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The role of non-axial shapes in the saddle-point energy of heaviest nu-
clei is studied in a multidimensional deformation space. The main attention
is given to the effect of the high-multipolarity, λ = 6, non-axial deforma-
tions, which is studied for the first time. The analysis is performed within a
macroscopic–microscopic approach. Generally, a 10-dimensional deforma-
tion space is used in the analysis, but some tests are done in even 13 dimen-
sions. A large number of about 300 even–even heavy and superheavy nuclei
with proton number 98 ≤ Z ≤ 126 and neutron number 134 ≤ N ≤ 192
is considered. It is found that the inclusion of the non-axial shapes of the
multipolarity λ = 6 lowers the saddle-point energy relatively little, by up to
about 0.4MeV. Together with earlier results on the effect of the quadrupole
(λ = 2) and hexadecapole (λ = 4) shapes, this indicates for the convergence
of the effect to zero, with increasing λ. As the ground-state shapes of the
considered nuclei are axially symmetric, the discussion also concerns the
height of the fission barrier. The heights of our barriers are compared with
experimental ones and also with those of other authors.

PACS numbers: 21.60.–n, 24.75.+i, 27.90.+b

1. Introduction

One of the most important quantities in the studies of heaviest nuclei,
being intensively done in recent years (cf. e.g., [1–4]), is the cross-section σ
for their synthesis. It gives us a knowledge which nuclei, and with how
large effort, can be presently synthesized. In theoretical investigations of
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this quantity (e.g., [5–11]), a basic role is played by the height of the (static)
fission barrier Bst

f . This motivates the intensive studies of the barrier, being
recently performed (e.g., [12–26]). A big sensitivity of σ to Bst

f stresses
a need for as accurate calculations of Bst

f as possible. Really, a change of
Bst

f by 1MeV may result in a change of σ by about one to two orders of
magnitude [6, 11]. The basic role in reaching this accuracy is played by the
deformation space admitted in the calculations of Bst

f . In particular, one
should include non-axial deformations of the nuclei.

It was shown in our previous studies that the inclusion of the quadrupole
(the multipolarity λ = 2) non-axial shapes may lower the barriers by up to
more than 2MeV [27] and the inclusion of the hexadecapole (λ = 4) non-
axial deformations may reduce them by up to about 1.5MeV [28].

The objective of this paper is to learn the effect of non-axial shapes of still
higher multipolarity, λ = 6, not studied earlier. In particular, one would like
to see, if there is a convergence to zero of the effect with increasing λ. A large
region of heavy and superheavy nuclei with proton number 98 ≤ Z ≤ 126
and neutron number 134 ≤ N ≤ 192 is considered.

2. Method of the analysis

The analysis is done within a macroscopic–microscopic approach. The
Yukawa-plus-exponential model [29] is taken for the macroscopic part of the
energy and the Strutinski shell correction, based on the Woods–Saxon single-
particle potential [30], is used for its microscopic part. Pairing interaction,
with the isotopic-dependent strength of the monopole type, is treated within
the BCS approximation. Details of the approach are specified in [31].

Especially important in the analysis is the choice of a sufficiently large
deformation space. Such a space is used in our study. In particular, besides
the quadrupole (multipolarity λ = 2) non-axial shapes, it includes a general
(if one assumes the reflection symmetry of a nucleus with respect to all three
planes of the intrinsic coordinate system) non-axial shapes of multipolarity
λ = 4 [32] and 6. The space is specified by the following expression for
the nuclear radius R(ϑ, ϕ) (in the intrinsic frame of reference) in terms of
spherical harmonics Yλµ:

R(ϑ, ϕ) = R0
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where γ2 and aλµ, λ = 4, 6, µ > 0, are the non-axiallity parameters. In
the case of the consideration of only axially symmetric shapes of a given
multipolarity λ, the usual notation βλ for the parameters aλ0, describing
these shapes, is used (i.e., aλ0 ≡ βλ in this case). The odd-multipolarity
degrees of freedom, β3, β5, β7, appearing in Eq. (1), are used in our study only
to show that they do not influence the studied quantities. The dependence of
R0 on the deformation parameters is determined by the volume-conservation
condition. The real functions Y(+)

λµ are defined as:

Y(+)
λµ =

1√
2

[Yλµ + (−1)µYλ−µ] , for µ > 0 . (2)

A special care is needed in finding the saddle point of a nucleus. A cal-
culation of it in the full space would not be possible for numerical reasons.
After making various tests, we have chosen the following procedure. The
search is done in two steps. In the first one, it is done in the most important
3-dimensional space: {β2, γ2, a40}, in which the saddle point is found (by the
dynamic-programming method [33] ). Then, with established βsp

2 , γ
sp
2 , a

sp
40,

i.e. the values of β2, γ2 and a40 at the saddle point, the energy is minimized
in the remaining degrees of freedom: {a42, a44, a60, a62, a64, a66, β8}. A direct
test, done for a few nuclei, in which the first step is done in a still larger,
4-dimensional space, shows that the results remain practically the same.
Additionally, another, independent test is done using the so called immer-
sion method (see [25]) in the 5-dimensional space {β2, γ2, a40, a42, a44}. This
test leads again to practically the same results.

