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General Relativity receives quantum corrections relevant at macroscopic dis-

tance scales and near event horizons. These arise from the conformal scalar
degrees of freedom in the extended effective field theory of gravity generated by
the trace anomaly of massless quantum fields in curved space. The origin of these
conformal scalar degrees of freedom as massless poles in two-particle intermediate
states of anomalous amplitudes in flat space is exposed. These are non-local quan-
tum pair correlated states, not present in the classical theory. At event horizons
the conformal anomaly scalar degrees of freedom can have macroscopically large
effects on the geometry, potentially removing the classical event horizon of black
hole and cosmological spacetimes, replacing them with a quantum boundary layer
where the effective value of the gravitational vacuum energy density can change.
In the effective theory, the cosmological term becomes a dynamical condensate,
whose value depends upon boundary conditions near the horizon. In the confor-
mal phase where the anomaly induced fluctuations dominate, and the condensate
dissolves, the effective cosmological “constant” is a running coupling which has
an infrared stable fixed point at zero. By taking a positive value in the interior
of a fully collapsed star, the effective cosmological term removes any singular-
ity, replacing it with a smooth dark energy interior. The resulting gravitational
condensate star configuration resolves all black hole paradoxes, and provides a
testable alternative to black holes as the final state of complete gravitational col-
lapse. The observed dark energy of our universe likewise may be a macroscopic
finite size effect whose value depends not on microphysics but on the cosmologi-
cal horizon scale. The physical arguments and detailed calculations involving the
trace anomaly effective action, auxiliary scalar fields and stress tensor in various
situations and backgrounds supporting this hypothesis are reviewed. Originally
delivered as a series of lectures at the Kraków School, the paper is pedagogical
in style, and wide ranging in scope, collecting and presenting a broad spectrum
of results on black holes, the trace anomaly, and quantum effects in cosmology.
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1. Introduction: gravitation and quantum theory

Although it has been clear for nearly a century that quantum principles
govern the microscopic domain of atomic, nuclear and particle physics, and
certainly the Standard Model of Strong and Electroweak interactions is a
fully quantum theory of matter, gravitational phenomena are still treated as
completely classical in Einstein’s General Relativity. Perhaps just as signif-
icant as this formal gap between gravitation and quantum principles, most
of our intuitions about gravity remain essentially classical, particularly in
the macroscopic domain. Although it is generally agreed that at the funda-
mental microscopic Planck scale, a theory of gravitational interactions must
come to terms with the quantum aspects of matter and even of spacetime
itself, it is usually assumed that quantum effects are negligible on the scale
of macroscopic phenomena, at astrophysical or cosmological distance scales,
where classical General Relativity (GR) is presumed to hold full sway.

In non-gravitational physics quantum effects are present on a wide range
of scales in a variety of ways, some of them striking, others more subtle and
less immediately appreciated. Semi-conductors, superfluids, superconduc-
tors and atomic Bose–Einstein condensates are unmistakable macroscopic
manifestations of an underlying quantum world. On astrophysical scales,
the degeneracy pressure of fermions, which at first seemed an esoteric fea-
ture of quantum statistics is now fully accepted as the basis for the stabil-
ity of such macroscopic objects as white dwarfs and neutron stars, both of
which are ubiquitous throughout the Universe. As a posteriori consequences
of quantum statistics one may note the periodic table, the foundations of
chemistry itself and hence of biological processes, which being familiar in
ordinary experience seem far less exotic than neutron stars or superfluidity.
However chemical bonding, the structure and function of hemoglobin and
DNA in the human body, and the overall stability of matter itself at or-
dinary temperatures and densities are every bit a consequence of quantum
principles as a sample of superfluid 4He climbing up the walls of its dewar.

It was not only in the microscopic world of the atom but experiments on
macroscopic matter and the puzzles they generated for classical mechanics,
such as the ultraviolet problem of blackbody radiation and the specific heat
of solids, that led to the development of quantum mechanics [1, 2]. Since
quantum effects play a role in the properties of bulk matter and macroscopic
phenomena in most every other area of physics, there is no reason why
gravity, which couples to the energy content of quantum matter at all scales,
should be immune from quantum effects on macroscopic scales.

If the effects and predictions of a quantum theory of gravity can be
tested only at Planck lengths or energies, the quest for such a theory would
be mostly academic, an exercise better left for future generations possess-
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ing more complete and accurate information about the ultra microscopic
world. Thus the important questions at the outset are: Are quantum effects
anywhere relevant or distinguishable in the macroscopic domain of gravita-
tional phenomena? And if so, can one say anything reliable about macro-
scopic quantum effects in gravity, without necessarily possessing a complete,
fundamental and well tested theory valid down to the microscopic Planck
scale?

