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When canonical Hamiltonians of local quantum field theories are trans-
formed using a renormalization group procedure for effective particles, the
resulting interaction terms are non-local. The range of their non-locality
depends on the arbitrary parameter of scale, which characterizes the size
of effective particles in terms of the allowed range of virtual energy changes
caused by interactions. This article describes a generic example of the non-
locality that characterizes light-front interaction Hamiltonian densities of
first-order in an effective coupling constant. The same non-locality is also
related to a relative motion wave function for a bound state of two particles.
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1. Introduction

Canonical quantum field theory (QFT) can be formulated using different
forms of Hamiltonian dynamics [1]. One of the forms is distinguished from
others by having 7 kinematical symmetries instead of usual 6. The distin-
guished form is called a front form because the Hamiltonian density in it
is defined on a space-time hyper-plane that is swept by the wave front of a
plane wave of light. The hyper-plane is called light front (LF). The 7th sym-
metry is invariance with respect to the Lorentz boosts along the direction
of motion of the wave. The additional symmetry has many consequences.
For example, one can describe the relative motion of constituents of a bound
state for arbitrary motion of the bound state as a whole, achieving a connec-
tion between the rest frame image of the system with its image in the infinite
momentum frame, and the ground state (vacuum) problem in a theory is
posed in a new way because there is no spontaneous creation of particles
from empty space [2]. A canonical formulation of the standard model (SM)
using LF hyperplane for quantization of fields can be found in [3].

(1937)
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Canonical Hamiltonians of local theories are singular operators. They
require regularization and renormalization. In particular, a renormalization
group (RG) procedure produces Hamiltonians that are called renormalized.
Renormalized Hamiltonians depend on a RG scale parameter, here called λ,
and are no longer local. The size of their non-locality corresponds to the size
of λ. A renormalized Hamiltonian of some scale λ can also be called effective
up to the scale λ, since it is equivalent to the Hamiltonian of the original
theory and provides an optimal setup for calculating observables that con-
cern phenomena whose description does not require a resolution of effects
beyond the resolution implied by the size of λ. Effective Hamiltonians do
not depend on regularization but they do depend on the scale λ. This article
discusses lowest-order non-localities that characterize effective Hamiltonian
densities on the LF. Besides general interest in effective non-local interaction
densities in quantum field theory, LF non-localities are intriguing because
of their necessarily relativistic nature.

Consider the case of QCD, which is a part of the SM. The LF power-
counting for Hamiltonian densities in QCD indicates [4] that a large number
of operators may be present in a renormalized Hamiltonian. The power-
counting leads to a complex set of operators because one works in the
Minkowski space, the direction of z-axis (the direction of motion of the
plane wave of light that defines the LF is conventionally chosen to be against
z-axis) and the directions transverse to z-axis are treated differently, and, ab
initio, one has to deal with operators that have important matrix elements
arbitrarily far off energy shell. In summary, effective LF Hamiltonians are
not expected to have a structure that can be guessed easily. One needs a
method to derive them.

The method discussed here is the renormalization group procedure for
effective particles [5]. The name of the method is abbreviated RGPEP. The
method assumes that finite parts of counterterms can be fixed using predic-
tions for observables that follow from the calculated effective Hamiltonians.
The observables may include properties of bound states even if a procedure
for calculating the Hamiltonians is itself carried out only in an order-by-
order expansion in powers of an effective coupling constant. This can be
seen on the example of a Coulomb interaction in the Schrödinger Hamilto-
nian for an electron and a proton. The interaction is proportional to the
first power of α and yet it predicts properties of the electron–proton bound
states whose wave functions have no expansion in powers of α around 0.
Thus, one may hope to learn about non-perturbative solutions of a theory
by solving eigenvalue problems for Hamiltonians derived using RGPEP even
in low orders of perturbation theory.
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In the ultraviolet regime of QCD, one obtains non-local vertices that
exhibit asymptotic freedom [6,7] in the dependence of the effective coupling
constant in them, gλ, on the running RG parameter λ [8]. At the same
time, the parameter λ limits from above allowed energy changes in the in-
teraction vertices1. This means, through the connection between energy and
momentum and uncertainty principle for momentum and position variables,
that the vertices resulting from RGPEP are non-local and the range of the
non-locality is inversely related to the size of λ. In the ultraviolet regime,
one has λ� ΛQCD, where ΛQCD is the specific momentum scale parameter
that physically characterizes QCD in the scheme of RGPEP. The limit of
infinite λ, if obtained, could define a local theory.

At the opposite end of the λ scale, there lies the infrared regime charac-
terized by λ ∼ ΛQCD. In the infrared regime, one has to deal with Hamilto-
nian terms that are involved in the formation of bound states. These terms
are new in the sense that they may significantly differ in appearance from
terms implied by a classical Lagrangian in a canonical definition of QCD.
In this regime, RGPEP is designed to guarantee that only invariant mass
changes up to λ ∼ ΛQCD are allowed to occur (see below). This guaran-
tee is associated with the characteristic non-localities of RGPEP that are
described in this article.

In the infrared regime, one also expects that the masses of effective par-
ticles receive dynamic contributions order ΛQCD. Therefore, the effective
dynamics is expected to be limited to slow relative motion of interacting ef-
fective particles of masses presumably not smaller in size than about ΛQCD.

The infrared regime is not precisely understood. Nevertheless, on the ba-
sis of phenomenology of hadrons and strong interactions, one expects forma-
tion of constituent quarks and gluons in this regime and RGPEP is designed
to help in identifying the mechanism that could lead to their formation as
effective particles in QCD.

RGPEP equations would have to be solved non-perturbatively in order
to provide an exact effective Hamiltonian of QCD for any λ. Exact calcu-
lations are hardly possible and it is not shown that the eigenvalues of LF
Hamiltonians, equivalent to masses squared of physical states, must be posi-
tive. A negative mass squared eigenvalue would have to be explained. There
is no explanation other than a failure of a theory or a method applied to seek
solutions, such as a wrong identification of a theory ground state. However,
since the LF RGPEP allows us to calculate effective Hamiltonians order-by-
order in powers of gλ without making assumptions about the QCD ground
state [4], such as the assumption of vacuum condensates [9], the structure of

1 In the LF form of dynamics, λ of RGPEP limits changes in the invariant mass of
interacting particles instead of changes in their energy, and only a subset of particles
that are involved in a single action of an effective Hamiltonian counts in the difference.
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the LF non-local interactions that result from RGPEP in the order-by-order
calculations are of interest as elements of the unknown realm. This article
provides a description of the leading non-localities that show up already in
the first-order terms, independently of additional non-local effects that build
up on top of the leading ones in higher-order terms.

Interest in the non-locality that characterizes RGPEP is also motivated
by a general observation that some non-locality must be involved in a re-
placement of an abstract local theory (the one that requires regularization)
by a perhaps more realistic effective one, whose scale parameter λ can be
adjusted in order to obtain a Hamiltonian whose physically most impor-
tant terms look simplest possible [10]. In this sense, the non-locality is
obtained on the basis of RG ideas with no need for invoking any new de-
grees of freedom, such as, for example, the ones introduced in the case of a
non-local string picture of particles2 or other forms of substructure, perhaps
even including additional symmetries. From this point of view, the non-local
structure of interactions that RGPEP may lead to is of more general interest
than QCD alone. In fact, the first-order non-locality discussed in this article
occurs in QFT in the same form irrespective of many details concerning spin
and other quantum numbers of effective particles, such as isospin, flavor, or
color. For example, it would be the same in perturbative quantum gravity.

Section 2 reviews qualitative features of non-local interaction vertices in
lowest-order RGPEP in momentum space. The main Section 3 discusses
the corresponding non-locality in space-time in several subsections, starting
in Section 3.1 from the question of how non-local interactions become local
when λ → ∞. The non-locality for finite λ and particle mass m → 0 is
discussed in Section 3.2. Non-locality for λ ∼ m is described in Section
3.3. A comparison with a non-relativistic theory is provided in Section 3.4.
Section 3.5 explains the relationship between the relativistic non-localities
and 2-body bound-state wave functions. Section 4 concludes the paper with
a summary and a few comments. The Appendix in three parts provides
some details of calculations.

2. Non-local vertices in momentum space

Let a regularized Hamiltonian with counterterms for some QFT be de-
noted by H and let a denote creation or annihilation operators of bare
particles in this Hamiltonian. For example, the bare particles in the case of
LF Hamiltonian of QCD are quanta of canonical quark and gluon fields in

2 Questions concerning gravity and its relation to quantum mechanics require a sepa-
rate discussion. Also, conditions of causality may constrain Hamiltonian non-locali-
ties and it is not known if RGPEP can satisfy them automatically in gauge theories.
The author would like to thank J. Lukierski for a comment concerning the latter
issue.
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the gauge A+ = A0 + A3, with some arbitrarily large cutoffs on momenta.
The cutoffs are meant to be arbitrarily large in the sense of tending to the
limit of removing the regularization.

In RGPEP, one introduces effective particles of scale λ through a trans-
formation Uλ (see below) whose construction involves the entireH [5]. Coun-
terterms introduced in H allow one to construct a formal expansion in a se-
ries of powers of the effective coupling constant gλ, but it should be stressed
that even the Hamiltonian of the order of g4

λ is not fully known yet in impor-
tant theories [8, 11]. Since the counterterms are constructed using RGPEP
(to identify their structure) and results for observables (to fix the unknown
finite parts), the complete transformation Uλ can be made unitary in an
order-by-order construction if one can simultaneously change the initial H
by including counterterms also order-by-order. However, some characteristic
terms can be introduced partly in a non-perturbative way.

The key example is provided by a quark mass-squared term to which
one can add a term proportional to Λ2

QCD ∼ λ2 exp (−b/αλ), where b is a
constant and αλ = g2

λ/(4π). Such addition contributes 0 to an expansion
in powers of gλ around gλ = 0 but the calculation of Uλ can be carried out
in RGPEP for arbitrary values of particle masses. Then, on the one hand,
mass terms can be adjusted by matching theoretical predictions with observ-
ables. On the other hand, the question of how a non-perturbative dynam-
ics described by the calculated Hamiltonian relates mass terms to observ-
ables requires investigation. Other examples of inclusion of non-perturbative
effects in a LF Hamiltonian density are provided by the arrangement of
couplings according to the rules of coupling coherence that keeps track of
symmetries [12], including the arrangement of operators allowed by power-
counting so that the resulting set of terms corresponds to a theory with a
spontaneously broken symmetry [4].

