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We consider a system of two coupled nonlinear partial differential equa-
tions for describing the rotational motions of bases in both polynucleotide
chains of the DNA molecule. The model was proposed by L.V. Yakushevich
and it is well known that the model supports, for some operating regimes,
traveling wave solutions as kink–(antikink) soliton solutions. We have tried
to make some progress by performing an analysis of the classical symme-
tries of this model. Our study shows that the model does not have enough
symmetries as to reduce the equations to ordinary differential equations.
Nevertheless, the known symmetries have been useful for finding several
classes of exact solutions, by imposing adequate Ansätze. Some of them
are kink–(antikink) like solutions, but other ones are not traveling wave
solutions. For some of the new solutions, we have carried out a qualitative
study and analyzed some stability properties. We think that they could
be significant for the description of the DNA molecule as well as for some
other applications.

PACS numbers: 02.30.Jr, 02.20.–a, 87.14.gk, 05.45.Yv

1. Introduction

Nonlinear physics of DNA is a part of nonlinear science which has at-
tained an enormous development since the beginning of the last eighties. It
is generally accepted that it started in 1980 with the article by Englander
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et al. [1] entitled Nature of the Open State in Long Polynucleotide Dou-
ble Helices: Possibility of Soliton Excitations, where they proposed the first
nonlinear Hamiltonian model of DNA.

The DNA molecule is a discrete system consisting of many atoms having
a quasi-one-dimensional structure. There exist different kinds of interactions
between the main atomic groups. One of them is the stacking interaction
between neighboring bases along the DNA axis, these are short-range forces
which stabilize the DNA structure and hold one base over the next one form-
ing a stack of bases. The DNA can be considered as a complex dynamical
system because DNA interacts with its environment in the cell, as many
kind of proteins and thermal fluctuations can impose different functioning
regimes.

A first approximation to a theoretical description of DNA begins by ig-
noring all the external influences and assuming that the amplitudes of the
internal motions in DNA are small. This gives rise to the linear theory of
DNA which is based on linear mathematical models. But without this last
assumption, necessarily, the mathematical models are nonlinear, the math-
ematical difficulties increase and much more interesting phenomena appear.
There are many experimental data and theoretical results published about
the nonlinear properties of DNA (for a review see, e.g., [2]). Many authors
have contributed to the nonlinear theory of DNA by proposing improved
Hamiltonian models and also working in the study of possible solutions to
the dynamical equations. Among them, it is worth remarking the Peyrard–
Bishop model [3] introduced for the study of DNA thermal denaturation.
This model describes the motions of the displacements of the bases from
their equilibrium positions along the direction of the hydrogen bonds that
connect the two bases in a pair. Other approaches describe the rotational
motions of bases in both polynucleotide chains of the DNA molecule. The
Yakushevich model (Y-model) [4] belongs to this type of models and in a
certain sense can be considered as an improved version of the Englander
model, it is the continuous limit of a discrete model describing two chain of
disks connected with one another by lengthwise and transverse springs. It
consists in a system of two coupled nonlinear partial differential equations
and at present nobody has succeeded in finding the general solution of this
nonlinear system. However, after some assumptions the model can be re-
duced to the well known sine-Gordon equation or to the double sine-Gordon
equation. In this context, kink soliton solutions have been found by New-
ton’s method and by Hereman’s method [5]. The sine-Gordon equation also
appears in many branches of physics, where the known solutions have been
applied, although to our knowledge some of them have not been related to
the physics of DNA.
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A method for finding some families of particular solutions is based on
the introduction of some specific Ansätze that yield to a reduction of the
system to a a well known partial differential equation or to ordinary differ-
ential equations. Sometimes, the Ansätze are suggested by particular func-
tional regimes of the DNA molecule, as when it is imposed to some external
constrains. Fortunately, there exists a method for obtaining a diversity of
Ansätze which is based on the invariance properties of the system under Lie
groups of transformations [7,8]. Following this procedure we have been able
to find new classes of particular solutions some of which are not traveling
waves and we have analyzed some stability properties.

