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This paper discusses the stability to linearized radial perturbations of
spherically symmetric thin-shell wormholes with a “phantom-like” equation
of state for the exotic matter at the throat: P = wo, w < 0, where o is
the energy-density of the shell and P the lateral pressure. This equation
is analogous to the generalized Chaplygin-gas equation of state used by
E.F. Eiroa. The analysis, which differs from Eiroa’s in its basic approach,
is carried out for wormholes constructed from the following spacetimes:
Schwarzschild, de Sitter and anti de Sitter, Reissner—Nordstréom, and reg-
ular charged black-hole spacetimes, followed by black holes in dilaton and
generalized dilaton-axion gravity.

PACS numbers: 04.20.Jb, 04.20.Gz

1. Introduction

A powerful theoretical method for describing or mathematically con-
structing a class of spherically symmetric wormholes from black-hole space-
times was proposed by Visser in 1989 [1]. This type of wormhole, constructed
by the so-called cut-and-paste technique, is commonly known as a thin-shell
wormhole, since the construction calls for grafting two black-hole spacetimes
together. The junction surface is a three-dimensional thin shell. The cut-
and-paste technique is now considered standard.

While there had already been a number of forerunners, the concept of
a traversable wormhole was proposed by Morris and Thorne in 1988 [2].
Ten years later a renewed interest was sparked by the discovery that our
Universe is undergoing an accelerated expansion [3,4]: @ > 0 in the Fried-
mann equation d/a = —(4m)/3(p + 3p). (Our units are taken to be those
in which G = ¢ = 1.) The acceleration is caused by a negative pressure
dark energy with equation of state (EoS) p = wp, w < —1/3, and p > 0.

(2017)
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A value of w < —1/3 is required for an accelerated expansion, while w = —1
corresponds to a cosmological constant [5]. The case w < —1 is referred
to as phantom energy and leads to a violation of the null energy condition,
a primary prerequisite for the existence of wormholes. Wormholes may also
be supported by a generalized Chaplygin gas [6] whose EoS is p = —A/p?,
where A >0 and 0 < o < 1.

In a thin-shell wormhole the exotic matter is confined to the thin shell.
This suggests assigning an equation of state to the exotic matter on the shell.
Eiroa [7]| used the above generalized Chaplygin EoS P = A/|c|%, where o
is the (negative) energy-density of the shell and P the lateral pressure, to
perform a stability analysis for linearized radial perturbations. In this paper
we will consider, analogously, the EoS P = wo, w < 0, which will be called
a phantom-like equation of state. The stability analysis will be carried out
for several spacetimes: Schwarzschild, de Sitter and anti de Sitter, Reissner—
Nordstrom, and regular charged black hole spacetimes, as well as black holes
in dilaton and generalized dilaton-axion gravity. The phantom-like equation
of state yields explicit closed-form expressions for . Our approach to the
stability analysis is therefore different from Eiroa’s.

2. Thin-shell wormhole construction

Our starting point is the spherically symmetric metric |7]
ds* = —f(r)dt* + [f(r)]"'dr® + h(r) (d6° + sin® 0d¢?) | (1)

where f(r) and h(r) are positive functions of r and h(r) is increasing.
(In Sections 3-6, h(r) = r2.) As in Ref. [8], the construction begins with
two copies of a black-hole spacetime and removing from each the four-
dimensional region

0 ={r<ala>m}, (2)

where r = ry, is the (outer) event horizon of the black hole. Now identify
(in the sense of topology) the time-like hypersurfaces

oNF ={r=ala>nm}.

The resulting manifold is geodesically complete and possesses two asymp-
totically flat regions connected by a throat. Next, we use the Lanczos equa-
tions [1,7-15]

. 1 . ,

S = g ([K] = 95[K]) (3)
where [K;;] = K:]r — K; and [K] is the trace of Kij. In terms of the surface
energy-density o and the surface pressure P, Sij = diag(—o,P,P). The
Lanczos equations now yield
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1
- Ke} 4
o= -1 K (4)
and )
= — (IK7]+ [K%)) -
P = o (1K) + (K] (5)
A dynamic analysis can be obtained by letting the radius » = a be

a function of time [8]. As a result,

1 -
o= —5 V@) (6)

and ,

1 1 2a+

p_ 1y, L2+ i)

2 81/ f(a) + a2
Since ¢ is negative on the shell, we are dealing with exotic matter. In
fact, the weak energy condition (WEC) is trivially satisfied since the radial
pressure p is zero for a thin shell. (The WEC requires the stress-energy tensor
T3 to obey Tigu® w? > 0 for all time-like vectors and, by continuity, all null
vectors.) So for the radial outgoing null vector (1, 1,0,0), we therefore have
Topp®uP? =p+p=0+0<0.