The example of a mass term in H0 is important in discussion of non-
local Hamiltonian densities because eigenvalues of H0 are used to define
the RGPEP factors responsible for the non-locality. The non-locality of
effective QCD depends on the quark and gluon mass parameters. Since
QCD promises to generate contributions to the effective particle masses from
ΛQCD, it should be stressed that the parameter ΛQCD primarily characterizes
perturbative λ-dependence of effective theories for large λ. In theories with
large λ, small mass terms may be treated as negligible. In this context,
the variation of non-locality of effective LF QCD Hamiltonians over a large
range of λ appears related to the question of generation of particle masses in
local theories with formal symmetries considered valid for strictly massless
particles (chiral symmetry). This article discusses non-localities for different
ratios of a mass parameter m to the scale parameter λ, irrespective of the
value of parameters like ΛQCD.
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The RGPEP operation Uλ mentioned above, transforms creation and
annihilation operators by a rotation,

aλ = Uλ aU
†
λ . (1)

The corresponding Hamiltonian operator Hλ is constructed to be the same
as H,

Hλ(aλ) = H(a) . (2)

Consequently, Hλ(aλ) obtainable in perturbative RGPEP is assumed to be a
combination of products of operators aλ with coefficients cλ that are different
from coefficients c of corresponding products of operators a inH(a). RGPEP
provides differential (or algebraic) equations that produce expressions for the
coefficients cλ in Hλ [5]. Namely, from

Hλ(aλ) = U †λH(a)Uλ , (3)

and the condition U∞ = 1, one obtains

d

dλ
Hλ(a) = [Tλ, Hλ(a)] , (4)

H∞(a) = H(a) , (5)

where
Tλ = −U †λ

d

dλ
Uλ . (6)

Therefore, the evolution of coefficients cλ with λ is determined by Tλ; see
Eqs. (2.28) and (2.29) in [5].

Since Tλ vanishes when interactions vanish, the Hamiltonian Hλ(a) can
be expanded in powers of the interaction strength. Suppose the interaction
strength is parameterized by a suitably chosen coupling constant gλ. In the
case of QCD, the limit of vanishing gλ for any fixed value of λ can also
be seen as a limit of vanishing ΛQCD. In this limit, the non-perturbative
terms mentioned above, proportional to positive powers of ΛQCD, are also
vanishing.

The first-order terms in Hλ(aλ), i.e., terms proportional to the first
power of gλ, are functions of operators aλ. As such, they have the same
form as the canonical interaction terms proportional to the bare coupling
constant g have as functions of the bare operators a, containing c∞ = c.
The only difference is that g is replaced by gλ and c is replaced by cλ = fλc,
where fλ is a vertex form factor of RGPEP [5]. Precisely this form factor
introduces the non-locality studied in this article.
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The first step in studying the non-locality resulting from the form factor
fλ is to define a generic example of the interaction term in which fλ appears.
For this purpose, one can observe that in physically important canonical local
theories, such as gauge theories or Yukawa theory, the Lagrangian interaction
densities of first-order in the coupling constants contain products of three
fields evaluated at the same space-time point. For example, fermion fields ψ
are coupled with gauge boson fields A in a product of the type gψ̄/Aψ, and
they are coupled with scalar fields φ through the product of the type gψ̄φψ.
Non-Abelian gauge fields are coupled to themselves through a product of the
type gTr ∂µAν [Aµ, Aν ]. Therefore, for the present discussion of first-order
non-localities, it is sufficient to consider space-time operator densities that
are products of three fields.

Another observation is that fλ only depends on the change of energy
across an interaction Hamiltonian HλI = Hλ −Hλ0. More precisely, in LF
dynamics, fλ depends on the change of an invariant mass of the interacting
particles across the interaction3. This means that the first-order non-locality
structure does not depend on spin, isospin, flavor or color variables. In other
words, the first-order RGPEP evolution of coefficients cλ with λ is limited
to variation of the range of allowed changes in the invariant mass and this
change depends only on the momenta and masses of the interacting particles.

According to these two observations, generic features of the first-order
non-locality can be studied in the case of a product of three scalar fields.
Conclusions regarding first-order non-locality in interactions of more com-
plex fields will be the same as for scalars, except for additional algebraic
factors or derivatives that originate directly from the vertices of correspond-
ing canonical theories.

Consider the classical canonical LF interaction Hamiltonian for a real
(chargeless) scalar field ψ(x),

HI = g

∫
dx−d2x⊥ : ψ3(x) : , (7)

where x− = x0 − x3, x⊥ = (x1, x2), and the LF is defined by the condition
x+ = x0 + x3 = 0. Hermitian quantum field ψ(x) is composed of creation
and annihilation operators for bare particles,

ψ(x) =
∫

[p] ap e−ip x = ψ†(x) , (8)

3 At the same time, three components of a total momentum, P+ = P 0 + P 3 and
P⊥ = (P 1, P 2), are preserved and the invariant-mass change is invariant with respect
to 7 Poincaré transformations that preserve the LF hyperplane.
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where ∫
[p] =

∫
d3p

2|p+|(2π)3
, (9)

a−p = a†p , (10)

d3p = dp+d2p⊥, and all three integrals over momentum variables extend
from −∞ to +∞. Single commutation relation

[ap, aq] = 2p+(2π)3δ3(p+ q) , (11)

contains three corresponding commutation relations: one for two creation
operators when both p+ and q+ are negative, one for two annihilation oper-
ators when both p+ and q+ are positive, and one for one creation operator
and one annihilation operator, when p+ and q+ have opposite signs. The
commutation relation implies

[ψ(x), ∂+ψ(y)] = iδ3(x− y) , (12)

where ∂+ = 2∂/∂x−. One also has

ap = |p+|
∫
d3x e+ip x ψ(x) , (13)

where d3x = dx−d2x⊥ and all three integrals over position variables extend
from −∞ to +∞ on the LF.

The above notation differs from the standard one [13,14]. The difference
is that the creation and annihilation operators are distinguished solely by
the sign of p+ in ap and the integration over momentum component p+ is
not limited to only positive values. The colon sign in Eq. (7) denotes normal
ordering. The normal ordering is defined using Feynman’s convention [15]
with the ordering parameter set equal to p+ that ranges from −∞ to +∞.
In this convention, it is understood that an operator ap1 stands to the left
of the operator ap2 when p+

1 < p+
2 . Otherwise, the order is reversed. Thus,

all annihilation operators ap, which by definition have p+ > 0, stand to the
right of all creation operators, which by definition are ap with p+ < 0.

In terms of operators a, the local, canonical interaction Hamiltonian
reads

HI = g

∫
[p1p2p3] 2(2π)3 δ3(p1 + p2 + p3) : ap1 ap2 ap3 : . (14)

From this expression, RGPEP produces an effective interaction Hamiltonian
of first order in the form [5]

HλI = gλ

∫
[p1p2p3] 2(2π)3 δ3(p1 + p2 + p3) fλ : aλp1 aλp2 aλp3 : , (15)
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where

fλ = e−(∆M2/λ2)2

(16)

is the source of non-locality of the effective vertex. The argument of the
form factor fλ is the difference between the invariant masses of annihilated
particles,M2

a, and created particles,M2
c . Namely,

∆M2 =M2
a −M2

c , M2
a = P 2

a , M2
c = P 2

c , (17)

where the total momentum four-vectors for annihilated and created particles
are

Pa =
3∑
i=1

θ
(
p+
i

)
pi , Pc =

3∑
i=1

θ
(
−p+

i

)
pi , p−i =

p⊥2
i +m2

p+
i

. (18)

If a Hamiltonian density term contained n > 3 fields, the sums over mo-
menta in the above expressions that define fλ as function of a change in
the invariant mass of interacting particles would extend up to n instead of
only 3, with no other change.

3. Non-local vertices in position space

In the first step of defining effective LF Hamiltonian densities on the LF,
we introduce effective quantum field operators. This is done in analogy with
Eqs. (8) to (13) for bare fields. Namely,

ψλ(x) =
∫

[p] aλp e−ip x = ψ†λ(x) , (19)

where

aλ−p = a†λp , (20)

[aλp, aλq] = 2p+(2π)3δ3(p+ q) , (21)

aλp = |p+|
∫
d3x e+ip x ψλ(x) . (22)

Thus, the effective field commutation relations remain the same irrespective
of the value of λ, [

ψλ(x), ∂+ψλ(y)
]

= iδ3(x− y) . (23)
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Using Eq. (22), the effective interaction HλI is obtained in the form

HλI = gλ

∫
[p1p2p3] 2(2π)3 δ3(p1 + p2 + p3) fλ

∣∣p+
1 p

+
2 p

+
3

∣∣
×
∫
d3x1d

3x2d
3x3 e

+i(p1x1+p2x2+p3x3) : ψλ(x1)ψλ(x2)ψλ(x3) : . (24)

This means that

HλI = gλ

∫
d3x1 d

3x2 d
3x3 f̃λ(x1, x2, x3) : ψλ(x1)ψλ(x2)ψλ(x3) : , (25)

where the space-time non-locality of the effective interaction Hamiltonian
density on the LF is described by the function

f̃λ(x1, x2, x3) =
∫

[p1p2p3] 2(2π)3 δ3(p1 + p2 + p3)
∣∣p+

1 p
+
2 p

+
3

∣∣
×fλ e+i(p1x1+p2x2+p3x3) . (26)

Evaluation of this integral leads to the main results concerning non-locality
of effective LF Hamiltonians. But in order to introduce relevant concepts we
first discuss the issue of how the non-local interactions become local when
λ→∞.

3.1. How non-local interactions become local when λ→∞
Locality of an interaction Hamiltonian in the limit of λ→∞ is here un-

derstood as the following feature: matrix elements of the interaction Hamil-
tonian vanish between states of effective particles corresponding to RGPEP
scale λ if the wave functions of these particles in these states have supports
separated by a distance r that is not smaller than some fixed but arbitrarily
small distance r0 so that rλ → ∞. In other words, locality in the limit
λ→∞ means that matrix elements between all states that are experimen-
tally separable in space vanish, and all experimentally accessible separations
r are considered different from 0 by no less than some very small but fixed
amount r0 when λ→∞. Every local theory may be discovered inapplicable
in physics when r0 is reduced below certain value. In such case, r0 designates
the limit of physical applicability of that local theory.

