, many properties of them are not so clear yet and
identifying the scalar mesons is experimentally difficult. Hence, the theo-
retical works can play a crucial role in this point of view. The investiga-
tion of Ds0(2317) is of a great importance to explore the structure charmed
mesons and may provide some information to help understanding the nature
of scalar mesons. Can we get any new information about the nature of the
scalar mesons from the thermal QCD sum rule analysis? Present work is
addressed to the investigation of this problem.

In this work, we assume Ds0(2317) meson as the cs state and study its
parameters at finite temperature using QCD sum rules [26]. The extending
of QCD sum rules method to finite temperature has been made in the paper
[27]. This extension based on two basic assumptions, that the Operator
Product Expansion (OPE) and notion of quark–hadron duality remain valid
at finite temperature, but the vacuum condensates must be replaced by their
thermal expectation values. The thermal QCD sum rule has been extensively
used for studying thermal properties of both light and heavy mesons as a
reliable and well-established method [28–32].

In the present work, we calculated the temperature behavior of mass
and leptonic decay constant of Ds0(2317) meson. The knowledge of leptonic
decay constants is needed to predict numerous heavy flavor electroweak tran-
sitions and to determine Standard Model parameters from the experimental
data. Also leptonic decay constants play essential role in the analysis of
CKM matrix, CP violation and the mixings BdBd, BsBs.

This paper is organized as follows. In Section 2, we calculated the anni-
hilation and scattering parts of spectral density and give the expression for
the perturbative scalar spectral function up to two-loop order αs corrections.
Also nonperturbative contributions up to the dimension six condensates are
summarized. Section 3 contains our numerical analysis of the mass and
leptonic decay constant using Borel transform sum rules.
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2. Thermal QCD sum rule for the scalar charm strange meson

The starting point for the sum rule analysis is the two-point thermal
correlator

Π
(
q2
)

= i

∫
d4xeiq x〈T (J(x)J+(0))〉 , (1)

where J(x) = (mc −ms) : s̄(x)c(x) : is heavy-light quark current and has
the quantum numbers of the Ds0(2317) meson, mc and ms are charm and
strange quark masses, respectively. s quark mass is not neglected throughout
this work. Thermal average of any operator O is determined by following
way

〈O〉 = Tr e−βHO/Tr e−βH , (2)

where H is the QCD Hamiltonian, and β = 1/T stands for the inverse of the
temperature T and traces carry out over any complete set of states. Accord-
ing to the basic idea of the QCD sum rule, we must calculate this correlator
in terms of the physical particles (hadrons) and in quark–gluon language,
and then equate both representations. First let us calculate theoretical part
of the correlator Eq. (1). Up to a subtraction polynomial, which depends on
the large q2 behavior, Π(q2) satisfies following dispersion relation [27,29,30]

Π
(
q2
)

=
∫
ds

ρ(s)
s+Q2

+ subtractions , (3)

where ρ(q) = 1
π ImΠ(q) tanh(βq02 ) is spectral density. In order to calculate

two-point thermal correlator in the lowest order of perturbation theory, we
use quark propagator at finite temperature [33]

S11(q) = (γµqµ +m)
(

1
q2 −m2 + iε

+ 2πin(ωq)δ
(
q2 −m2

))
. (4)

Here n(ωq) is the Fermi distribution function, n(ωq) = [exp(βωq) + 1]−1 and
ωq =

√
q2 +m2 . After some calculations we find that perturbative part of

spectral density is given by

ρpert(q, T ) =
∫

dk

(2π)3
ω2

1 − k2 + k · q − ω1q0 +mcms

ω1ω2

×[(1−n1−n2)δ(q0−ω1−ω2)+(n1−n2)δ(q0−ω1+ω2)] . (5)

Here ω1 =
√

q2 +m2
c and ω2 =

√
(k − q)2 +m2

s . Note that spectral density
involves two pieces, one is called the annihilation term, ρa,pert(s, T ), which
survives at T = 0. Other term is called scattering term, ρs,pert(s, T ), which
vanishes at T = 0. As can be seen, delta function δ(q0−ω1−ω2) in Eq. (5)
gives the first branch cut, q2 ≥ (mc + ms)2, which coincides with zero
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temperature cut and describes the standard threshold for particle decays.
On the other hand, delta function δ(q0 − ω1 + ω2) in Eq. (5) shows that an
additional branch cut arises at finite temperature, q2 ≤ (mc − ms)2, and
this new branch cut corresponds to particle absorption from the medium.
Therefore, delta functions δ(q0 − ω1 − ω2) and δ(q0 − ω1 + ω2) in Eq. (5)
contribute in regions (mc+ms)2+q2 ≤ q20 ≤ ∞ and 0 ≤ q20 ≤ q2+(mc−ms)2,
respectively. Taking into account these contributions the annihilation and
scattering parts of spectral density in the case q = 0 can be written as