(7)

3. Schwarzschild wormholes

For our first case, the Schwarzschild spacetime, h(r) = 72 in line ele-
ment (1), as noted earlier. Also, recall that the radius r = a is a function of
time. It is easy to check that P and o obey the conservation equation

d d
. (ca®) + Pa(cﬂ) =0.
(In Egs. (6) and (7), the over dot denotes the derivative with respect to 7.)
The equation can be written in the form

do 2

—+—(c+P)=0. 8

“ 4 26+P) ®
For a static configuration of radius ag, we have ¢ = 0 and & = 0. More-

over, we will consider linearized fluctuations around a static solution char-

acterized by the constants ag, og, and Py. Given the EoS P = wo, Eq. (8)

can be solved by separation of variables to yield

ag\ 2(w+1)
o(@)] = ool (),
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where 09 = o(ap). So the solution is

a0>2(w+1)

o(a) = o0 (2 . oo =0(ag). (9)

Next, we rearrange Eq. (6) to obtain the equation of motion
a?+V(a)=0.
Here the potential V' (a) is defined as
V(a) = f(a) - 2rac(a)]? . (10)
Expanding V' (a) around ag, we obtain
V(a) = V(ao)+V"(ao)(a—ao)+35 V" (a0)(a—ao)*+0 [(a—ao)’] . (11)

Since we are linearizing around a = ag, we require that V(ap) = 0 and
V’(ap) = 0. The configuration is in stable equilibrium if V" (ag) > 0.

Now recall that for the Schwarzschild spacetime, f(r) =1 —2M/r. It
follows that

2M 2M 4-+4
V(a) =1 - "— —4r%a®0® = 1 — “— — 4n%a®0} (@> ?
a a a
from Eq. (9). From Eq. (6) with a =0,

1 2M
27ra0 ap

og = —

so that

2M < QM) ad T 12)

Vig)=1- " - T

a ag

The first requirement, V' (ag) = 0, is clearly met, but not the second. (If the
exotic matter on the shell were not required to meet the extra condition in
the form of an EoS, then V’/(ag) would indeed be zero [8].) From

Viag) = —5 — (1 - > adt™ (=2 — dw)ay P =0

we obtain the condition

. lao/M—l
- 2a9/M -2
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Observe that as ag — 400, w — —1/2—, and as a9y — 2M+, w — —o0.
At ap = 3M, w = —1. Substituting in

AM (1 2M

> a2t (2 + 4w) (3 + dw)a M
ao

and simplifying, we obtain the intermediate result

" 2 2 1 ag/M —4
_c(_ , 14
v (CLO) a% ao/M + CL(]/M CLQ/M -2 >0 ( )

Since the Schwarzschild black hole has an event horizon at r = 2M,
ap/M —2 > 0, and we conclude that the inequality V"(ap) > 0 can only
be satisfied if

ag < 0.

As a result, there are no stable solutions.

To allow a comparison to some of the other cases, let us choose (arbi-
trarily) ag/M = 5, as a result of which w = —2/3, and plot V(a) against
a/M, as shown in Fig. 1.

0.001 T T T T T

0.0005 -

-0.0005 -

-0.001 L

a/M

Fig. 1. The wormhole is unstable.

The more general analysis in Ref. [8] depends on the parameter 3%(c) =
OP/Jo, where (3 is usually interpreted as the speed of sound, so that 0 <
(% < 1. There are no stable solutions in this range. However, as discussed
in Ref. [8], since we are dealing with exotic matter, this assumption may
be questioned, that is, 3° may be just a convenient parameter. In that
case, some stable configurations may not be out of question. Our additional
assumption, the EoS P = wo on the shell, eliminates this possibility.
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4. Wormbholes with a cosmological constant

4.1. Schwarzschild—de Sitter spacetimes

In the presence of a cosmological constant, f(r) = 1—(2M)/r—(1/3)Ar?.
For the de Sitter case, A > 0. To keep f(r) from becoming negative, we must
have AM? < 1/9. This condition results in two event horizons, where the
inner horizon is between 2M and 3M. (See Ref. [7] for details.) We therefore
assume that a is greater than the outer horizon. Proceeding as in Sec. 3,

eM 1, OM 1 5\ sagy2H+iw

Observe that V' (ap) = 0. As before, we have to determine the condition on
w so that V'(ag) = 0:
_ 1 1-1/(ao/M) — (2/3)AM?(ao/M)?
2 1-2/(ag/M) — (1/3)AM?(ao/M)?

(16)

(As in the Schwarzschild case, as ag — 400, w — —1/2—, and w — —o0 as ay
approaches the outer event horizon.) Substituting in V" (ag) and simplifying,
we get

2 —1/(ao/M) + 3AM?(ag/M) — (2/3) AM?(ao/M)*

Vi) = 2 1= 2/(ag/M) — (1/3)AM?(ag/M)? > 0. (17)

The form of V”(ag) forces us to consider two cases, a positive and negative
denominator.
If the denominator is positive, then

1
(a0/M)[3(ao/M) — (2/3)(ao/M)?]