We begin by showing how Eq. (26) produces an interaction that becomes
local when λ→∞. Formally, the notation introduced in Eqs. (9), (19), and
(22) produces this result pointwise in an obvious way: limλ→∞ fλ = f∞ = 1,
factors 1/|p+| in the integration measures are canceled by the factors of |p+|
in the expressions for ap = a∞p = limλ→∞ aλp, and the remaining integrals
produce

f̃∞(x1, x2, x3) = δ3(x1 − x3) δ3(x2 − x3) . (27)
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This result leads through Eq. (25) to Eq. (7), with operators ψ∞(x) =
limλ→∞ ψλ(x) = ψ(x) as a consequence of a = a∞ = limλ→∞ aλ. It is
also understood that limλ→∞ gλ = g∞ and g∞ differs from g only by the
value implied by a coupling constant counterterm. In this reasoning, the
space-time variable x3 in Eq. (25) plays the role of variable x in Eq. (7).

On the other hand, this mechanism appears to require further explana-
tion because particle momenta p+ are limited to only positive values in the
standard LF notation for canonical quantum fields ψ(x). The same standard
notation could be used in the case of effective fields ψλ(x), and all integrals
over p+ would only extend from 0 to +∞. Instead, in our notation, the
momentum conservation δ-function in Eq. (15) forces one of the momenta
p1, p2 and p3 to have an opposite + -component to the two others4. Ac-
cording to Eq. (22), this means that the only terms that contribute to the
Hamiltonian are those in which one particle of positive p+ is annihilated and
two particles of positive p+ are created, or two are annihilated and one is
created. There are 3 terms of each type. Therefore, the effective interaction
equals

HλI = 3gλ
3∏
i=1

∞∫
0

dp+
i

2p+
i (2π)

∫
d2p⊥i
(2π)2

×2(2π)3 δ3(p1 + p2 − p3) fλ
(
a†λp1 a

†
λp2

aλp3 + h.c.
)
, (28)

where

fλ = e−(M2
12−m2)2/λ4

. (29)

The sign of normal ordering is not needed. Thus, one can write

HλI = 3gλ

 3∏
i=1

∞∫
0

dp+
i

2(2π)

∫
d2p⊥i
(2π)2

 2(2π)3 δ3(p1 + p2 − p3) fλ

×
∫
d3x1d

3x2d
3x3

[
e−i(p1x1+p2x2−p3x3) ψλ(x1)ψλ(x2)ψλ(x3) + h.c.

]
, (30)

without normal ordering. It is visible that the momentum components p+
1

and p+
2 are positive and sum up to a positive p+

3 . This implies that one can
4 The case that all three momenta have components p+ = 0 is excluded by regulariza-
tion in a canonical theory by demanding that |p+| in the Fourier expansion of every
field in a Hamiltonian density is greater than some positive infinitesimal constant ε+.
The strong limit of ε+ → 0 is immediately taken in all terms obtained from the
integration on the LF in the theory regularized with an infinitesimally small ε+. Sub-
sequent transformation Uλ replaces operators a with aλ preserving their momentum
labels.
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write p+
1 = zp+

3 , p
+
2 = (1− z)p+

3 , and the range of integration over z is from
0 to 1. Moreover, introducing parameterization

p+
1 = zP+ , p⊥1 = zP⊥ + q⊥ , p−1 =

p⊥2
1 +m2

zP+
, (31)

p+
2 = (1− z)P+ , p⊥2 = (1−z)P⊥ − q⊥ , p−2 =

p⊥2
2 +m2

(1−z)P+
, (32)

which is a standard way of parameterizing relative motion of interacting
particles 1 and 2 with variables z and q⊥ in canonical LF dynamics, one
obtains the invariant mass squared of particles 1 and 2 in the argument of
the form factor fλ equal

M2
12 =

q⊥2 +m2

z(1− z)
. (33)

The above relations hold independently of the value of λ. Changing integra-
tion variables to P+, P⊥, z, and q⊥, one obtains for x+ = 0 that

HλI = 3gλ

∞∫
0

dP+

2(2π)

∫
d2P⊥

(2π)2

1∫
0

dzP+

2(2π)

∫
d2q⊥

(2π)2
fλ

×
∫
d3x1d

3x2d
3x3

[
e−iX ψλ(x1)ψλ(x2)ψλ(x3) + h.c.

]
, (34)

X = (zP + q)x1 + [(1− z)P − q]x2 − Px3 . (35)

But this result means that

HλI = gλ

∫
d3x1d

3x2d
3x3 f̄λ(x1, x2, x3)ψλ(x1)ψλ(x2)ψλ(x3) + h.c. , (36)

where

f̄λ(x1, x2, x3) = 3

∞∫
0

dP+

2(2π)

∫
d2P⊥

(2π)2

1∫
0

dzP+

2(2π)

∫
d2q⊥

(2π)2
fλ e

−iX . (37)

There is also no need for the sign of normal ordering in Eq. (36), since the
signs of momentum variables in the integration automatically put creation
operators to the left of annihilation operators.

Eqs. (36) and (37) should be compared with Eqs. (25) and (26). The
issue to clarify is how the integration over z only from 0 to 1 and over
only positive values of P+ leads to a local interaction when λ → ∞. The
limited range of integration in momentum space seems to always require
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some smearing of interaction in position space and the variable z is limited
in Eq. (37) to the range from 0 to 1, irrespective of the size of λ. How
does locality emerge in the limit of λ → ∞? Details of relevant reasoning
are collected in Appendix A. Here we only provide a description of the
connection between the support of fλ as function of z between 0 and 1 and
the locality of HλI in the limit λ→∞.

The non-locality of interaction Hamiltonian in Eq. (25) is described by
the function f̃λ(x1, x2, x3) defined in Eq. (26) by an integral over momentum
variables. Eq. (A.12) in Appendix A shows that

f̃λ(x1, x2, x3) =
∫

d3P

2(2π)3

+∞∫
−∞

dζ|P+|
2(2π)

∫
d2κ⊥

(2π)2
fλ e

−iY , (38)

fλ ≡ fλ(ζ, κ) = e−(∆M2/λ2)2

, (39)

|∆M2| =
[
κ⊥2 +m2

ζ(1− ζ)
−m2

]
1 + |ζ|+ |1− ζ|

2
, (40)

Y = (ζP + κ)x1 + [(1− ζ)P − κ]x2 − Px3 . (41)

The Hamiltonian obtained by integrating a normal-ordered product of three
quantum fields ψ(x1), ψ(x2), ψ(x3) with function f̃λ(x1, x2, x3) over LF hy-
perplane in Eq. (25), is the same as the Hamiltonian obtained in Eq. (36).
In Eq. (38) for f̃λ(x1, x2, x3), integration over the range of negative P+

corresponds to the sign of Hermitian conjugation, h.c., in Eq. (36). Integra-
tions over ζ < 0 and ζ > 1 contribute the same operator to Eq. (25) as the
integration over ζ between 0 and 1 does. Thus, the three regions provide
the factor 3 in Eq. (34). This means that the factor 3 appears in front of
one and the same operator that is obtained in turn from each of the three
regions equally. Appendix A describes changes of variables that exhibit the
equivalence of these three regions of integration over ζ.

Fig. 1 shows the function fλ ≡ fλ(ζ, κ⊥) = exp [−(∆M2/λ2)2], where
∆M2 as function of ζ and κ⊥ is given in Eq. (40), for six different values
of λ: 50, 10, 4, 3, 2, and 1.5, in units of the mass m. Momentum κ⊥ is also
given in units ofm. The six three-dimensional plots are approximate because
of a limited resolution of figure drawing. In particular, fλ = 0 for ζ = 0
and ζ = 1 for all values of λ, except that the region where fλ is very small
decreases in size and relevance in the Fourier integral when λ → ∞. This
means that the non-locality of the effective interaction Hamiltonian HλI can
be systematically considered only under the assumption that the domain
of HλI does not contain states with wave functions that are significantly
singular as functions of ζ at 0 and 1. We assume that the domain of HλI

obeys this condition, on the basis of our expectation that a non-zero mass-
term leads to a spectrum that satisfies this condition.
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Fig. 1. The RGPEP vertex form factor fλ ≡ fλ(ζ, κ) that is integrated over mo-
menta in Eqs. (26) and (38) to produce the non-local interaction density in HλI

in Eq. (25), for six values of λ. m is the mass of interacting particles. The three
bumps correspond to the regions ζ < 0, 0 < ζ < 1, and ζ > 1, all three contributing
equally to HλI . When λ→∞, fλ tends pointwise to 1. Limited resolution of figure
drawing misses the fact that fλ(0, κ) = fλ(1, κ) = 0 for m > 0 (see the text).
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The middle bumps on the six plots in Fig. 1 show the RGPEP form
factor fλ in the range 0 < ζ < 1. In this range, ζ is the same as the
parameter x typically used in LF notation for + -momentum fractions. The
other two bumps that are visible in all six plots in the regions ζ < 0 and
ζ > 1, combine together with the bump in the middle to form a function
that approaches 1 pointwise when λ → ∞. This is how one obtains a local
interaction in this limit.

It is visible in Fig. 1 that for λ → ∞ one obtains interaction whose
strength approaches a constant in momentum space, and hence tends to a
point-like interaction in position space. When the position probe one uses
has a resolution considerably below 1/λ, the non-locality corresponding to
λ remains invisible. The greater λ, the smaller distance scales at which the
interaction still appears to be local, i.e., the interaction density spreads only
over regions that are smaller than the probe can resolve.

It is also visible in Fig. 1 that the smaller λ the greater overall suppression
of the strength of the interaction by the form factor fλ. This suppression can
be reinforced (triviality) or reduced (asymptotic freedom) by the variation
of the coupling constant gλ when λ decreases.

3.2. Non-locality for m→ 0

High-energy dynamics involves interactions in which spatial momenta
of particles are typically very large in comparison with their masses. In
such circumstances, it may be useful to neglect the masses. One can also
consider masses that are negligible in comparison with spatial momenta
of interacting particles, even if the latter are not very large on the scale
of momenta measurable in laboratory. This section discusses non-locality
of first-order RGPEP three-particle vertices in the case when masses are
neglected.