ρa,pert(s, T ) = ρ0(s)

[
1− n

(√
s

2

(
1 +

m2
c −m2

s

s

))

−n
(√

s

2

(
1− m2

c −m2
s

s

))]
, (6)

ρs,pert(s, T ) = ρ0(s)

[
n

(√
s

2

(
1 +

m2
c −m2

s

s

))

−n
(
−
√
s

2

(
1− m2

c −m2
s

s

))]
. (7)

Here ρ0(s) is the correlation function in the lowest order of perturbation
theory at zero temperature and given by

ρ0(s) =
3(mc −ms)2

8π2s
q2(s)v3(s) , (8)

where q(s) = s− (mc −ms)2 and v(s) = (1− 4msmc/q(s))1/2. The contri-
bution of perturbative two-loop order αs corrections to the spectral density
in perturbation theory at zero temperature can be written as [21]:

ρ1(s) =
4αs

3π
ρ0(s)f(x) , (9)

where x = m2
c/s, αs = αs(m2

c) and

f(x) = 9
4 + 2Li2(x) + lnx ln(1− x)− 3

2 ln(1/x− 1)

− ln(1− x) + x ln(1/x− 1)− x

1− x
lnx . (10)

Here Li2(x) = −
∫ x
0 dt

ln(1−t)
t is dilogarithm function. Note that in αs correc-

tions terms the strange quark mass is set zero, though in numerical analysis,
the mass of the strange quark is taken into account. The subtraction terms
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in Eq. (3) are removed by using the Borel transformation, therefore we will
omit these terms. The non-perturbative contribution at zero temperature
to the correlator has following form

Πnp

(
q2
)

= mcλ〈0|s̄s|0〉
×
[
1− 1

2ε(3− λ)− λε2(1− λ) + 1
2ε

3
(
1 + λ− 4λ2 + 2λ3

)]
+

1
12π

λ〈0|αsG
2|0〉

[
1− 3ε

(
1− 8

3λ+ 2λ2 − 2λ(1− λ) ln(ελ)
)]

+
M2

0

2mc
〈0|s̄s|0〉λ2(1− λ)(1− ε(2− λ))

− 8
27

πρ
m2

c
αs〈0|s̄s|0〉2λ2

(
2− λ− λ2

)
, (11)

which arises in the framework of the OPE and parameterized by vacuum
expectation values of quark and gluon fields in the QCD Lagrangian. In
Eq. (11) λ = m2

c/(Q
2 +m2

c), ε = ms/mc and terms are organized according
to their dimension. It is assumed, that the expansion (11) also remains valid,
but the vacuum condensates must be replaced by their thermal expectation
values [27]. For the light quark condensate at finite temperature we use the
results of [34, 35] obtained in chiral perturbation theory and temperature
dependence of quark condensate in a good approximation can be written as

〈q̄q〉 = 〈0|qq|0〉

[
1− 0.4

(
T

Tc

)4

− 0.6
(
T

Tc

)8
]
, (12)

where Tc is critical temperature. The low temperature expansion of a gluon
condensate is proportional to the trace of the energy momentum tensor [36]
and can be approximated [24] as

〈
αsG

2
〉

= 〈0|αsG
2|0〉

[
1−

(
T

Tc

)8
]
. (13)

Also, we have used for the mixed condensate the parameterization

g

〈
q̄σµν

λa
2
Gµνa q

〉
= M2

0 〈q̄q〉 (14)

and deduced the value of the QCD scale Λ from the value of αs(MZ)=0.1176.
Our next task is the calculation of the physical part of the correlator (1).

According to the basic idea of quark–hadron duality assumption, the right-
hand side of Eq. (1) can be evaluated in a hadron-based picture. Equating
OPE and hadron representations of correlation function and using quark–
hadron duality the central equation of our sum-rule analysis takes the form:
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f2(T )m4(T )
Q2 +m2(T )

=

s0(T )∫
(mc+ms)2

ds
ρa,pert(s, T ) + ρ1(s)

s+Q2

+

(mc−ms)2∫
0

ds
ρs,pert(s, T )
s+Q2

+Πnp

(
Q2, T

)
, (15)

where f and m are the leptonic decay constant and mass of Ds0(2317) me-
son respectively. Note that in Eq. (15) the mass and leptonic decay con-
stant were replaced by their temperature dependent values. The continuum
threshold also depends on temperature; to a very good approximation its
scales universally as the quark condensate [24]

s0(T ) = s0
〈q̄q〉
〈0|q̄q|0〉

(
1− (mc +ms)2

s0

)
+ (mc +ms)2 , (16)

where in the right-hand side s0 is hadronic threshold at zero temperature:
s0 = s(T = 0).