There are two problems at the forefront of current research where there
are indications that quantum effects may play a decisive role in gravita-
tional physics at macroscopic distance scales. The first of these is that of
ultimate gravitational collapse, presumed in classical GR to lead a singular-
ity of spacetime called a black hole, which generates a number of theoretical
paradoxes and challenges for quantum theory. The second problem of great
current interest is the apparent existence of cosmological dark energy, which
is causing the expansion of the Universe to accelerate, and which has the
same equation of state p = −ρ as that of the quantum vacuum itself.

Both of these problems are at the intersection of gravitation and quan-
tum theory at macroscopic length scales. In both cases an approximate or
effective theory of quantum effects in gravity far from the Planck scale should
be the appropriate and only framework necessary. In these notes, such an
effective field theory (EFT) framework is developed according to the same
general principles, now widely recognized in other areas of physics. The es-
sential technical tools involve the use of relativistic quantum field theory in
curved spacetime, and the key ingredient of our analysis is the conformal or
trace anomaly of the stress-energy-momentum tensor T ab of massless fields,
a quantum effect with low energy implications.

Within this essentially semi-classical EFT framework, the principal qual-
itative result is that Einstein’s General Relativity can and does receive quan-
tum corrections from the effects of the trace anomaly which are significant
and in certain circumstances may even dominate at macroscopic distance
scales, much larger than the Planck scale. No assumptions about the ex-
treme short distance degrees of freedom or the precise nature of fundamental
interactions at that scale will be used or needed. Instead our analysis will
rely only upon the assumption that the Principle of Equivalence in the form
of coordinate invariance of the effective action of a metric theory of gravity
under smooth coordinate transformations applies in the quantum theory at
sufficiently low energy scales far below the Planck scale. With this mod-
erate theoretical input, and without invoking unknown or esoteric physics
beyond the Standard Model, we shall investigate the macroscopic effects of
the quantum conformal anomaly on gravitational systems at the astrophys-
ical scale of the event horizon of the collapse of massive stars, and on the
very largest Hubble scale of the visible Universe itself.
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2. The challenge of black holes

The first problem in which classical General Relativity is challenged by
quantum theory is in the physics of black holes. Before discussing quan-
tum effects, let us review the standard classical theory of the gravitational
collapse of massive stars.

A normal main sequence star sustains itself by nuclear fusion of hydrogen
into helium. The star itself formed when enough predominantly hydrogen
gas collapsed to a high enough density for nuclear fusion reactions to occur.
The energy generated by the fusion of H into He nuclei generates heat and
pressure which supports the star against further gravitational collapse. A
main sequence star remains in this stable steady state, producing radiant
energy for typically several billions of years, depending upon its mass. Even-
tually, the hydrogen is exhausted, and the star goes through a sequence of
less exothermic nuclear reactions, fusing nuclei of heavier and heavier ele-
ments to extract energy from the difference in rest masses. Since iron is
the most stable nucleus, this process eventually exhausts all the available
sources of nuclear fusion energy. At that point the star can no longer sustain
itself against the force of gravity, and its matter must resume gravitational
collapse upon itself.

Classically, nothing can halt this collapse. However, quantum matter
obeys quantum statistics. Because of Fermi–Dirac statistics, if the mass
of the star is not too great, and it has cooled sufficiently, a new stable
configuration, a white dwarf star held up by its quantum degeneracy pressure
can be formed. In other cases, the collapse of the outer envelope onto the
Fe core produces a violent explosion, a stellar nova or supernova, in which
prodigious amounts of mass and energy are ejected. This leaves behind an
even more compact object in which the electrons and protons are forced
under high pressure to become neutrons. A neutron star, sustained against
further collapse by the quantum degeneracy pressure of neutron matter,
rotating very rapidly at nuclear densities and beaming out radiation guided
by its strong magnetic fields may be observed by astronomers as a pulsar.