This inequality implies that ag/M < 4.5 to keep the right side positive. It is
easy to show analytically that AM? > 1/9; in fact, (3, 1/9) is a minimum.
We may also plot AM? against a/M, as shown in Fig. 2. So for this case,
the condition V" (ap) > 0 cannot be met (since we must have AM? < 1/9),
and we get only unstable solutions. Plotting V' (a) around ag/M =5 yields
a graph that is very similar to the graph in Fig. 1.

For the second case,

AM? > (18)

I- o~ 5AM (M) <0 (19)

in inequality (17) we obtain

I EO R 10 e O
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Fig.2. K = AM? is plotted against a/M.

If ag/M > 4.5, then the left side is negative, and the condition is auto-
matically satisfied. If ag/M < 4.5, then, according to Fig. 2, AM? < 1/9,
the region below the graph. So we conclude that in the second case, the
wormholes are stable.

For comparison, let us choose ag/M = 5 again and AM? = 0.11 < 1/9,
resulting in w = —1.63. The plot of V(a) against a/M is shown in Fig. 3.

Fig. 3. The wormhole is stable.
In summary, in the Schwarzschild—de Sitter case, the thin-shell worm-
holes are stable if, and only if,

2 1 ap 2
1— S AM? <7) 0.
a()/M 3 M <
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4.2. Schwarzschild—anti de Sitter spacetimes

To study the case A < 0, we return to inequality (17) and consider first
a negative denominator

2 1 ap 2
— — —AM* (= .
a/M 3 (M> <0
Solving for AM?, we obtain
g2 o 3= 6/(ao/M)

(a0/M)?

Since ag/M > 2, we conclude that AM? > 0, so that this case cannot arise.
Reversing the sense of the inequality, we have from inequality (17)

2 rap\2 1
am? (3 (3) =2 (39) | > =7
[ M) T 3\M) |7 e
Then the second factor on the left must be negative, which implies that

ag /M > 4.5.
So the wormbhole is stable whenever

1

2
W) AN < A Blao/ M) = (2/3)(ag /M)

and
(2) ag/M >4.5.

5. Reissner—Nordstrom wormbholes

If the starting point is a Reissner—Nordstrém spacetime, then

fr)=1- =545 (21)

where M and @ are the mass and charge, respectively, of the black hole. For
0 < |Q| < M, this black hole has two event horizons at r = M ++/M? — Q2.
As usual, we require that r = a is larger than the outer horizon.

Here we have

7 oM Q? 2M Q% sag\2+iw
V(a)—l—a+02—<1—%+a(2) (;) . (22)
Once again, V(ag) = 0. From V'(ag) = 0 we obtain
1 M)? —ag/M
w=—= (ZO/ )"~ a0/ s (23)
2 (ao/M)* —2(ao/M) + Q*/M
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Substituting into V" (ag) and simplifying, yields the following inequality

Vi(ag) = 2 Z00/M = (Q2/M2)[1/ (ao/M) +2Q% /M2
a2 (ao/M)? = 2(ag/M) + Q*/M?

> 0. (24)

Since ag/M > 2, the denominator is positive. Solving for Q?/M?, leads to

@ > ao/M

M 2(ag/M) — 1~ (25)

which exceeds unity. To meet this condition, |Q| would have to exceed M.

So to obtain a stable solution, we will have to tolerate a naked singularity
at r = 0, but since ag > 0, the naked singularity is removed from the
wormbhole spacetime.

6. Wormbholes from regular charged black holes

Thin-shell wormholes from regular charged black holes, due to Ayon-
Beato and Garcia [16], are discussed in Ref. [17]. For this black hole
2M  2M Q>
=1—-— — + — tanh .
/() T * roon (QM 1">

(26)

Again, M and () are the mass and charge, respectively. It is shown in
Ref. [16] that the black hole has two event horizons whenever |Q] < 1.05 M.
Consider next

a a 2Ma
2M  2M Q? ap\ 2+4w
e P 40 27
[ ap + ag (QMG()):| (a) (27)
As before, V(ag) = 0, and from V' (ag) = 0, we get
1 9(ao)
- | 2
YT [ +ag/M—2+2tanh[Q2/(2Mao)J ’ (28)

where

_ Q? Q*/M? o Q7
g(ap) = —1 + tanh <2Ma0) + 2ag/ M sech <2Ma0) .

Based on the graphical output, we get only unstable solutions. For ex-
ample, choosing ag/M = 5 again for comparison and letting |Q|/M = 0.9,
we get w = —0.63. The resulting graph, shown in Fig. 4, resembles Fig. 1.
Other choices of the parameters lead to similar results.
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Fig. 4. The wormhole is unstable.