3. Results and discussion

3.1. Potential-energy surface

Our study of the potential energy of the considered nuclei shows that
this energy is not influenced by the odd-multipolarity deformations β3, β5

and β7. One should stress, however, that this concerns the region of nuclei
studied in the present paper, as for a large number of other heavy nuclei
(around radium and heavier neutron-deficient ones) these deformations play
an important role (see e.g., Ref. [34]). After this test, the potential energy
is studied in a smaller, 10-dimensional space.

Fig. 1 shows an example of the potential-energy surface calculated for
a superheavy nucleus 294118. This is the heaviest nucleus observed up to
now [35]. The energy E(β2, γ2; am

40, a
m
42, a

m
44, a

m
60, a

m
62, a

m
64, a

m
66, β

m
8 ), calculated

in the 10-dimensional space, is projected in the figure on the (β2, γ2) plane.
This means that it is shown as a function of β2, γ2, but at each point (β2, γ2),
it is minimized in the remaining degrees of freedom; e.g., am

40 denotes the
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Fig. 1. Contour map of the potential-energy surface of the nucleus 294118.

value of a40, at which the energy takes its minimum as a function of a40.
As usually in the macroscopic–microscopic calculations, the energy is nor-
malized in such a way that its macroscopic part is put equal to zero at
the spherical shape of a nucleus. It is seen that the minimum of the en-
ergy (ground state) is obtained at an oblate shape (γ2 = 60◦) and has
the value −6.2MeV. The saddle point is obtained at a non-axial shape of
the nucleus with the energy −0.3MeV. Thus, the fission-barrier height is
5.9MeV. The parameters of the shape at the saddle point are: βsp

2 = 0.444,
γsp

2 = 35.8◦, asp
40 = 0.030, asp

42 = −0.015, asp
44 = 0.005, asp

60 = 0.024,
asp

62 = 0.001, asp
64 = 0.002, asp

66 = −0.014, βsp
8 = −0.005. It is also seen

that the quadrupole non-axiallity parameter γ2 is large, close to the value
γ2 = 30◦, corresponding to the largest non-axiality of the shape. The effect
of γ2 on the saddle-point energy Esp (and the barrier height Bst

f ) is about
0.6MeV, in its absolute value (as can be directly seen in Fig. 3). The hex-
adecapole and λ = 6 non-axiallity parameters are small and one should not
expect a large effect of them on Esp. Really, the effect of each of them is
below 0.2MeV, for this nucleus.
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3.2. Role of non-axial shapes of multipolarity 6 of a nucleus
in its saddle-point energy

The effect of non-axial shapes of multipolarity λ = 6 of nuclei on their
saddle-point energy, δEsp,n6, is illustrated in Fig. 2. The effect is the dif-
ference between the energy at the saddle point when the multipolarity-six
non-axial deformations are taken into account and when they are not. In the
notation given at Fig. 3, it may be written as: δEsp,n6 = Esp,n2+n4+n6 −
Esp,n2+n4. Fig. 2 gives a contour map of δEsp,n6, calculated for the whole
investigated region of nuclei. One can see that the effect is rather small, less
than 0.4MeV. Moreover, for quite a large number of the studied nuclei, it is
simply zero.

Fig. 2. Contour map of the effect, δEsp,n6, of non-axial shapes of multipolarity
λ = 6 of nuclei on their saddle-point energy .

3.3. Comparison between the effects of non-axial shapes
of various multipolarities λ on the saddle-point energy

It is interesting to see how the studied effect depends on the multipolarity
λ of the deformations of nuclei at their saddle point. As may be expected,
the largest effect comes from the quadrupole (λ = 2) non-axiallity. It is up to
more than 2MeV for the considered nuclei [27]. For the multipolarity λ = 4,
the non-axial deformations lower the saddle-point energy of the nuclei by
up to about 1.5MeV [28]. As is seen in Fig. 2, non-axial shapes with λ = 6
decrease the saddle-point energy by up to about 0.4MeV. Thus, the effect
decreases rather fast with the increasing λ, indicating for its convergence to
zero.