If the mass of the stellar remnant core exceeds a certain value, called the
Tolman–Oppenheimer–Volkoff (TOV) limit of 1.5M� to 3.2M� (depending
upon the equation of state of dense nuclear matter, which is not very ac-
curately known), not even the neutron degeneracy pressure is enough to
prevent final and inexorable collapse due to gravity [3]. Since we have no
direct observations of these final stages of complete gravitational collapse,
it is here that the reliance upon Einstein’s theory of General Relativity be-
comes critical, and the discussion takes on a decidedly more mathematical
flavor.
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2.1. Black holes in classical General Relativity

Just a year after the publication of the field equations of General Rela-
tivity (GR), K. Schwarzschild found a simple, static, spherically symmetric
solution of those equations, with the line element [4],

ds2 = −f(r) dτ2 +
dr2

h(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
, (2.1)

where in this case the two functions of r are equal

f(r) = h(r) = 1− 2GM
c2r

. (2.2)

This Schwarzschild solution to the vacuum Einstein’s equations, with van-
ishing Ricci tensor Rab = 0 and stress tensor T ab = 0 for all r > 0 describes
an isolated, non-rotating object of total mass M . In that sense it is the
gravitational equivalent of the Coulomb solution

φ =
e

r
(2.3)

for the electrostatic potential of an isolated, static charge e in Maxwell’s
theory of electromagnetism. Just as in the Coulomb case, the Schwarzschild
solution has a singularity at the origin of the spherical coordinates at r= 0,
where the gauge invariant field strengths (measured in gravity by the Rie-
mann curvature tensor and its contractions) diverge, and there is a delta
function source.

In classical electromagnetism at the finite scale of the classical electron
radius, rc = e2/mc2, where the electrostatic self-energy becomes compara-
ble to the rest mass energy, some deviation from the simple picture of a
structureless point particle is to be expected. In quantum electromagnetism
(QED) the classical linear divergence of (2.3) is softened somewhat into a
logarithmic ultraviolet divergence of the self-energy of a charged Dirac par-
ticle. This logarithmically divergent self-energy is absorbed into a renormal-
ization of its total observable mass. However, already at the larger scale of
the electron Compton wavelength ~/mc > rc, the single electron description
has to be replaced by the many body description of a quantum field theory
with vacuum polarization effects. Hence the pointlike singularity and linear
divergence of the classical Coulomb potential (2.3) is not present in the more
accurate many body quantum theory.

Apart from the singularity at r = 0, analogous to (2.3) the Schwarzschild
line element also possesses another kind of mathematical singularity at the
finite Schwarzschild radius,

rS ≡
2GM
c2

' 2.953
(
M

M�

)
km , (2.4)
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where the function f(r) = h(r) vanishes. This macroscopic radius is the
location of the Schwarzschild event horizon, the locus of points which defines
the sphere dividing the exterior region from the interior region. It is the
analog of the classical radius rc where the Newtonian gravitational self-
energy GM2/r becomes comparable to the total rest mass energy Mc2.
Thus rS is the length scale at which some substructure should be expected.

Classical General Relativity does not give much hint of this substructure.
Instead, the change of sign of the functions f(r), h(r) for r < rS in (2.2)
indicates that for the interior region t becomes a spacelike variable, while
r becomes timelike. Hence any radiation, even a light ray emanating from
a point in the interior cannot propagate outward and is drawn inexorably
toward the singularity at r = 0, giving rise to the popular name black hole.

If the Schwarzschild solution (2.1), (2.2) for r < rS is taken seriously,
the singularity at r = 0 is present in Einstein’s theory for any mass M > 0,
including the certainly macroscopic mass of a collapsed star with the mass
of the sun, M� ' 2 × 1033 g or even that of supermassive objects with
masses 106 to 109M�. The collapse of such enormous quantities of matter
with vastly more degrees of freedom than that of a single electron to a
single mathematical point at r = 0 certainly presents a challenge to the
imagination, and one that it seems Einstein himself sought arguments to
avoid [5]. The situation is scarcely more acceptable if the singularity is
removed only by the intervention of quantum effects at the extremely tiny
Planck length (G~/c3)1/2 ∼ 1.6× 10−33 cm.

A light wave emitted from any r > rS with local frequency ωloc outward
towards infinity is redshifted according to the redshift relation,

ω∞ = ωloc f
1/2 = ωloc

√
1− rS

r
, (2.5)

showing that a light wave emitted at the horizon becomes redshifted to zero
frequency and cannot propagate outward at all. Conversely and equivalently,
a light wave with the finite frequency ω = ω∞ far from the black hole is
blueshifted to an infinite local frequency at the horizon. This gravitational
redshift/blueshift is purely a kinematic consequence of the classical time
dilation effect of a gravitational field, which has been tested in a number of
experiments [6–8]. The event horizon is therefore a kind of critical surface
for the propagation of light rays, and hence all other matter interactions.