This paper is organized as follows: Section 2 introduces the Y-model,
and we perform a symmetry group analysis of this model obtaining the
classical symmetries. In Section 3 we show that it is possible to obtain
two classes of similarity solutions. One of them is constituted by traveling
wave solutions, some of them can be obtained explicitly, but other ones
are implicitly determined by integrals. The other class of solutions are not
traveling waves solutions and we have carried out a qualitative study and
analyzed some stability properties. Finally, a summary and some conclusions
are presented in Section 4.

2. Symmetry properties of the Yakushevich model

The Y-model is a continuous model describing the dynamics of the DNA
molecule, it takes into account the rotational motions of bases in both
polynucleotide chains of DNA. As stressed by Yakushevich, it should be
seen as the first step in a hierarchy of more and more realistic models, but
its study deserves attention just due to its simplicity, opening the possibil-
ity of discovering some essential features of DNA torsion dynamics without
unessential complications due to more realistic modeling. The Y-model is
defined by the following two coupled nonlinear partial differential equations:

α(ϕ1)tt = β(ϕ1)zz + δ(2 sin(ϕ1)− sin(ϕ1 + ϕ2)) ,
α(ϕ2)tt = γ(ϕ2)zz + δ(2 sin(ϕ2)− sin(ϕ1 + ϕ2)) , (1)

where ϕ1(z, t) and ϕ2(z, t) represent the angles of rotation at the point z
and time t of the polynucleotide chains 1 and 2, respectively, and α, β, δ, γ
are constant parameters.

System (1) is rather involved and only special classes of solutions are
known. Most of the known solutions have been obtained after some as-
sumptions are made, which are suggested by special regimes of the DNA
dynamics, and by introducing some simple specific Ansätze. In most cases,
only some specific classes of solutions of the reduced equations have been
considered as applied to DNA.
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It is expected that the most probable conformational distortions in DNA
resulting in an open state configuration are obtained through an evolution
with ϕ1 = −ϕ2 = ϕ or with ϕ1 = ϕ2 = ϕ. Both assumptions make possible
the reduction of the two-field model (1) to a one-field equation. The first
assumption gives rise to the well known sine-Gordon equation and has been
considered by many authors (see [2]). The second assumption gives rise to
a double sine-Gordon equation. Nevertheless, to our knowledge nobody has
connected sufficiently the richness of the solutions of both equations with
the physics of DNA, and in particular with this rotational model.

If, for instance, we suppose that ϕ1 = −ϕ2 = ϕ, system (1) reduces to

(γ − β)ϕzz = 0 ,
2αϕtt − (β + γ)ϕzz − 4δ sin(ϕ) = 0 . (2)

This equation describes the torsion dynamics when the two DNA strands
move out of phase by π.

If in addition we suppose β = γ, system (2) reduces to

ϕtt = aϕzz + b sin(ϕ) , (3)

where a = β
α and b = 2 δα .

Equation (3) is the sine-Gordon equation and, in the context of the
Y-model, kink–(antikink) soliton solutions have been found following
Newton’s Method and Hereman’s Method (see [2]). This equation also ap-
pears in relativistic field theory, condensed matter physics and in a number
of other physical applications, as dislocations in crystals or the propagation
of fluxons in Josephson junctions.

In this section we investigate the symmetry properties of system (1)
under Lie groups of transformations [7, 8]. The knowledge of the invariance
properties usually permits some reductions of the system and to obtain the
so-called similarity solutions.

Since, nowadays, this is a standard method in the study of ordinary and
partial differential equations, we omit the intermediate details and directly
give the relevant reductions that the symmetry groups generate.

We denote by Z, T, U, V the infinitesimals corresponding to the vari-
ables z, t, ϕ1, ϕ2, respectively. The classical symmetries of system (1) can
be obtained imposing the invariance conditions. The procedure leads to a
complicated system of equations, from which we obtain the corresponding
Lie group. Two cases appear, depending of the values of the parameters β
and γ:

1. In the general case (β 6= γ), we obtain a 2-parameter Lie group given by

Z = c1 , T = c2 , U = 0 , V = 0 .
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The infinitesimal generators of this group are

v1 =
∂

∂z
, v2 =

∂

∂t
. (4)