A detailed illustration of the effect as a function of λ is given in Fig. 3
for isotopes of the element 118. It is seen that this effect strongly depends
on the neutron number N . For lighter isotopes (up to N = 170), there
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Fig. 3. The saddle-point energy Esp of nuclei in the case of the axial symmetry,
Esp,ax, after the inclusion of the λ = 2, Esp,n2, also λ=4, Esp,n2+n4, and addi-
tionally λ = 6, Esp,n2+n4+n6, non-axial shapes, plotted as functions of neutron
numberN , for the element 118.

is no (or almost no) effect of the non-axiallity for all three multipolarities.
For N > 170, the effect strongly depends on λ. It is large (up to about
1.5MeV, in its absolute value) for λ = 2, it is smaller (up to about 0.4MeV)
for λ = 4 and still smaller (up to about 0.15MeV) for λ = 6, for the consid-
ered isotopes of the element 118. Thus, the decrease of the effect with the
increasing λ is really quite fast.

3.4. Comparison with experiment and with other calculations

Fig. 4 gives a comparison of our results with experimental ones and also
with other theoretical calculations. The experimental values [36] are ex-
tracted from measured cross-sections for fission induced in various reactions,
with the use of the double-humped-barrier model (see also e.g., Refs. [37,38]).
Thus, the results are model dependent. For the comparison with other the-
oretical calculations, the results of recent studies [22, 25] are taken. The
calculations are performed within a macroscopic–microscopic approach (sim-
ilar as ours), but they still differ from our model by the parametrization of
the shape of a nucleus (which is an important difference), single-particle
potential, and some other details. The figure presents the results for six
even–even nuclei of plutonium, for which the results are available. These
are the heights of the inner barrier, which appear to be larger in the eval-
uations of Ref. [36] than those of the outer ones. One can see in Fig. 4
that the quality of theoretical description is rather much different for dif-
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Fig. 4. A comparison of our results (HN) with experimental ones (exp) and also
with other theoretical calculations: Dob-07 [22] and Mol-09 [25].

ferent models. The average of the absolute values of the discrepancy for
these six Pu nuclei is: 0.35MeV, 0.78MeV and 1.10MeV for the models
HN (Heavy Nuclei, our model), Mol-09 [25] and Dob-07 [22], respectively.
The same quantity calculated for 18 even–even nuclei of U, Pu, Cm and Cf,
for which the experimental values [36] are available, is: 0.34MeV, 0.97MeV
and 0.90MeV (only 16 values for these 18 nuclei are available in this study)
for the HN, Mol-09 and Dob-07 approaches, respectively. These discrepan-
cies may be compared with the inaccuracy of the experimental values, which
is estimated to be ±0.2MeV in most cases [37,38].

It is interesting to see the discrepancy between the theoretical models
for superheavy nuclei, far from the region where experimental results are
available. The discrepancy is illustrated in Fig. 5 for isotopes of the heaviest
element (118) observed up to the present. Two models are considered, as
there are no results of Dob-07 [22] for superheavy nuclei. It is seen that
the difference between the two models is quite large, up to about 3.5MeV.
This is really much, if one takes into account that a 1MeV change in the
barrier height results in the change of cross-section for the synthesis of a
nucleus by about one to two orders of magnitude [6,11], as already mentioned
in the Introduction. It would be desirable to recognize the source of this large
difference and learn which of these two predictions is more realistic.
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Fig. 5. The discrepancy between two theoretical models for superheavy nuclei, far
from the region where experimental results are available.

4. Conclusions

The following conclusions may be drawn from this and our earlier studies:

(1) Non-axial shapes play an important role in the saddle-point energy of
heaviest nuclei. The quadrupole (λ = 2) deformations decrease this
energy by up to more than 2MeV, the hexadecapole (λ = 4) ones lower
it by up to about 1.5MeV, and the deformations of multipolarity λ = 6
diminish it by up to about 0.4MeV, for the considered nuclei.

(2) As the ground-state shapes of the considered nuclei are axially sym-
metric, the effect also concerns the (static) fission-barrier height Bst

f .
(3) The results indicate for the convergence of the effect to zero, with

increasing multipolarity λ of the shapes.
(4) Two theoretical results for the barrier height Bst

f , which differ by less
than 1MeV in the experimental region (Z = 92–98, N = 140–154),
disagree by up to about 3.5MeV for superheavy nuclei (Z = 118,
N = 164–182). It would be very interesting to see the reason for such
a large increase of the deviation between them with the increase of Z
and N , and learn which of them is more realistic.
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