The case of m = 0 can be seen as resulting from the limit m → 0 in
the sense that the range of relative momenta accessible to particles created
or annihilated in a single act of interaction is much greater in size than m.
Since the invariant mass depends on q⊥2 +m2, large momentum q⊥ makes
a small mass parameter m irrelevant for the value of the form factor fλ.
But for small momentum q⊥, the mass m may be important because m2 is
divided by z or 1− z in the invariant mass. For q⊥ = 0, this means that an
arbitrarily small m matters in the value of fλ wherever m2/z or m2/(1− z)
are not negligible in comparison with λ. For m � λ, this happens only for
extreme values of z. Therefore, one can expect that the limit m → 0 is
equivalent to the result of setting m = 0 with the exception of contributions
from the end points in z while |q⊥| . m. At the end points, the case m = 0
qualitatively differs from all cases with m > 0. The former case allows for
non-zero contributions from the end points when q⊥ → 0, and all the other
cases do not.
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One can gain some understanding of the non-locality corresponding to
λ � m by neglecting m entirely and replacing the form factor fλ =
exp[−(M12/λ)4] by fλ = exp[−(M12/λ)2] in Eq. (37). Such replacement
preserves a non-local nature of the vertex qualitatively and greatly simplifies
calculations. The simplified case is discussed in this section.

Under the simplifying assumptions, the non-local vertex function in
Eq. (37) reads

f̄λ(x1, x2, x3) = 3
∫
d3P θ(P+)

2(2π)3

1∫
0

dz P+

2(2π)

∫
d2q⊥

(2π)2
e
− q⊥2

λ2z(1−z)

×e−iP [zx1+(1−z)x2−x3]+iq⊥(x⊥1 −x⊥2 ) . (42)

Eq. (B.8) in Appendix B provides the result of integration over momenta
q⊥, P⊥, and P+5. The vertex function is invariant under translations and
depends on 6 relative position co-ordinates. For example, when one identifies
a point of reference with the argument of the field labeled 2, the result takes
the form

f̄λ(x1, x2, x3) = λ6 g[λ(x1 − x2), λ(x3 − x2)] , (43)

where

g(ρ, τ) =
−3

16π3

1∫
0

dz z(1− z)
(τ− − zρ− + iε)2

δ2
(
τ⊥ − zρ⊥

)
e−z(1−z) ρ

⊥2/4 . (44)

The function g(ρ, τ) is invariant with respect to rotations around z-axis. It
is different from 0 only for τ⊥ being a fraction of ρ⊥.

In order to visualize the non-local vertex function f̄λ(x1, x2, x3), it is
sufficient to consider it a function of τ on the LF hyper-plane of ρ. More-
over, since τ⊥ = tρ⊥ with t = |τ⊥|/|ρ⊥| in the range 0 ≤ t ≤ 1, one can
visualize f̄λ(x1, x2, x3) by drawing it on the two-dimensional plane of only
two variables: τ⊥||ρ⊥ and τ−. Namely, using the decomposition

τ⊥ = t ρ⊥ + s n⊥ , (45)

with n⊥ρ⊥ = 0 and n⊥n⊥ = 1, one can write

g(ρ, τ) = δ(s)
3

16π3
hρ(t, τ−) , (46)

5 Integration over P+ requires a regularization that results in the presence of iε in
Eq. (44); see Appendix B. Despite the presence of iε, the resulting interaction Hamil-
tonian is Hermitian because Eq. (36) contains a term with f̄λ and a conjugated term,
denoted by h.c.
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where

hρ(t, τ−) =
−t(1− t)

(τ− − tρ− + iε)2

e−t(1−t) ρ
⊥2/4

|ρ⊥|
, (47)

0 ≤ t = |τ⊥|/|ρ⊥| ≤ 1 . (48)

For every choice of ρ = λ(x1 − x2) = (ρ⊥, ρ−), the function hρ(t, τ−) is a
function of 0 < t < 1 and t−. Figs. 2 and 3 show examples that illustrate
generic features of f̄λ(x1, x2, x3).

Fig. 2 illustrates how the non-local interaction strength on the LF de-
pends on the position of the point x3, where particle number 3 is annihilated
(created), for a given distance between the two points x1 and x2, where par-
ticles 1 and 2 are created (annihilated). The distances are measured in
dimensionless units that result from multiplication of position coordinates
by the RGPEP scale parameter λ. To obtain the Hamiltonian corresponding
to λ, the density hρ whose modulus times |ρ⊥| is shown in Fig. 2, multiplied
by the factors present in Eq. (46) to obtain f̄λ(x1, x2, x3), is integrated with
the product of three effective fields ψλ(x) using

∫
λ3d3x1

∫
λ3d3x2

∫
d3x3,

see Eq. (36).
For the purpose of drawing, Fig. 2 is artificially modified in so far that

the infinitesimal parameter ε → 0+ is set to 1/5. This substitution causes
that the rise of the modulus of f̄λ(x1, x2, x3) due to the square of x−3 −x

−
2 −

(x−1 −x
−
2 )|x⊥3 −x⊥2 |/|x⊥1 −x⊥2 | crossing 0 in denominator is limited to 1/ε2 =

25, instead of reaching 0−2
+ . The artificial modification preserves generic

features of f̄λ(x1, x2, x3). Namely: (a) f̄λ(x1, x2, x3) pointwise decreases
with distance between x⊥1 and x⊥2 , (b) it quickly vanishes outside the region
where x3 is near a straight line connecting x1 with x2 on the LF, and (c)
it is notably spread toward the end-points when λ|x⊥1 − x⊥2 | exceeds 4. The
number 4 results from the factor e−t(1−t) ρ⊥2/4 in Eq. (47). This factor is
varying slowly until |ρ⊥|2 exceeds the inverse of maximal value of t(1− t)/4,
which is 16. Thus, when |ρ⊥| exceeds 4, the density f̄λ(x1, x2, x3) begins to
be suppressed in the middle between x1 and x2. When |ρ⊥| increases far
above 4, the interaction density favors x3 near x1 or x2, being squeezed in
the middle between x1 and x2.

Fig. 2 illustrates the feature that x3 must lie near a line connecting x1

and x2 on the LF in the cases where |x−1 − x
−
2 | ∼ |x⊥1 − x⊥2 |. Fig. 3 shows

that the same happens in other cases, by providing examples for different
orientations of x1 − x2 on the LF. Again, ε is set to 1/5 in order to avoid
infinite values on the line connecting points x1 and x2, which is the same
trick of convenience in drawing that was used earlier in Fig. 2 and is further
explained below.
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Fig. 2. Modulus of the non-local interaction density for massless particles,
f̄λ(x1, x2, x3) in Eq. (42), drawn as function of λx⊥3 and λx−3 on the space-time
plane containing x⊥1 − x⊥2 in the LF hyper-plane defined by the condition x+ = 0,
in terms of the function hρ in Eq. (47) multiplied by |ρ⊥| for visualization of the
end-point enhancement, for λx2 = 0 and several choices of the points λx1 with
λx−1 = λ|x⊥1 | = 1, 4, 6, and 10, as indicated. The end-point enhancement for
massless particles when x3 approaches x1 or x2 shows up when the dimensionless
distance λ|x⊥1 − x⊥2 | exceeds 4. For further explanation, see Eqs. (43) to (48) and
the text.

Both Figs. 2 and 3 display partly jagged shapes of the drawn functions,
which requires explanation. For this purpose, consider the function

f(x) = −(x+ iε)−2 , (49)

in the vicinity of x = 0. Fig. 4 displays the modulus and real part of this
function for ε = 1/5. Since Figs. 2 and 3 are drawn using a crude, uniform
mesh of points for arguments and a uniform trapezoidal interpolation for
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Fig. 3. The same non-local interaction density function as in Fig. 2, also multiplied
by |ρ⊥| as in Fig. 2 to avoid suppression on the drawing when the distance between
x⊥1 and x⊥2 increases, plotted for several choices of the points λx1 with λ(|x⊥1 |, x−) =
(1, 6), (4, 6), (6, 4), and (6, 1), as indicated. See the text and Eqs. (43) to (48).

shading of the function image, it happens from time to time that the mesh
selects an argument point a bit away from a narrow peak (forming a wall
of a priori infinite height) in the plotted function. The selected argument
produces a small value of the function. When such small value is crudely
connected with large values at neighboring points, a somewhat jagged shape
is obtained. When the mesh spacing is decreased, drawings become smooth.
However, the files with a small mesh spacing have a prohibitive size. Figs. 1,
2, and 3 are provided as a result of a compromise between precision of
rendering and size of the figure files. The compromise is made in such a
way that in every case the key feature to be displayed and discussed is not
altered in any significant way.
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Fig. 4. Modulus and real part of the function f(x) in Eq. (49). Shape of |f(x)|
explains the somewhat jagged shapes of functions displayed in Figs. 2 and 3; see
the text.

3.3. Non-locality for λ ∼ m
In attempts to understand mass generation in a relativistic theory of

particles, such as attempts to solve QCD for quark and gluon wave func-
tions of hadrons in the Minkowski space or attempts to resolve the strong
interaction structure of photons that results in mixing of photons with ρ-
mesons, one is faced with a challenge of understanding dynamics of binding
of effective constituents of some mass m. In QCD, the effective constituent
mass m that dominates the mechanism of binding of lightest quarks appears
to be of the order of ΛQCD. The problem of chiral symmetry breaking in
QCD (or other asymptotically free theories) can be rephrased as a ques-
tion of what are the dominant interaction terms in an effective Hamiltonian
when the decreasing RGPEP parameter λ becomes comparable with ΛQCD

(or a corresponding parameter Λ in other theories). In any case, unless the
parameter λ is comparable with or smaller than the constituent mass m, a
large number of constituents may participate in the dynamics described by
Hamiltonians evaluated using RGPEP. Therefore, it is of interest to con-
struct and understand the structure of Hamiltonian interaction terms with
small λ, where by small it is meant that λ is comparable with m. This
section discusses the non-locality of first-order RGPEP three-particle vertex
in this regime.