7. Wormbholes from black holes in dilaton
and dilaton-axion gravity

Of the remaining thin-shell wormholes, based on dilaton and dilaton-
axion black holes, respectively, we will consider in detail only the latter,
which is the more complicated of the two.

The dilaton-axion black-hole solution, inspired by low-energy string the-
ory, was discovered by Sur, et al., [18] and is also discussed in Ref. [19].
We need to list certain parameters in order to define V(a). As in the
Reissner—Nordstrom wormhole, there are two event horizons, denoted by
r_ and 74, respectively. Returning now to line element (1), we can list both

f(r) and h(r) [18]

__r=r)r—ry)
N e S
(r +10)*"
- (T‘ _ r0)2n72 ’
Since h(r) is no longer equal to 72 in line element (1), Eq. (6) becomes
1 h'(a)

o=—1 na) f(a) +a? (29)

and the conservation equation (8) has to be replaced by [7]

o)+ PR~ (@) = 2m(@ (@} DL )

dr dr 2h(a) ’

where A = 4rh(a) is the area of the throat by Eq. (1). The prime and dot
denote, respectively, the derivatives with respect to a and 7. Substituting
Eq. (29) on the right-hand side, we get
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%[47rh(a)a] + P%[Mh(a)] - {wr- 2h(a>h"(“)}2ﬁ7{§; ’
whence
d%[ah(a)] 4 Pd%[h(a)] — ~{W@p - 2’1(‘1)’1"(@)}2;(@)
Our final form is
A(a)o’ + ' (a)(o + P) + { [I' ()] = 2h(a)h" (a) } thf(a) SNCD

Making use of P = wo, this equation can be solved by separation of variables

@ =ou |35 o ko - %)

(Here we used the fact that h'(a) > 0.) It is shown in Ref. [17] that

_Alao + (1 = 2n)ro] (ap — r—)(ao — r+)
0 D(ao = ro)(ao + 7o) ’ )

where
D = 8n(ag — o) ™" (a0 + ro)™\/(ao — r_)(ap — 1) . (34)
Using the equation of motion @24V (a) = 0 once again, we get from Eq. (29),
h(a) ?
V(a) = f(a) — {th’(a) U(a)] . (35)

Eq. (32) now yields

 (a—r)a-ry) ha) 12 [hlag) >+
V(a)_(@—7"0)2_2"(@+7"0)2"_[Mh’(ao)ao} [h/(a)] - (30

While it is easy enough to check that V(ag) = 0, it is no longer convenient
to compute w as a function of the various parameters. Plotting V'(a) against
a instead of a/M, we can determine w by trial and error: V(a) must be tan-
gent to the a-axis at a = ag, where V(ag) = 0 automatically. For example,
ifag =5, 179 =1, r— =2, r =2.05, and n = 0.8, then w = —0.915. If
ap=95,ro=1,r_=2,ry =3, and n = 0.8, then w = —1.132. Reducing n
to 0.6 produces w = —0.84 in the first case and w = —1.041 in the second.
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In all cases the graphs are concave down at ap = 5 and look similar to the
graph in Fig. 1. Based on the graphical output, there do not appear to be
any stable solutions.

For the dilaton case we have [20]

V(a) = <1—‘2> <1—Jj>(1_bg)/(l+b2)— [47? £'<(Z))Uor m&qu . (37)

where h(a) = a2(1 — B/a)2"/(Hb%) for various constants. Once again, one
can readily check that V' (ag) = 0.

As in the dilaton-axion case, w can be found by trial and error. For
example, if ag =5, b = 0.5, A =2, and B = 1, then w = —0.693; if a9 = 6,
b=0.8, A=4, and B = 2, then w = —0.94, etc. The resulting graphs are
similar to those in the dilaton-axion case.

8. Conclusion

This paper discusses the stability to linearized radial perturbations of
spherically symmetric thin-shell wormholes with the equation of state P =
wo, w < 0, for the exotic matter at the throat. This EoS is referred to as
phantom-like. Various spacetimes were considered.

It was found that the wormholes are unstable if constructed from Schwarz-
schild spacetimes, as well as from black holes in dilaton and dilaton-axion
gravity. For the Reissner—Nordstrom case, stable solutions exist only if

@ > ao/M
M = \/2(ag/M) -1’

leading to a naked singularity. For the Schwarzschild—de Sitter case, the
wormholes are stable if, and only if

1= aO?M N %AMQ <X70>2 <0.

In the Schwarzschild—anti de Sitter case, the configurations are stable when-
ever

1
(ao/M)[3(ao/M) — (2/3)(a0/M)?]

(1)  AM? <

and
(2) ap/M > 4.5.
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