2. In the special case of β = γ we obtain a 3-parameter Lie group given by

Z = c3β t+ c1 , T = c3α z + c2 , U = 0 , V = 0 . (5)

The generators of this group are v1, v2 and v3 = β t ∂∂z + α z ∂∂t .
The commutator table is

v1 v2 v3

v1 0 0 α v2

v2 0 0 β v1

v3 −α v2 −β v1 0

(6)

As we can observe, for both cases the model lacks nontrivial symmetries.
Nevertheless, the known symmetries are useful for finding new classes of
stable exact solutions. We dedicate the next section to obtain the similarity
solutions. Some of them are also kink–(antikink) soliton solutions, which
are obtainable either explicitly or implicitly, and other ones are not traveling
waves.

3. Similarity solutions

The known symmetries make it possible to obtain two classes of solutions,
characterized by a different type of dependence with respect to the variables
z, t.

3.1. Traveling wave solutions

The above results inform that, for both the cases β 6= γ and β = γ,
system (1) is invariant under the translations of v1 and v2. This property
leads us to look for traveling wave solutions.

These solutions are of the form

ϕ1 = f1(z + λt) , ϕ2 = f2(z + λt) . (7)

Substituting, it can be seen that f1 and f2 must satisfy the following system
of ordinary differential equations

a1f
′′
1 − 2 sin(f1) + sin(f1 + f2) = 0 ,

a2f
′′
2 − 2 sin(f2) + sin(f1 + f2) = 0 , (8)

where a1 = αλ2−β
δ ; a2 = αλ2−γ

δ and the derivatives are with respect to the
similarity variable x = z + λt.
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For obtaining similarity solutions of system (8) we have to determine its
classical symmetries. However, we have investigated that system (8) lacks
nontrivial symmetries. Therefore, Lie symmetries are of no help to reduce
system (8) and the solutions, we are able to find, are consequence of some
specific Ansätze.

Let us suppose that f2 = f1 + 2kπ, being k ∈ Z, and a1 = a2; in this
case system (8) reduces to the equation

a1f
′′
1 − 2 sin(f1) + sin(2f1) = 0 . (9)

With the appropriate change of the dependent variable, this equation
can be written in a rational form or in a non transcendent form.

• Rational form:
It can be achieved by making a change of the dependent variable in
the form f1 = 2p arctan(h), where p is a non null integer number. For
each different value of p, a different ordinary differential equation for
h is obtained. In the following, we consider the cases corresponding
to p = 1, 2, 3. For any positive integer p, the corresponding possible
values of the angle ϕ1 are in the interval (−pπ, pπ).

1. Taking p = 1, the change of the dependent variable is f1 =
2 arctan(h), equation (9) becomes

a1

(
1 + h2

)
h′′ − 2h

(
2h2 + a1

(
h′
)2) = 0 . (10)

We have found several families of solutions of this equation that
determine the following solutions of (9) in terms of the Jacobi
elliptic functions [9]:

f1 = ±2 arctan

(√
−1−m

2
sn

(
2

m− 1

√
m+1
a1

(x+ c1), m
))

,

f1 = ±2 arctan

(√
−1−m

2m
sn−1

(
2

m−1

√
m+1
a1

(x+ c1), m
))

,

f1 = ±2 arctan

(√
1−2m

2(m− 1)
cn

(
2
√

1− 2m
a1

(x+ c1), m
))

,

f1 = ±2 arctan

(√
2−m

2(m− 1)
dn

(
2
√
m− 2

m
√
a1

(x+ c1), m
))

,

f1 = ±2 arctan

(√
m− 2

2
dn−1

(
2
√
m− 2

m
√
a1

(x+c1), m
))

,

f1 = ±2 arctan

(√
m− 1

2
sd

(
2
√

1− 2m
a1

(x+ c1), m
))

. (11)
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All the functions appearing in these solutions are bounded.
As an example, we represent in Fig. 1 the profile and the graphic
of the first traveling wave solution in (11), for the parameters
a1 = −1, m = c1 = 0.
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Fig. 1. Representation of the profile and the graphic of the first solution in (11)
that corresponds to m = 0, c1 = 0 and a1 = −1. The ranges of the dependent
variables are x = z + 2t ∈ [−5, 5] (left), z ∈ [−5, 5] and t ∈ [−5, 4] (right).