It is visible in Fig. 1 that the RGPEP momentum-space form factor fλ
peaks at ζ ∼ 1/2, i.e., in the center of a middle bump in Fig. 1. Sec-
tion 3.1 shows that the region 0 < ζ < 1 contributes the same operator that
the two neighboring regions with ζ below 0 and above 1 contribute to the
Hamiltonian. As λ decreases, the size of fλ also decreases. The smaller fλ
the weaker the interaction that changes the number of effective particles.
However, in asymptotically free theories, the effective coupling constant gλ
increases when λ decreases; gλ may partly compensate for the small size of
fλ at its peak. The resulting interaction strength may thus be not eliminated
entirely when λ decreases to about m. Instead, the strength is located in
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the domain in momentum space where fλ is maximal. Therefore, for λ ∼ m
or smaller, given that the three regions of ζ < 0, 0 < ζ < 1, and 1 < ζ con-
tribute the same operator to the Hamiltonian, it is sufficient to consider the
middle region of ζ in Fig. 1, i.e., the region, where fλ forms a bump around
z ≡ ζ ∼ 1/2. In this region, the relative transverse momentum q⊥ ≡ κ⊥ is
limited to values not exceeding order λ, tempered in addition by how much
the variable z deviates from 1/2.

For a closer inspection of the middle bump region for λ ∼ m, consider
the form factor

fλ = e−[M2
12−m2]2/λ4

, (50)

withM12 given in Eq. (33), rewritten as

fλ = e−(3m2/λ2)2 e
−
h
(M2

12−m2)2−(3m2)2
i
/λ4

. (51)

The exponential in front describes the size of the form factor at its maximum
at z = 1/2 and q⊥ = 0, while the remaining factor describes the form factor
fall-off away from its maximum. Now,(

M2
12 −m2

)2 − (3m2
)2 =

(
M2

12 + 2m2
) (
M2

12 − 4m2
)
, (52)

where the first factor on the right-hand side is not smaller than 6m2 while
the second factor can be small. These two factors can be analyzed in detail
in terms of variables

k⊥ = q⊥ , (53)
kz = (z − 1/2)M12 , (54)

dz = 4z(1− z) dk
z

M12
, (55)

with which

z =
1
2

(
1 +

kz√
m2 + ~k2

)
, (56)

M2
12 = 4

(
~k 2 +m2

)
, (57)

and

fλ = e−(3m2/λ2)2

e
−
~k 2 + 3m2/2

(λ/2)2
~k 2

(λ/2)2 . (58)
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For λ ∼ m or smaller, the relative momentum |~k | of particles 1 and 2 is
smaller than λ/2 ∼ m/2 and the RGPEP form factor can be very well
approximated by Gaussian

fλ = e−9m4/λ4
e−24m2~k 2/λ4

. (59)

Using this approximation in Eq. (37) written in terms of variables R and r
defined in Eqs. (B.1) to (B.4), one obtains

f̄λ(x1, x2, x3) = 3e−9m4/λ4

∫
d3P P+θ(P+)

2(2π)3
e−iP (R−x3)

×
∫

4z(1− z)d3k

2(2π)3M12
e−24m2~k 2/λ4

ei[−(z−1/2)Pr+k⊥r⊥] . (60)

Since for λ ∼ m or smaller one has z ∼ 1/2 and

kz =
(
z − 1

2

)
M12 ∼

(
z − 1

2

)
2m, (61)

the function f̄λ(x1, x2, x3) is approximated by

f̄ = 3 e−9m4/λ4

∫
d3PP+θ(P+)

2(2π)3
e−iP (R−x3)

×
∫

d3k

4m(2π)3
e−24m2~k 2/λ4

ei[k
z(−Pr/(2m))+k⊥r⊥] . (62)

The key observation is that one can introduce a three-vector

~r = ~r (P, r) =
(
−Pr
2m

, r⊥
)
, (63)

and write

f̄ = 3 e−9m4/λ4

∫
d3PP+θ(P+)

2(2π)3
e−iP (R−x3)

×
∫

d3k

4m(2π)3
e−24m2~k 2/λ4

ei
~k ~r , (64)

so that the non-locality is parameterized in terms of ~r. Details of evaluation
of the non-locality are described in Appendix C. Like in Eqs. (43) to (48)
for massless particles, one can write

f̄λ(x1, x2, x3) = λ6 g(ρ, τ) , (65)
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where τ⊥ = tρ⊥ + sn⊥ and

g(ρ, τ) = δ(s)
3

16π3
hρ(t, τ−) . (66)

Using γ = λ2

6m2 , Eq. (C.15) implies

hρ(t, τ−) =
−1

4 e
− 8

3γ2
(t−1/2)2

(τ− − tρ− + iε)2

e−γρ
⊥2/16

|ρ⊥|
γ

e
1

4γ2

. (67)

For γ = 1 (or λ =
√

6m), this result matches the massless case of Eq. (47)
up to the factor e−1/4 when t ∼ 1/2. In this case, t(1− t) amounts to 1/4.
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Fig. 5. Modulus of the non-local LF interaction density f̄λ(x1, x2, x3) in Eq. (65)
for massive particles with λ = m, for which γ = 1/6, using the same convention as
in Fig. 2 but in terms of |ρ⊥| times hρ in Eq. (67) multiplied in addition by e

1
4γ2 /γ.

The extra multiplication is needed for removing the exponential suppression of the
form factor hρ so that the height of the plotted function matches with the one in
Fig. 2. For further explanation, see Eqs. (65) to (67) and the text.
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Non-locality of the interaction vertex for λ = m is illustrated in Fig. 5,
which should be compared with Fig. 2. For λx3 away from the points with
t ∼ 1/2, especially at the end-points, the result for λ = m shown in Fig. 5
is quite different from the massless case shown in Fig. 2; there is a strong
suppression instead of enhancement at the end points. The smaller γ, i.e.,
the smaller λ/m, the narrower the peak at t = 1/2 and lesser exponential
suppression of the non-local vertex due to increase of |ρ⊥|.

In contrast to Fig. 2, Fig. 5 exhibits the feature that the non-local inter-
action density prefers the position of x3 in the middle of x1 and x2. This
is a characteristic behavior for non-relativistic interactions, i.e., interactions
in which relative momentum of interacting particles is smaller than their
masses. Interactions of relativistic particles do not have this feature.

Finally, one can observe that the three points x1, x2, and x3 must ap-
proximately lie on a straight line on the LF. This feature is the same as in
Fig. 3 and does not require a separate drawing.

3.4. Non-locality in a non-relativistic theory

There is an analogy with a non-relativistic quantum mechanics that may
be helpful in interpretation of the results described in the previous sections.
The difficulty of interpretation may be expected because RGPEP is de-
veloped in the front form of Hamiltonian dynamics and the non-locality
of interaction Hamiltonian densities is obtained on the LF hyper-plane in
space-time rather than in space at a single moment of time. Thus, the rela-
tivistic RGPEP involves concepts that are general enough for hoping that the
method will apply in derivation of wave functions of bound states of partons
in theories with asymptotic freedom and infrared slavery or in attempts to
understand symmetry breaking and mass generation at high energies. The
space-time concepts do not appear quite intuitive from the point of view
based on non-relativistic quantum mechanics. The latter only applies when
motion of charged particles is characterized by velocities v ∼ αQEDc, where c
is the speed of light and αQED is the fine structure constant ∼ 1/137. This
constant determines the strength of interactions which govern behavior of
electrons bound in atoms. Binding of quarks and gluons occurs in space-time
as a result of interactions with coupling constants about 100 times greater
than in QED and the non-relativistic intuition is not directly applicable.
The same difficulty with building a physical picture is faced in all theories
of mass generation and related symmetry breaking.

Fortunately, an intuitive picture to think about can be arrived at by
comparing RGPEP form factors fλ for small λ with simple form factors that
may be introduced ad hoc in an effective non-relativistic theory. For example,
consider interactions that resemble emission and absorption of mesons by
nucleons in nuclear physics. Suppose an effective interaction Hamiltonian
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has the form

HλI = gλ

[
3∏
i=1

∫
d3pi
(2π)3

]
(2π)3 δ3(p1 + p2 − p3)

×fλ
(
a†λp1 a

†
λp2

aλp3 + h.c.
)
, (68)

where ~pi, i = 1, 2, 3 are standard three-dimensional momentum variables
conjugated with standard rectilinear co-ordinates ~xi, i = 1, 2, 3 in space,
respectively. Let an arbitrarily chosen form factor be

fλ = e−(~p1−~p2)2/λ2
. (69)

Suppose that one builds effective fields at the moment t = 0 using opera-
tors aλ (only annihilation operators) and evaluates a non-local Hamiltonian
density in space. Instead of Eq. (37), one is led to consider an expression of
the form

f̄λ(x1, x2, x3) ∼
∫

d3P

(2π)3

∫
d3q

(2π)3
fλ e

−iX , (70)

X = (P/2 + q)x1 + (P/2− q)x2 − Px3 (71)
= P [(x1 + x2)/2− x3) + q(x1 − x2) , (72)

and obtains

f̄λ(x1, x2, x3) ∼ δ3[~x3 − (~x1 + ~x2)/2] λ3 e−λ
2(~x1−~x2)2/16 . (73)

This result has an intuitive interpretation. Particle 3 is annihilated (cre-
ated) exactly in the middle of positions x1 and x2, where particles 1 and
2 are created (annihilated), respectively. The width of the distribution of
distances between points x1 and x2 is 1/λ. When λ→∞, the interaction is
local. When λ becomes small, it is greatly delocalized in the sense that the
distance between x1 and x2 can be large, but at the same time x3 is always
precisely in the middle between x1 and x2.

The situation is somewhat similar to the one shown in Fig. 5, except that
in Fig. 5 one of the directions is x−3 on the LF. However, when λ is small in
comparison with masses and x3 is fairly located on the LF between x1 and x2,
one can observe that for all co-ordinates involved x+ = 0 and x− = −2x3.
Therefore, in the non-relativistic case, r− can be seen as analogous to −2rz.
This way, one recovers the simple non-relativistic interpretation of the LF
non-locality. Further discussion is provided in the next section.
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3.5. Relationship to a 2-body wave function

Previous section provided an interpretation of the non-local interaction
Hamiltonian densities on the LF by analogy that was limited to slow par-
ticles. This section provides another intuitive picture that is more precise
and not limited to slowly moving bound states. In fact, it can be used in
any frame one wishes to use, including the infinite momentum frame (IMF)
and the center of mass frame (CMF) alike.