Unlike the central singularity at r = 0, the scalar invariant quantities
that can be constructed from the contractions of the Riemann curvature
tensor remain finite as r → rS. Thus the fully contracted quadratic Riemann
invariant

RabcdRabcd =
12r2

S

r6
(2.6)
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which diverges at the origin remains finite at r = rS. Moreover, although
the time for an infalling particle to reach the horizon is infinite for any
observer remaining fixed outside the horizon, the proper time measured by
the particle itself during its infall remains finite as r → rS [6, 7]. Thus
despite the singularity of the Schwarzschild coordinates at r = rS, physics
must continue onto smaller values of r in the interior region. Since the line
element (2.1) is again non-singular for 0 < r < rS, and in the absence of clear
evidence to the contrary, the most straightforward possibility would seem
to be to assume that this non-singular vacuum interior (up to the origin or
at least some extreme microscopic scale much less than rS) can be matched
smoothly to the non-singular exterior Schwarzschild solution.

This matching was achieved by the coordinate transformations and ana-
lytic continuation of the Schwarzschild solution found by Kruskal and Szek-
eres [9]. The Kruskal maximal analytic extension of the Schwarzschild ge-
ometry is pictured in the Carter–Penrose conformal diagram, Fig. 1.

Fig. 1. The Carter–Penrose conformal diagram of the maximal Kruskal analytic
extension of the Schwarzschild geometry. Radial light rays are represented in this
diagram as 45◦ lines. The angular coordinates θ, φ are suppressed.

The analytic extension of the Schwarzschild geometry relies on finding
a judicious change of the time and radial coordinates (t, r) of (2.1) to new
ones (T,X), which are regular on the horizon, and therefore can be used to
describe the local geometry there without singularities. Explicitly, for r > rS

this coordinate transformation to Kruskal–Szekeres coordinates (T,X) is
given by

T =
(
r

rS
− 1
)1/2

er/2rS sinh
(
ct

2rS

)
, (2.7a)

X =
(
r

rS
− 1
)1/2

er/2rS cosh
(
ct

2rS

)
. (2.7b)
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The inverse transformation is

t =
2rS

c
tanh−1

(
T

X

)
=

rS

c
ln
(
X + T

X − T

)
, (2.8a)(

r

rS
− 1
)
er/rS = X2 − T 2 . (2.8b)

In the new (T,X) coordinates, the Schwarzschild line element (2.2) becomes

ds2 =
4r3

S

r
e−r/rS

(
−dT 2 + dX2

)
+ r2dΩ2 , (2.9)

where r is to be regarded as the function of (T,X) given implicitly by (2.8b),
and dΩ2 = dθ2 + sin2 θ dφ2 is the usual spherical line element on S2.

In these Kruskal–Szekeres coordinates, the event horizon at r = rS is
seen actually to be comprised of two distinct null surfaces, the future and
past horizons for T = ±X, respectively. The entire exterior region r > rS

is mapped into the region X > |T | ≥ 0 of the (X,T ) plane. The X = +T
boundary of this region gives the coordinates of a particle trajectory infalling
into the black hole, a depicted in Fig. 1, whereas the X = −T boundary
corresponds to the time reversed coordinates of a particle trajectory outgoing
from a white hole. The time reversed case must be present mathematically
because of the second order nature of Einstein’s equations, and the static
solution (2.1) which admits the time reversal symmetry t → −t and T →
−T . Whether or not this time reversed white hole case corresponds to any
real macroscopic body is, of course, another question.

Since the Schwarzschild line element in Kruskal–Szekeres coordinates
(2.9) is completely regular at T = ±X, one can equally well consider
the extension of the coordinates to the interior regions, T > X > 0 and
T < −X < 0, into the black hole and white hole interior regions at the top
and bottom of Fig. 1, at least as far and until the true curvature singularity
at r = 0 is reached. Inspection of (2.8) shows that this implies an analytic
continuation of the original Schwarzschild (t, r) coordinates around a loga-
rithmic branch cut to complex values. The relation of the (T,X) coordinates
to the original (t, r) coordinates is singular at r = rS, although the (T,X)
coordinates themselves are regular at T = ±X. Similarly, by a further com-
plex analytic continuation, one can continue to the parallel exterior region
on the left of Fig. 1 with X < −|T | ≤ 0. Thus, by the relatively simple but
singular change of coordinates (2.7)–(2.8), we seem to have reached the con-
clusion that the simplest static spherically symmetric Schwarzschild solution
to the vacuum Einstein’s equations predicts the existence not only of a true
singularity at r = 0 but also of an entirely separate and macroscopically
large, asymptotically flat region in addition to the original one.
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Of course, one is free to assert that the white hole interior region and the
parallel asymptotically flat universe do not exist, and excise them in a gravi-
tational collapse from realistic initial conditions, replacing the excised region
of Fig. 1 with the non-singular interior of a collapsing matter distribution.
However, this is a matter of initial conditions, and nothing in the equa-
tions of General Relativity themselves force us to do this. Dirac expressed
skepticism of the interior Schwarzschild solution on physical grounds [10].