2. Taking p = 2, the change of the dependent variable is f1 =
4 arctan(h), equation (9) becomes

a1h
′′ (1 + h2

)3−2a1h
(
h′
)2 (1 + h2

)2+16h3
(
−1 + h2

)
= 0 . (12)

This equation admits a family of solutions that is implicitly given
by

x+ c2 = ±
h∫

ξ2 + 1√
8
a1
ξ4 + c1 (1 + ξ2)4

dξ , (13)

where c1 and c2 are arbitrary constants.
The existence domains of the functions h, implicitly determined
by equation (13), are given by the convergence of the integral in
the right-hand side of (13). A solution with domain (−∞,∞)
requires the divergence of the integral. For c1 6= 0 the integrals
are convergent, as improper integrals, at ±∞. If the radicand
have only complex roots, the solution h is defined in a bounded
interval. If the radicand have only simple real roots ai, it changes
the sign at ai and the integrand behaves as (ξ − ai)−1/2 when
ξ → a+

i ; in this case the improper integral is convergent and
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the solution is only defined in a finite interval. Therefore, to
obtain solutions defined for all x, the radicand must have real
roots of multiplicity greater or equal than 2; this happens when
the radicand and its derivative have common roots. Two cases
appear:
A. When c1 = 0, the right member of (13) is an improper inte-

gral at h = 0 and h = +∞. In this case it is easy to calculate
the integral and we get the solution

f1 = ±4 arctan

(√
2(x+ c2)±

√
a1 + 2(x+ c2)2√
a1

)
. (14)

In Fig. 2 we show the profile and the graphic of the kink soli-
ton solution corresponding to λ=−4, a1 =1 and c2 =0, i.e.

f1 = 4arctan

(√
2(z − 4t)−

√
1 + 2(z − 4t)2

A

)
. (15)
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Fig. 2. Representation of the profile and the graphic of the solution (15), λ = −4,
a1 = 1 and c2 = 0, x = z − 4t ∈ [−50, 50], z ∈ [−50, 50] and t ∈ [−5, 5].

B. When c1 = − 1
2a1

the radicand in (13) has the double roots
ξ = −1 and ξ = +1. The corresponding integral is divergent
at ξ = ±1 and it is convergent at ξ = ±∞. The branch
that corresponds to the interval (−1, 1) is defined for x ∈ R.
Therefore, the solution f1 of (9) determined by h is implicitly
given by the equation

x+ c2 = ± 1√
−2a1

tan(f1/4)∫
0

ξ2 + 1√
ξ8 + 6ξ4 + 1

dξ , (16)
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where a1 < 0 and c2 are arbitrary constants. The class of
solutions given by (16) corresponds to a kink soliton solution
of (9). In Fig. 3 we exhibit the profile of one of these solutions.
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Fig. 3. Representation of the profile h of the solution f1 that corresponds to (16),
c2 = 0, a1 = −1/2, x ∈ [−5, 5], f1 ∈ (−π, π).

3. Finally, taking p = 3, the change of the dependent variable is
f1 = 6arctan(h), equation (9) becomes

−4h3
(
h2− 3

)3 (
3h2− 1

)
+ 3a1

(
h2+ 1

)4 (
h′′(h2+ 1)− 2hh′2

)
= 0 .

(17)
This equation admits solutions that can be given implicitly by

x+ c2 =±
h∫

−3a1(ξ2 + 1)2√
−2a1(2ξ6−3ξ4+12ξ2+1)(3ξ2−1)2 + 9c1 a2

1(1+ξ2)6
dξ .

(18)

This case is similar to the former one. The radicand has double
roots when c1 = 0 and c1 = 2/(9a1). For c1 = 0 the double roots
are ξ = ±1/

√
3; in this case there is a solution that is defined

for x ∈ R. When c1 = 2/(9a1) the double roots are ξ = 0 and
ξ = ±

√
3; in this case there are two solutions that are defined for

x ∈ R; these solutions correspond to the intervals (−
√

3, 0) and
(0,
√

3).