In order to relate the non-locality of an effective Hamiltonian interaction
term to a wave function of a 2-body bound state on the LF hyperplane
defined by condition x+ = 0, we introduce three species of particles which
are annihilated by operators a1, a2, and a3, respectively. The three species
are introduced to avoid the need for symmetrization of relevant functions for
identical particles. Masses of the three species are assumed all equal to m
in order to match the conditions set in the previous sections.

Consider the matrix element

φλP (x1, x2) = 〈0|ψ+
1λ(x1)ψ+

2λ(x2)HλI a
†
3λP |0〉 , (74)

where |0〉 denotes the vacuum state that is annihilated by a1λp, a2λp, and
a3λp for p+ > 0. The effective quantum fields ψ1λ(x), ψ2λ(x), and ψ3λ(x)
are defined by Eqs. (19) to (22) for species 1, 2, and 3, respectively. The
superscript + means differentiation,

ψ+(x) = i∂+ψ(x) . (75)

The state |P 〉 with P+ > 0, defined as a particle of the third species

|P 〉 = a†3λP |0〉 , (76)

can be considered analogous to a bound state of two effective constituents
of species 1 and 2 corresponding to scale λ. Namely, the eigenvalue equation
for a bound state with momentum P ,

(Hλ0 +HλI) |P 〉 = P−|P 〉 , (77)

can be rewritten as

|P 〉 =
1

P− −Hλ0
HλI |P 〉 . (78)

The Hamiltonian HλI couples a pair of particles 1 and 2 with a parti-
cle 3. Therefore, the eigenvalue equation for the state |P 〉 involves both the
2-particle component of type 1 and 2 and the 1-particle component of type 3.
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This LF situation resembles the Lee model [16, 17]. The wave function to
focus on is the 2-particle component. One can insert the identity in 2-body
space,

112 =
∫
d3x1 d

3x2 ψ1λ(x1)ψ2λ(x2)|0〉〈0|ψ+
1λ(x1)ψ+

2λ(x2) , (79)

on the left-hand side of HλI and evaluate the matrix element

ψλP (x1, x2) = 〈0|ψ+
1λ(x1)ψ+

2λ(x2)
1

P− −Hλ0
112HλI |P 〉 . (80)

The result takes the form

ψλP (x1, x2) =
∫
d3x′1 d

3x′2GλP
(
x1, x2;x′1, x

′
2

)
φλP

(
x′1, x

′
2

)
, (81)

in which the matrix element

GλP
(
x1, x2;x′1, x

′
2

)
=〈0|ψ+

1λ(x1)ψ+
2λ(x2)

1
P−−Hλ0

ψ1λ

(
x′1
)
ψ2λ

(
x′2
)
|0〉 ,(82)

appears in the role of a two-body Green’s function for states with LF energy
P− on the LF hyperplane x+ = 0. The matrix element of Eq. (74) plays the
role of a vertex function in Eq. (81).

The Hamiltonian HλI from Eq. (34), plainly modified to the case of three
species of particles by associating position xk with species k for k = 1, 2, 3
and keeping the factor 3 in front, can be inserted into Eq. (74), which yields

φλP (x1, x2) = 3gλ

1∫
0

dzP+

2(2π)

∫
d2q⊥

(2π)2
fλ e

−i{(zP+q)x1+[(1−z)P−q]x2} . (83)

By comparison with Eq. (37), the following relation is uncovered between the
non-local interaction Hamiltonian densities obtained in first-order RGPEP
in previous sections and a 2-body vertex function on the LF:

gλf̄λ(x1, x2, x3) =

∞∫
0

dP+

2(2π)

∫
d2P⊥

(2π)2
φλP (x1, x2) eiPx3 . (84)

Inverting the Fourier transform, one obtains

φλP (x1, x2) = gλ

∫
d3x3 f̄λ(x1, x2, x3) e−iPx3 . (85)



1964 S.D. Głazek

Using expressions derived for f̄λ(x1, x2, x3) in previous sections, one obtains
in the case of m = 0

φλP (x1, x2) = 3gλ

(
λ

4π

)2

P+ e−iPR

×
1∫

0

dz z(1− z) e−i(z−1/2)Pr− 1
4
z(1−z)λ2r⊥2

, (86)

and in the case of λ . m

φλP (x1, x2) = 3gλ

(
λ

4π

)2

P+ e−iPR

×C(λ/m) e
− λ4

96m2

h
( Pr2m)2

+r⊥2
i
, (87)

where

C(λ/m) = e−9m4/λ4 λ4

96m4

√
π

6
. (88)

Irrespective of the values of particle masses, RGPEP scale λ, and the
coupling constant gλ, the vertex function contains the factor P+λ2 which
carries its dimension. The vertex function contains as a factor a plane-wave
function of the center-of-mass position variable R = (x1 +x2)/2. Particles 1
and 2 contribute equally to R because m1 = m2 = m. The remaining factor
is a function of relative motion but depends on the total momentum P . More
precisely, it has a universal property of being a function of two variables:
square of r⊥ = x⊥1 − x⊥2 and Pr. Taking into account that r+ = 0, the
former variable is equal to a square of a four-vector, −r2, and the latter
variable is a product of two four-vectors. Both variables are invariant under
7 kinematical LF symmetries.

The generic structure of the vertex function implies that the Soper vari-
able Rs = zx1 + (1− z)x2 [18] does not properly separate the center-of-mass
motion from the relative motion of constituents. Namely, the parameteriza-
tion p1 = zP + k and p2 = (1 − z)P − k implies p1x1 + p2x2 = PRs + kr,
where the relative momentum k = (1− z)p1 − zp2 has k+ ≡ 0. This means
that the product PRs is a mixture of PR and Pr that depends on z. Pr and
r⊥ can be arguments of the relative-motion vertex function, but z is not al-
lowed to appear in the plane wave that describes the center-of-mass motion
with a definite total momentum P . The product Pr is a natural variable
to complement r⊥ as an argument of the vertex function even though these
variables have different dimensions (see below).
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Another reason for the found structure of the vertex function to be of
interest is that there exists an analogy between the LF wave function and
AdS/CFT descriptions of bound-state form factors, discovered by Brodsky
and de Téramond [19]. In that analogy, the effective transverse distance
variable ζ⊥ =

√
z(1− z) r⊥ plays a key role as an argument of a bound-

state wave function. The question concerning λ-dependent non-local LF
interaction Hamiltonian densities is whether their RGPEP evolution can be
understood as dependence on a 5th dimension [20] in the context of du-
ality [21–23] and whether this dependence can explain the shape of wave
functions found by Brodsky and de Téramond. They interpret the analogy
between AdS/CFT duality and AdS/QCD picture of hadrons in LF formu-
lation without any need for considering the argument Pr and scale λ.

The issue of different dimensions of Pr and r2 is resolved in the large-λ
case, i.e., λ � m → 0 and Eq. (86), by multiplication of r⊥ by λ. In the
small-λ case, i.e., λ . m and Eq. (87), the same issue is resolved by dividing
Pr by the sum of masses of the interacting constituents. The ratio of λ to
the masses becomes a dimensionless parameter.

It is worth noting that the relativistic Eq. (87) predicts in the CMS a
small difference between how r⊥ = (rx, ry) and rz enter the vertex function.
Namely, for P⊥ = 0, the ratio Pr/(2m) becomes P+r−/(4m) and P+ in
the CMS equals mass, say M , of the state under consideration (consider
the Lee model [16]), while r− = −2r3 when r+ = 0. So, [Pr/(2m)]2 in
Eq. (87) becomes [Mrz/(2m)]2, or [1 − EB/(2m)]2r2

z , where EB denotes
binding energy. This is how the LF vertex function keeps track of the mass
defect due to binding. This result requires better understanding than the
one offered here. On the other hand, the same Eq. (87) can be used in any
frame, including the IMF, where one sees how the interaction vertex or wave
function get squeezed due to motion. This is a relativistic squeezing in a
quantum theory, not classical.

Finally, it also seems worth mentioning that the relationship identified
here between non-local LF interaction vertices and bound-state vertex func-
tions may become helpful in calculating observables such as form factors.
The suggestion is based on the fact that the function f̄λ(x1, x2, x3) defined
in Eq. (37) gives the same interaction Hamiltonian in Eq. (36) that is also
obtained in Eq. (25) using f̃λ(x1, x2, x3) defined in Eq. (26). Suppose that
the old-fashioned perturbation theory for form factors [24] can be developed
using non-local interaction Hamiltonians of the type defined in Eq. (25) with
non-locality of the type defined in Eq. (26). Feynman rules with non-local
vertices could then suggest how to incorporate all diagrams that count for
all kinds of momentum transfers, not only those that have q+ = 0. In the
case of local vertex functions [25], it is known what to do when q+ 6= 0.
It is less clear what to do for bound-state vertices that involve non-trivial
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vertex functions. Therefore, it seems worth checking if the non-local inter-
action Hamiltonian densities obtained in first-order RGPEP lead to unique
answers.

4. Conclusion

Renormalized Hamiltonian densities on the LF hyperplane in space-time
contain interaction terms that are non-local. The non-locality is certainly
intriguing and needs to be studied for many reasons as a feature of basic
interactions. This article makes only a first step in this direction. In partic-
ular, we calculate the non-locality in first-order of a perturbative expansion
in powers of an effective coupling constant using RGPEP. This is done for
terms that originate from a product of three fields. Such terms include cou-
pling of fermions to gauge bosons, coupling of fermions to Yukawa particles,
and coupling of non-Abelian gauge bosons with themselves. But the leading
non-locality is common to all these cases and can be calculated using scalar
fields. The result is that the non-local interaction density has a generic form
as a function of the space-time positions of effective particles that are cre-
ated and annihilated by the interaction. This form can be understood in
terms of a vertex function for a two-body bound state.

The characteristic dependence of the vertex function on Pr and r2,
where P denotes the bound-state total momentum and r denotes the rela-
tive position of its two constituents, implies a characteristic dependence of
the non-local Hamiltonian density on the position x3 of an annihilated (cre-
ated) particle relatively to the positions x1 and x2 of created (annihilated)
particles in a three-particle vertex. Namely, x3 is distributed near a straight
line connecting x1 with x2 on the LF. Figs. 1 to 5 illustrate the shapes of
the calculated distributions.