The apparently unphysical features of the Schwarzschild solution appear
as soon as we admit complex analytic continuation of singular coordinate
transformations. Based on the Principle of Equivalence between gravita-
tional and inertial mass, Einstein’s theory possesses general coordinate in-
variance under all regular and real transformations of coordinates. It is the
appending to classical General Relativity of the much stronger mathemati-
cal hypothesis of complex analytic continuation through singular coordinate
transformations that leads to the global aspects of the Schwarzschild solution
which may be unrealized in Nature.

The point which is often left unstated is that the mathematical procedure
of analytic continuation through the null hypersurface of an event horizon
actually involves a physical assumption, namely that the stress-energy tensor
T ab is vanishing there. Even in the purely classical theory of General Rela-
tivity, the hyperbolic character of Einstein’s equations allows generically for
stress-energy sources and hence metric discontinuities on the horizon which
would violate this assumption. Additional physical information is necessary
to determine what happens as the event horizon is approached, and the cor-
rect matching of interior to exterior geometry. What actually happens at
the horizon is a matter of this correct physics, which may or may not be
consistent with complex analytic continuation of coordinates (2.7), (2.8).

The static Schwarzschild solution of an isolated uncharged mass was gen-
eralized to include electric charge by Reissner and Nordstrom [11], and more
interestingly for astrophysically realistic collapsed stars, to include rotation
and angular momentum by Kerr [12]. The complete analytic extensions of
the Reissner–Nordstrom and Kerr solutions were found as well [13]. The
global properties of these analytic extensions are more complicated and ar-
guably even more unphysical than in the Schwarzschild case. For slowly
rotating black holes with angular momentum J < GM2/c, there is an infi-
nite number of black hole interior and asymptotically flat exterior regions,
and closed timelike curves in the interior region(s), which violate causal-
ity on macroscopic distance scales [14]. Again these apparently unphysical
features appear in GR only if the mathematical hypothesis of complex an-
alytic extension and continuation through real coordinate singularities are
assumed. This analytic continuation is generally invalid if there are stress-
tensor sources encountered at or before the breakdown of coordinates.
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The Schwarzschild white hole and the analytic extension through the
horizons also raises questions about macroscopic time reversibility. Once
classical particles fall through the future event horizon, there is no way to
retrieve them without violating causality, and something irreversible would
seem to have occurred. This is somewhat troubling from the point of view
of thermodynamics, since if matter disappears completely from view when it
falls into a black hole, it carries any entropy it has in its internal states with
it, and the entropy of the visible universe would apparently have decreased,
violating the second law of thermodynamics,

∆S ≥ 0 , (2.10)

which states that the total entropy of an isolated system must be a non-
decreasing function of time in any spontaneous process.

At the same time the infall of matter into a black hole certainly increases
its total energy. In the general black hole solution characterized by massM ,
angular momentum J , and electric charge Q, one can define a quantity called
the irreducible mass Mirr by the relation

M2 =
(
Mirr +

Q2

4GMirr

)2

+
c2J2

4G2M2
irr

, (2.11)

or

M2
irr =

M2

2
− Q2

4G
+

1
2G
[
G2M4 −GM2Q2 − c2J2

]1/2 (2.12)

and show that in any classical process the irreducible mass can never decrease
[15]:

∆M2
irr ≥ 0 . (2.13)

Since one can also show that the irreducible mass is related to the geomet-
rical area A of the event horizon of the general Reissner–Nordstrom–Kerr–
Newman black hole via

A =
16πG2

c4
M2

irr , (2.14)

this theorem is equivalent to the statement that the horizon area is a non-
decreasing function of time in any classical process [15, 16].