• Non transcendent form:

The change of the dependent variable f1 = (2p + 1) arctan(h), where
p is an integer number, allows us to write equation (9) in a non tran-
scendent form.
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1. By setting f1 = arctan(h), equation (9) becomes

2h
(
1+h2

)2−√1+h2
(
2h
(
1+h2

)
+ a1

((
1+h2

)
h′′−2hh′2

))
=0 .
(19)

This equation admits solutions implicitly given by

x+ c2 =±
h∫ √

a1

(1 + ξ2)
(
c1a1 (ξ2 + 1)− 4

√
1 + ξ2 + 2

) dξ .

(20)
The radicand in (20) has real roots if, and only if, c1a1 ≤ 2. For
c1a1 < 2 these roots are simple and the integral is convergent at
these points. If c1a1 = 2 the radicand has a double root at ξ = 0,
but the integral is divergent at ξ = 0. There are no solutions of
this class that are defined for x ∈ R.

2. With the change f1 = 3arctan(h), equation (9) becomes

2h
(
1 + h2

)3 (
h2 − 3

)
+
√

1 + h2
(
2h
(
3− 7h2 − 7h4 + 3h6

)
+3a1

(
1 + h2

)2 ((1 + h2)h′′ − 2hh′2
) )

= 0 . (21)

This equation has solutions implicitly given by

x+c2 = ±3

h∫ √√√√ a1 (ξ2 + 1)

9c1a1 (1+ ξ2)3+2 (3ξ2−1)
(
3ξ2−1 + 2 (1+ξ2)3/2

) dξ .

(22)

3.2. Non traveling wave solutions

When β = γ, the symmetry algebra of (1) is three-dimensional. The
use of the symmetry v3 leads to search similarity solutions of the form fj =
gj(w), where the similarity variable is w = z2 − β

α t
2. The reduced system is

4βα(wg′′1 + g′1) + δ(−2 sin(g1) + sin(g1 + g2)) = 0 ,
4βα(wg′′2 + g′2) + δ(−2 sin(g2) + sin(g1 + g2)) = 0 . (23)

By grouping the constants, this system can be written in the form

a1(wg′′1 + g′1)− 2 sin(g1) + sin(g1 + g2) = 0 ,
a1(wg′′2 + g′2)− 2 sin(g2) + sin(g1 + g2) = 0 . (24)
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We are able to find solutions of system (24) such that g2 = −g1 + 2kπ,
with k ∈ Z. By setting w = x

a1
, the resulting equation can be converted

into an equation of the form

xg′′ + g′ − 2 sin(g) = 0 . (25)

Now we analyze the qualitative behavior of the solutions of the initial
value problem  xg′′ + g′ = 2 sin(g) ,

g(x0) = a0 ,
g′(x0) = b0 ,

(26)

with x0 > 0 and different values of a0 and b0. It is obvious that if g is a
solution of (25) then −g and g + 2kπ are also solutions of equation (25),
for any k ∈ Z. Also, the constant functions g ≡ kπ, k ∈ Z, are solutions
of (25). These facts allow us to reduce the study of the problem (26) to the
cases a0 ∈ [0, 2π) and b0 arbitrary. A more detailed analysis reveals that it
is sufficient to consider only the cases a0 ∈ [0, 2π) and b0 > 0.

A complete study of the solutions of (25) is rather involved and it is not
easy to obtain the classification of all the solutions of (26). Fig. 4 shows
the graphic representation of the solutions of (26) corresponding to x0 = 1,
a0 = 0 and five different values of b0. All the solutions we have shown are
such that limx→∞ g(x) = (2k + 1)π, for some k ∈ Z, and limx→∞ g

′(x) = 0.
There are numerical evidences that all the solutions of (26) verify these two
properties, although an analytical proof of this fact seems to be very difficult.
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7π
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Fig. 4. Graphic representation of five solutions of (26) corresponding to x0 = 1,
a0 = 0 and b0 = π, 1.5π, 2π, 2.5π, 3π (from bottom to top).