3. Numerical analysis of mass and leptonic decay constant

In this section we present our results for the temperature dependence
of Ds0(2317) meson mass and leptonic decay constant. Performing Borel
transformation with respect to Q2

0 from both sides of equation (15) and
taking the derivative with respect to 1/M2 from both sides of obtained
expression, and making some transformations we have

m2(T ) =
B(T )
A(T )

, (17)

f2(T ) =
A(T )
m4(T )

exp
(
m2(T )
M2

)
, (18)

where

A(T ) =

s0(T )∫
(mc+ms)2

ds (ρa,pert(s) + ρ1(s)) exp
(
− s

M2

)

+

(mc−ms)2∫
0

dsρs,pert(s) exp
(
− s

M2

)
+Πnp

(
M2, T

)
, (19)
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Πnp(M2, T ) = m3
c〈s̄s〉e−β

×
[
1− 3

2ε+ 1
2βε− βε

2
(
1− 1

2β
)

+ 1
2ε

3
(
1 + β − 2β2 + 1

3β
3
)]

+ 1
12

〈
αsG2

π

〉
m2
ce
−β

×
[
1− 3ε

(
1− 8

3β+β2−2β(ln(βε)+γ−1)+β2
(
ln(βε)+γ− 3

2

))]
+1

2M
2
0mcβ〈s̄s〉e−β

[
1− 1

2β − 2ε
(
1− 3

4β
(
1− 1

9β
))]

− 4
81πραs〈s̄s〉2βe−β

(
12− 3β − β2

)
, (20)

where β = m2
c/M

2 and B(T ) = −m2
c
dA(T )
dβ .

For the numerical evolution of the above sum rule, we use QCD impute
parameters showed in Table I. The criterion we adopt here is to fix in such
a way so as to reproduce the zero temperature values of meson mass and
leptonic decay constant.

TABLE I

QCD input parameters used in the analysis.

Parameters References

m = 2317 MeV [37]
ms = 120 MeV [37]
mc = 1.47 GeV [22,37]
f = 201 MeV [22,37]
ρ = 4 [21, 31]
〈0|qq|0〉 = −0.014 GeV3 [26]
〈0| 1παsG

2|0〉 = 0.012 GeV4 [26]
αs〈0|qq|0〉2 = 5.8× 10−4 GeV6 [12]
M2

0 = 0.8 GeV2 [12]
〈0|ss|0〉 = 0.8〈0|qq|0〉 [12]

Ds0(2317) meson mass as a function of temperature are shown in Fig. 1,
Fig. 3 and Fig. 5 at continuum threshold values s0 = 7.5; 8.0; 8.5 GeV2, re-
spectively. As seen, mass decreases with increasing temperature and mesons
lose approximately 10–15 percent of its mass at T = 150 MeV temperature.
The results for leptonic decay constants are shown in Fig. 2, Fig. 4 and Fig. 6
at continuum threshold values s0 = 7.5; 8.0; 8.5 GeV2, respectively. As can
be seen f decreases with increasing temperature and vanishes approximately
at critical temperature. This situation may be interpreted as a signal for de-
confinement and agrees with light and heavy mesons investigations [24, 25].
Numerical analysis shows that the temperature dependence of f is the same,



1912 E.V. Veliev, G. Kaya

when M2 changes between 1.5 GeV2 and 3 GeV2 at fixed values of contin-
uum threshold. Obtained results can be used for interpretation heavy ion
collision experiments.
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Fig. 1. Temperature dependence of meson mass at s0 = 7.5 GeV2.
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Fig. 2. Temperature dependence of leptonic decay constants at s0 = 7.5 GeV2.
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Fig. 3. Temperature dependence of meson mass at s0 = 8.0 GeV2.

0 20 40 60 80 100 120 140 160
120

130

140

150

160

170

180

190

200

210

M2=1.5 GeV2

M2=3 GeV2f (
M
eV

)

T (MeV)

Fig. 4. Temperature dependence of leptonic decay constants at s0 = 8.0 GeV2.
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Fig. 5. Temperature dependence of meson mass at s0 = 8.5 GeV2.
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Fig. 6. Temperature dependence of leptonic decay constants at s0 = 8.5 GeV2.
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