All examples studied here were obtained for all particles having the same
mass. For different masses, the results will be numerically different and
of more interest from the point of view of application. However, there is
no reason to expect a major alteration in the method and results beyond
numerical changes. Nevertheless, such changes will be significant in practice.

Another need for generalization concerns interactions that originate from
products of more than three fields in one vertex. RGPEP provides a set of
general rules for how to calculate non-local interaction densities in such cases
order-by-order in perturbation theory. It is not excluded that the terms
identified using RGPEP in perturbation theory will lead to a selection of
dominant terms for which a non-perturbative evolution can be derived on a
computer.

A general speculation is in order concerning the role of non-local inter-
actions in formation of quantum strings of gluons. Imagine that an effective
gluon splits non-locally into two along a line, as required by the LF non-
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locality of a Hamiltonian interaction term. Then, each of the two gluons
interacts with neighboring gluons. It was argued before using analogy with
RGPEP results for heavy quarkonia [26] that gluons of small λ may attract
each other in color singlets by potentials that resemble harmonic oscillator.
In this context, the non-local splitting of gluons can be seen as a candidate
for dynamical generation of quantum strings in which interactions between
neighboring gluons in space are so strong that the string energy grows only
linearly with its length, the effective gluon mass at scale λ providing a unit
of energy per unit of length order 1/λ.

Appendix A

Connection of Eqs. (36) and (37) with Eqs. (25) and (26)

Details of the connection of interest are provided here for completeness.
The connection involves several steps. Each of them involves manipulation
of several variables. Understanding the connection requires tracing of these
steps. These steps also exhibit an analogy between the momentum labeling
of creation and annihilation operators in RGPEP and the parameters η in the
range between 0 and 1 that appear in old-fashioned perturbation theory for
scattering processes in the IMF [27], or parameters x in the same range from
0 to 1 that appear in x+-ordered Feynman rules for calculating scattering
amplitudes [14].

Creation and annihilation operators in the interaction Hamiltonian in
Eq. (34) stand in normal order and inserting a sign of normal ordering does
not change anything. Two terms, both with integration over P+ > 0, can be
changed to one term with integration over P+ from −∞ to +∞, rendering
the result that HλI in Eq. (36) equals

HλI = 3gλ

∫
d3P

(2π)3

1∫
0

dz|P+|
2(2π)

∫
d2q⊥

(2π)2
fλ

×
∫
d3x1d

3x2d
3x3 e

−iX : ψλ(x1)ψλ(x2)ψλ(x3) : . (A.1)

One can use f̄λ defined in Eq. (37) to introduce

f̂λ = f̄λ + f̄∗λ , (A.2)

and write

HλI = gλ

∫
d3x1d

3x2d
3x3 f̂λ(x1, x2, x3) : ψλ(x1)ψλ(x2)ψλ(x3) : , (A.3)
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where

f̂λ(x1, x2, x3) = 3
∫

d3P

(2π)3

1∫
0

dz|P+|
2(2π)

∫
d2q⊥

(2π)2
fλ e

−iX , (A.4)

X = (zP + q)x1 + [(1− z)P − q]x2 − Px3 , (A.5)

fλ = exp

{
−
[
q⊥2 +m2

z(1− z)
−m2

]2

/λ4

}
. (A.6)

The function f̂λ in Eq. (A.3), defined by Eq. (A.4), should be the same as
the function f̃λ in Eq. (25), defined by Eq. (26), i.e.,

f̃λ(x1, x2, x3) =

[
3∏
i=1

∫
d3pi

2(2π)3

]
2(2π)3 δ3(p1 + p2 + p3)

×e−(∆M2/λ2)2

e+i(p1x1+p2x2+p3x3) . (A.7)

In order to exhibit equivalence of f̃λ in Eq. (A.7) and f̂λ in Eq. (A.4), we
change integration variables in Eq. (A.7) according to Eqs. (31) and (32),
from p1 and p2 to P12, ζ and κ,

p+
1 = ζP+

12 , p⊥1 = ζP⊥12 + κ⊥ , p−1 =
p⊥2

1 +m2

ζP+
12

, (A.8)

p+
2 = (1− ζ)P+

12 , p⊥2 = (1− ζ)P⊥12 − κ⊥ , p−2 =
p⊥2

2 +m2

(1− ζ)P+
12

, (A.9)

rename p3 to P , and obtain

f̃λ(x1, x2, x3) =
∫

d3P

2(2π)3

∫
d3P12

2(2π)3

+∞∫
−∞

dζ|P+
12|

2(2π)

∫
d2κ⊥

(2π)2

× 2(2π)3 δ3(P12 + P ) e−(∆M2/λ2)2

e−iY , (A.10)
Y = −(ζP12 + κ)x1 − [(1− ζ)P12 − κ]x2 − Px3 , (A.11)

with ∆M2 given by Eqs. (17) and (18). Change of the variable κ⊥ to −κ⊥
and integration over P12 yields

f̃λ(x1, x2, x3) =
∫

d3P

2(2π)3

+∞∫
−∞

dζ|P+|
2(2π)

∫
d2κ⊥

(2π)2
e−(∆M2/λ2)2

e−iY , (A.12)

Y = (ζP + κ)x1 + [(1− ζ)P − κ]x2 − Px3 , (A.13)
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which is to be compared with Eq. (A.4) for f̂λ(x1, x2, x3) using

p+
1 = −ζP+ , p⊥1 = −ζP⊥ − κ⊥ , p−1 =

p⊥2
1 +m2

−ζP+
, (A.14)

p+
2 = −(1−ζ)P+ , p⊥2 = −(1−ζ)P⊥+κ⊥ , p−2 =

p⊥2
2 +m2

−(1−ζ)P+
, (A.15)

p+
3 = P+ , p⊥3 = P⊥ , p−3 =

P⊥2 +m2

P+
, (A.16)

and also Eqs. (17) and (18).
Note that Eqs. (A.12) and (A.4) look similar in terms of integrations

and functions they involve. For example, both involve the same integration
over P and the functions X and Y coincide after replacement of z and q⊥
by ζ and κ⊥, respectively. However, the two expressions as a whole differ
by a factor of 3 in front. The integration over z ranges from 0 to 1 while
integration over ζ ranges from −∞ to +∞. This difference is analogous to
the difference between parameters η [27] or parameters x [14] that range
from 0 to 1 (η and x were mentioned at the beginning of this Appendix)
and the usual momentum variables that range from −∞ to +∞. The form
factor fλ appears defined in terms of particle momenta differently in both
cases. In order to see how these differences conspire to produce the same
result, we first evaluate ∆M2 in Eq. (A.12).

We divide the range of integration over ζ in Eq. (A.12) into three ranges;
one from −∞ to 0, shortly called 1, one from 0 to 1, called 2, and one
from 1 to ∞, called 3. In each of these 3 regions, we change variables
of integration from ζ and κ⊥ to new variables and demonstrate that the
resulting expression coincides with 1/3 of f̂λ(x1, x2, x3) in Eq. (A.4).

Eqs. (17) and (18) imply

∆M2 = (p1 + p2 + p3)(s1p1 + s2p2 + s3p3) , (A.17)

where si = sgn(p+
i ). Using Eqs. (A.14) to (A.16),

s3 = sP , s2 = −s1−ζsP , s1 = −sζsP . (A.18)

Thus, for all particles in the interaction term having the same mass m,

∆M2sP = m2(1− sζ − s1−ζ)
+(1−sζ)p1p3 + (1−s1−ζ)p2p3−(sζ+s1−ζ)p1p2 . (A.19)

The resulting four-vector products read

p1p2 =
κ⊥2 +m2

2ζ(1− ζ)
−m2 , (A.20)
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p1p3 = −ζ m
2

2
− κ⊥2 +m2

2ζ
, (A.21)

p2p3 = −(1− ζ)m2

2
− κ⊥2 +m2

2(1− ζ)
, (A.22)

and the result is that

f̃λ(x1, x2, x3) =
∫

d3P

2(2π)3

+∞∫
−∞

dζ|P+|
2(2π)

∫
d2κ⊥

(2π)2
e−(∆M2/λ2)2

e−iY ,(A.23)

∆M2 =
[
m2 − κ⊥2 +m2

ζ(1− ζ)

]
1 + |ζ|+ |1− ζ|

2sP
, (A.24)

Y = (ζP + κ)x1 + [(1− ζ)P − κ]x2 − Px3 , (A.25)

should match the corresponding expression in Eq. (A.4), repeated here for
the readers’ convenience,

f̂λ(x1, x2, x3) = 3
∫

d3P

(2π)3

1∫
0

dz|P+|
2(2π)

∫
d2q⊥

(2π)2
e−(∆M2/λ2)2

e−iX , (A.26)

∆M2 =
q⊥2 +m2

z(1− z)
−m2 , (A.27)

X = (zP + q)x1 + [(1− z)P − q]x2 − Px3 . (A.28)

The 0 to 1 part of integration over ζ in Eq. (A.23) matches exactly 1/3 of
Eq. (A.26). The question is how to see the matching of the remaining 2/3
with parts of integration over ζ from −∞ to 0 and from 1 to +∞.

There are two main regions of integration variables, P+ > 0 and P+ < 0.
Focus on the region P+ > 0. Split integration over ζ into three ranges;
range 1 from −∞ to 0, range 2 from 0 to 1, and range 3 from 1 to ∞. In
the region 2, results match. Consider region 1. For ζ < 0, one has p+

1 > 0,
which means the particle 1 is annihilated, not created, particle 2 is created,
and particle 3 is always annihilated for P+ > 0.