Now, we demonstrate that the solutions g(x) = (2k + 1)π, k ∈ Z are
stable and the solutions g(x) ≡ 2kπ, k ∈ Z are unstable.
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Suppose that g is a solution of (25). After the multiplication by g′(x),
equation (25) can be written in the form

d

dx

(
1
2x(g

′(x))2 + 2 cos g(x)
)

+ 1
2(g′(x))2 = 0 . (27)

This implies that d
dx

(
1
2x(g

′(x))2 + 2 cos g(x)
)
≤ 0, then h(x) defined by

h(x) = 1
2x(g

′(x))2 + 2 cos g(x) is a decreasing function. Therefore,

0 ≤ 1
2

x∫
x0

g′(s)2ds = h(x0)− h(x) , (x ≥ x0) . (28)

Since h(x) ≥ −2, (28) shows that
∫∞
x0
g′(s)2ds < +∞. Inequality (28)

allows us to obtain several bounds for g′(x) because

1
2x(g

′(x))2 ≤ 1
2z(g

′(z))2 + 2 cos g(z)− 2 cos g(x) , (x > z ≥ x0) (29)

and
|g′(x)|2 = (g′(x))2 ≤ 1

x

(
zg′(z)2 + 8

)
. (30)

Therefore,

−
√
zg′(z)2 + 8√

x
≤ g′(x) ≤

√
zg′(z)2 + 8√

x
, (x ≥ z ≥ x0) . (31)

Integrating with respect to x we obtain the following bounds for g(x)

−2
√
zg′(z)2 + 8(

√
x−
√
x0) ≤ g(x)− g(x0) ≤ 2

√
zg′(z)2 + 8(

√
x−
√
x0) .
(32)

Equation (25) and inequality (31) allow us to write a bound for g′′(x)

|g′′(x)| ≤ 2
x

+

√
zg′(z)2 + 8
x
√
x

, (x ≥ z ≥ x0) . (33)

Inequalities (31) and (33) show that both g′(x) and g′′(x) tend to 0 as
x tends to ∞. Notice that equation (25) can also be written as (xg′(x))′ =
2 sin g(x). If a0 ∈ [x0, π) and b0 > 0, g(x) ∈ (0, π) for x− x0 small enough.
Let us suppose that g(x) ∈ (0, π) for x > x0; then xg′(x) − x0g

′(x0) =
2
∫ x
x0

sin g(s)ds > 0, g′(x) > x0g
′(x0) 1

x and, therefore, g(x) > g(x0) +
x0g
′(x0) ln x

x0
for x > x0. This contradiction implies that there exists some

x1 > 0 such that g(x1) = π. This implies that g(x) attains the value π and
that the constant solution g ≡ 0 cannot be stable.
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The solution g verifies g(x1) = π and g′(x1) = b1 > 0. If b1 is large
enough it can be proved that g(x) attains the value 2π. Let us analyze
the case 1

2x1g
′(x1)2 − 2 = 1

2x1g
′(x1)2 + 2 cos g(x1) < 0 (this happens if

1
2x0β

2 + 2 cosα < 0). Then, since h(x) is a decreasing function,

0 ≤ 1
2x(g

′(x))2 < −2 cos g(x) , (x ≥ x1) . (34)

This proves that if g(x1) = π and g′(x1)2 is small enough (i.e. verifies
1
2x1g

′(x1)2 < 2), then g(x) ∈ (π2 ,
3π
2 ) for x ≥ x0. Now we prove that

g(x) → π as x → ∞. Since b1 > 0, there exists a value z0 > x1, with
g′(z0) = b2 > 0, such that c0 = sin g(z0) < 0. It is not difficult to prove that
sin g(x) > c0 for some x > z0. If sin g(x) ≤ δ < 0 for x > z0 then

xg′(x)− z0g′(z0) = 2

x∫
z0

sin g(t)dt ≤ 2δ(x− z0) . (35)

By considering z0, instead of z, in inequality (31), we also have

−
√
z0g′(z0)2 + 8

√
x− z0b2 ≤ xg′(x)− z0g′(z0) ≤ 2c0(x− z0) , (x > z0) .

(36)
This implies that 2(−c0)(x−z0) <

√
z0g′(z0)2+8

√
x + z0g

′(z0) for x ≥ z0.
This is impossible because −c0 > 0. Therefore, there exists a value z′1 > z0
such that sin g(z′1) > sin g(z0). Bolzano’s theorem implies that sin g(z1) =
sin g(z0) for some z1 ∈ [z0, z′1]. By the mean value theorem 0 = g(z1) −
g(z0) = cos g(ξ)g′(ξ)(z1 − z0) < 0, for some ξ ∈ (z0, z1) ⊂ (π2 ,

3π
2 ). Since

cos g(ξ) does not vanish because g(x) ∈ (π2 ,
3π
2 ), necessarily g′(ξ) = 0. We

denote by ξ1 the smallest point ξ1 > x0 such that g′(ξ1) = 0. At this point
we have ξ1g′′(ξ1) + g′(ξ1) = 2 sin g(ξ1) ≤ 0. Therefore, g′′(ξ1) < 0 and there
exists some ξ2 > ξ1 such that g(ξ2) > π, sin g(ξ2) < 0, and g′(ξ2) < 0. If
sin g(x) < 0 for x > ξ2 then, as before, xg′(x)−ξ2g′(ξ2) = 2

∫ x
ξ2

sin g(η)dη < 0
and g′(x) < s1g

′(ξ2) 1
x . This implies that

g(x)− g(ξ2) < ξ2g
′(ξ2)[lnx− ln ξ2] . (37)

Since g′(ξ2) < 0, the right member of (37) tends to −∞ as x → ∞. This
cannot happen because g(x) ∈ (π2 ,

3π
2 ) for x ≥ x0. Consequently, there exists

some x′1 > x0 such that sin g(x′1) = 0; i.e. g(x′1) = π. We denote by x1

the smallest value x1 > ξ1 such that g(x1) = π. For this value g′(x1) < 0
and, since x1g

′′(x1) + g′(x1) = 2 sin g(x1) = 0, g′′(x1) > 0. By following
in this way, we could find an unbounded sequence of points {xn} such that
g(xn) = π for n ∈ N and, by (30), g′(xn) → 0 as n → ∞. Therefore, this
solution oscillates around π with oscillations whose amplitudes tends to 0.
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As we have mentioned above, if g′(x1) is large enough the values of g(x)
may leave the interval [0, 2π) and there is a point z1 such that g(z1) = 2π.
The study of this solution can be reduced to the former case by considering
the solution g1(x) = g(x) − 2π which verifies g1(z1) = 0 and g′1(z1) > 0.
Numerical evidence shows that any solution of (28) is bounded and that
g(x)→ (2k + 1)π for some k ∈ Z.

Fig. 5 shows a graphic representation of the particular solution g1 of (23)
that corresponds to the case β

α = −2 with a0 = π
2 , b0 = 1/10 in (26).
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Fig. 5. Graphic representation of a solution g1 corresponding to β
α = −2 in equa-

tion (23).

We can also find solutions of (24) with g2 = g1 + 2kπ. The resulting
equation can be written as

a1(wgww + gw)− 2 sin(g) + sin(2g) = 0 . (38)

This equation can also be written as a1(wg′)′ − 2 sin(g) + sin(2g) = 0 and
admits the constant solutions g(x) = kπ, k ∈ Z. This equation admits
solutions whose qualitative behavior are similar to the solutions of (25).

4. Conclusions

We have considered the Yakushevich model of DNA torsion dynamics.
The classical symmetries of the corresponding system of equations have been
obtained imposing the invariance conditions. The procedure led to a com-
plicated system of equations for obtaining the corresponding Lie groups of
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transformations. Depending of the values of the parameters either a 2-pa-
rameter Lie group or a 3-parameter Lie group appear. Although the model
does not have enough symmetries as to reduce the equations to ordinary
differential equations, we have used existing symmetries to obtain several
classes of solutions by imposing adequate Ansätze. Some classes of solutions
we have obtained are traveling wave solutions, of the type kink soliton solu-
tions, and other ones are non traveling wave solutions. The study must be
continued introducing real parameter values and investigating which solu-
tions can be really interpreted as describing observed phenomena in DNA.
But even for the cases where the parameter values are not applicable to
DNA, it is possible that they could be significant for the description of some
other systems.
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