So, for ζ < 0, change variables treating p2 as a total momentum (created,
with a negative + component) composed of p1 and p3 (both annihilated, with
positive + components). This means

p1 = −zp2 − q , p3 = −(1− z)p2 + q , (A.29)

and

p+
1 = −ζP+ = −zp+

2 , p⊥1 = −ζP⊥ − κ⊥ = −zp⊥2 − q⊥ , (A.30)
p+

2 = −(1− ζ)P+ → −P+ , p⊥2 = −(1− ζ)P⊥ + κ⊥ → −P⊥ , (A.31)
p+

3 = P+ = −(1− z)p+
2 , p⊥3 = P⊥ = −(1− z)p⊥2 + q⊥ . (A.32)
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The required change of variables is

ζ =
−z

1− z
, κ⊥ =

q⊥

1− z
, (A.33)

dζ =
−dz

(1− z)2
, d2κ⊥ =

d2q⊥

(1− z)2
= (1− ζ)2d2q⊥ . (A.34)

With this change of variables (sP = 1 here but it is kept as sP ),

∆M2 =
[
m2 − κ⊥2 +m2

ζ(1− ζ)

]
1 + |ζ|+ |1− ζ|

2sP
(A.35)

=
[
q⊥2 +m2

z(1− z)
−m2

]
1
sP

, (A.36)

which is the expected function of z and q⊥. So, after the change of variables,
the region 1 with P+ > 0 contributes

f̃1(x1, x2, x3) =
∫
d3P θ(P+)

2(2π)3

0∫
−∞

dζ|P+|
2(2π)

∫
d2κ⊥

(2π)2
e−(∆M2/λ2)2

e−iY , (A.37)

=
∫
d3P θ(P+)

2(2π)3

1∫
0

dz|P+|
2(2π)

∫
d2q⊥

(2π)2

e−(∆M2/λ2)2

(1− z)4
e−iY , (A.38)

Y =
−zP + q

1− z
x1 +

P − q
1− z

x2 − Px3 . (A.39)

Change notation p2 → −P̃ ,

p+
2 = −(1−ζ)P+ = −P̃+ , p⊥2 = −(1−ζ)P⊥ + κ⊥ = −P̃⊥ , (A.40)

keeping sP = sP̃ , so that

P = (1− z)P̃ + q . (A.41)

Then,

f̃1(x1, x2, x3) =
∫ d3P̃ (1− z)3θ

(
P̃+
)

2 (2π)3

1∫
0

dz|P̃+|(1− z)
2(2π)

×
∫

d2q⊥

(2π)2

e−(∆M2/λ2)2

(1− z)4
e−iY , (A.42)
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where

Y =
(
−zP̃ + q

)
x1 + P̃ x2 −

[
(1− z)P̃ + q

]
x3 . (A.43)

Changing variable P̃ to −P ,

f̃1(x1, x2, x3) =
∫
d3Pθ(−P+)

2(2π)3

1∫
0

dz|P+|
2(2π)

∫
d2q⊥

(2π)2
e−(∆M2/λ2)2

e−iY , (A.44)

∆M2 =
[
q⊥2 +m2

z(1− z)
−m2

]
−1
sP

, (A.45)

Y = (zP + q)x1 + [(1− z)P − q]x3 − P x2 . (A.46)

This result should be compared with 1/3 of f̂λ(x1, x2, x3) given in Eq. (A.26).
This comparison shows that initial integration range over P+ > 0 and

thus particles 1 and 2 created and particle 3 annihilated in f̃ , corresponds to
integration over P+ < 0 and thus particles 1 and 3 annihilated and particle 2
created in f̂ . When both signs of P+ are included in the integration, the
result must be

f̃1(x1, x2, x3) = 1
3 f̂(x1, x3, x2) . (A.47)

The next observation is that the integration over x2 and x3 in the Hamil-
tonian includes only the symmetric part of the functions f(x1, x2, x3) in
Eqs. (25) and (A.3). Therefore, Eq. (A.47) completes the explanation of
how the integration over range 1 produces 1/3 of the interaction Hamilto-
nian.

Since the integration in range 3 can be transformed in the same way, the
only difference being that for ζ > 1 the particle 1 and particle 2 are changed
in their roles with respect to particle 3, it follows that the integration over
ζ in range 3 produces the remaining 1/3 of the Hamiltonian. Hence, the
connection of Eqs. (36) and (37) with Eqs. (25) and (26) is established, and
both ways of writing the non-local interaction Hamiltonian that results from
first-order RGPEP, are equivalent.

Appendix B

Integrals involved in non-locality for m = 0

In terms of variables

R = (x1 + x2)/2 , (B.1)
r = x1 − x2 = x/λ , (B.2)
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which imply

x1 = R+ r/2 , (B.3)
x2 = R− r/2 , (B.4)

Eq. (42) reads

f̄λ(x1, x2, x3) = 3
∫
d3P θ(P+)

2(2π)3

1∫
0

dz P+

2(2π)

∫
d2q⊥

(2π)2
e
− q⊥2

λ2z(1−z)

×e−iP [R+(z−1/2)r−x3]+iq⊥r⊥ . (B.5)

Integration over q⊥ renders∫
d2q⊥

(2π)2
e
− q⊥2

λ2z(1−z) eiq
⊥r⊥ =

λ2z(1− z)π
(2π)2

e−(r⊥λ
√
z(1−z)/2)2 , (B.6)

and subsequent integration over P⊥ gives

f̄λ(x1, x2, x3) = 3

∞∫
0

dP+P+

4π

1∫
0

dz

4π
λ2z(1− z)

4π

×δ2
[
R⊥ + (z − 1/2)r⊥ − x⊥3

]
×e−iP+[R−+(z−1/2)r−−x−3 ]/2−z(1−z)λ2r⊥2/4 . (B.7)

Integration over P+ requires regularization. By inserting e−εP+/2 under the
integral and assuming that ε→ 0+, one obtains

f̄λ(x1, x2, x3) =
−3λ2

16π3

1∫
0

dzz(1− z)[
zx−1 + (1− z)x−2 − x

−
3 − iε

]2
×δ2

[
zx⊥1 +(1−z)x⊥2 − x⊥3

]
e−z(1−z)λ

2(x⊥1 −x⊥2 )2/4 . (B.8)

Hence, the function g(ρ, τ) defined in Eq. (43) is given by Eq. (44).
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Appendix C

Integrals involved in non-locality for λ . m

Introducing a dimensionless three-vectors ~ρ = λ~r, where ~r is defined in
Eq. (63), and ~p = ~k/λ, where ~k is defined in Eqs. (53) and (54), one obtains
the function f̄ defined in Eq. (64) in the form

f̄ = 3e−9m4/λ4

∫
d3PP+θ(P+)

2(2π)3
e−iP (R−x3)

×
∫

λ3 d3p

4m(2π)3
e−

24m2

λ2 ~p 2

ei~p ~ρ . (C.1)

Using β2 = 24m2/λ2, one can perform integration over ~p, obtaining

f̄ = 3 e−9m4/λ4

∫
d3PP+θ(P+)

2(2π)3
e−iP (R−x3)

×λ
3

β3

√
π

3

4m(2π)3
e−~ρ

2/(2β)2 . (C.2)

To integrate over P⊥, f̄ can be written in the form

f̄ = 3e−9m4/λ4 λ3

β3

√
π

3

4m(2π)3
e
−
„
ρ⊥
2β

«2 ∞∫
0

dP+P+e−iP
+(R−−x−3 )/2

4π

×
∫
d2P⊥

(2π)2
eiP
⊥(R⊥−x⊥3 )e

−
„
P+λr−/2−P⊥ρ⊥

4mβ

«2

. (C.3)

Then, P⊥ can be written in terms of two mutually orthogonal transverse
vectors, eρ = ρ⊥/|ρ⊥| and ι⊥, as

P⊥ =
(
p e⊥ρ + q ι⊥

)
λ . (C.4)

The auxiliary parameter p has nothing to do with ~p = ~k/λ introduced earlier.
The integral over P⊥ becomes

∫
d2P⊥

(2π)2 e
iP⊥(R⊥−x⊥3 )e

−
„
P+λr−/2−P⊥ρ⊥

4mβ

«2

(C.5)

= λ2δ
[
λι⊥(R− x3)⊥

] ∫ dp

2π
eip e

⊥
ρ (R−x3)⊥λe

−
„
P+λr−/2−pλ|ρ⊥|

4mβ

«2

. (C.6)
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The remaining integral over p, using χ = e⊥ρ (R⊥ − x⊥3 )λ, gives

∫
dp

2π
eip e

⊥
r (R−x3)⊥λe

−
„
P+λr−/2−pλ|ρ⊥|

4mβ

«2

(C.7)

=
4mβ
λ|ρ⊥|

e
iP

+r−χ
2|ρ⊥| e

−
“

2mβχ

λ|ρ⊥|

”2√
π

2π
. (C.8)

The entire integral is then

f̄ = 3e−9m4/λ4 λ4

(4πβ)2|ρ⊥|
e
−
„
|ρ⊥|
2β

«2

−(mχλ )2
“

2β

|ρ⊥|

”2

δ
[
λι⊥(R− x3)⊥

]
×
∞∫

0

dP+ P+e−iP
+(R−−x−3 )/2

4π
e
iP

+r−χ
2|ρ⊥| . (C.9)

The remaining integral over P+, after the same regularization by factor
e−εP

+/2 that was introduced in Appendix B, produces

f̄ = 3
e−9m4/λ4

λ4

16π3β2|ρ⊥|
e
−
„
|ρ⊥|
2β

«2

−(mχλ )2
“

2β

|ρ⊥|

”2

δ
[
λι⊥(R− x3)⊥

]
× −1[

R− − x−3 −
r⊥(R⊥−x⊥3 )

r⊥2 r− − iε
]2 , (C.10)

Using dimensionless variables ρ = λ (x1 − x2) and τ = λ (x3 − x2), one can
write

χ = ρ⊥
(
ρ⊥/2− τ⊥

)
/|ρ⊥| . (C.11)

Since τ⊥ must lie along ρ⊥, so that τ⊥ = tρ⊥, one gets

χ = −(t− 1/2) |ρ⊥| . (C.12)

Thus, the approximate result for f̄λ(x1, x2, x3) = λ6 g(ρ, τ), where τ⊥ =
tρ⊥ + sn⊥, is

g(ρ, τ) = δ(s)
3

16π3

−1/4
(τ− − tρ− + iε)2

×e
− ρ
⊥2

4β2 −
4β2m2

λ2 (t−1/2)2

|ρ⊥|
4 e−9m4/λ4

β2
. (C.13)
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Writing

g(ρ, τ) = δ(s)
3

16π3
hρ(t, τ−) , (C.14)

one arrives at

hρ(t, τ−) =
−1/4

(τ− − tρ− + iε)2

e
− ρ
⊥2

4β2 −
4β2m2

λ2 (t−1/2)2

|ρ⊥|
4 e−9m4/λ4

β2
, (C.15)

which results in Eq. (67).
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