Simply by taking the differential form of (2.11) one obtains [17]

dE = dMc2 =
c2

8πG
κdA+ Ω dJ + Φ dQ (2.15)
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which is just the differential form of Smarr’s formula for a Kerr–Newman
rotating, electrically charged black hole, in which

κ =
1
M

[
c4

4G
− 4π2G

c4A2

(
Q4 + 4c2J2

)]
, (2.16a)

Ω =
4πJ
MA

, (2.16b)

Φ =
Q

M

[
c2

2G
+

2πQ2

Ac2

]
, (2.16c)

A =
4πG
c4

[
2GM2 −Q2 + 2

√
G2M4 −GM2Q2 − c2J2

]
(2.16d)

are the horizon surface gravity, angular velocity, electrostatic potential and
area respectively [17, 18]. All dimensionful constants have been retained
to emphasize that (2.15), (2.16) are formulae derived from classical GR in
which no ~ whatsoever appears. Notice also that the coefficient of dA in
(2.15), c2κ/8πG has both the form and dimensions of a surface tension.

The classical conservation of energy is expressed by the first law of black
hole mechanics (2.15). The classical area theorem (2.13) naturally evokes
a connection to entropy and the second law of thermodynamics (2.10). If
horizon area (or more generally any monotonic function of it) could somehow
be identified with entropy, and this entropy gain is greater than the entropy
lost by matter or radiation falling into the hole, then the second law (2.10)
would remain valid for the total or generalized entropy of matter plus black
hole horizon area. The simplest possibility would seem to be if entropy is
just proportional to area.

Motivated by these considerations, and as suggested by a series of
thought experiments, Bekenstein proposed that the area of the horizon (2.14)
should be proportional to the entropy of a black hole [19]. Since A does not
have the units of entropy, it is necessary to divide the area by another quan-
tity with units of length squared before multiplying by Boltzmann’s constant
kB, to obtain an entropy. However, classical General Relativity (without a
cosmological term) contains no such quantity, G/c2 being simply a conver-
sion factor between mass and distance. Hence Bekenstein found it necessary
for purely dimensional reasons to introduce Planck’s constant ~ into the dis-
cussion. Then there is a standard unit of length, namely the Planck length,

LPl =

√
~G
c3

= 1.616× 10−33 cm . (2.17)

Bekenstein proposed that the entropy of a black hole should be

SBH = γkB
A

L2
Pl

, (2.18)
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with γ a constant of order unity [19]. He showed that if such an entropy
were assigned to a black hole, so that it is added to the entropy of matter,
Stot = Sm +SBH, then this total generalized entropy would plausibly always
increase. In fact, this is not difficult at all, and the generalized second law
∆Stot ≥ 0 is usually satisfied by a very wide margin, simply because the
Planck length is so tiny, and the macroscopic area of a black hole measured
in Planck units is so enormous. Hence even the small increase of mass and
area caused by dropping into the black hole a modest amount of matter and
concomitant loss of matter entropy ∆Sm < 0 is easily overwhelmed by a
great increase in SBH, ∆SBH � |∆Sm|, guaranteeing that the generalized
total entropy increases: ∆Stot > 0.

Since ~ has entered the assignment of entropy to a black hole horizon, the
discussion can no longer be continued in purely classical terms, and we must
discuss quantum effects in black hole geometries next. It is worth remarking
that whereas Planck’s constant enters the thermodynamics of macroscopic
quantum systems, such as the formulae for black body radiation, by normal-
izing the volume of the integral over phase space, no such interpretation is
available for (2.18). Instead ~ has been used to form a new quantity LPl with
units of length, which we would ordinarily associate with the microscopic
length scale at which strong quantum corrections to Einstein’s theory should
become important. Why such a microscopic, fundamentally quantum length
scale should be needed to determine the bulk thermodynamic entropy of a
macroscopic object on the scale of kilometers where classical GR applies,
and no large quantum corrections to GR are expected near the horizon, is
far from clear.

2.2. Quantum black holes and their paradoxes

Since classically all matter is irretrievably drawn into a black hole, the
idea that black holes can instead radiate energy seems quite counterintuitive.
More remarkable still is Hawking’s argument that this radiation would nec-
essarily be thermal radiation, with a temperature [20]

TH =
~κ

2πckB

J=Q=0
=

~c3

8πGkBM
, (2.19)

where the first equality is general, and the second equality applies only for a
Schwarzschild black hole with J = Q = 0. With the temperature inversely
proportional to its mass assigned to a black hole by this formula, if we
assume that the first law of thermodynamics in the form

dE = dMc2 = TH dSBH + Ω dJ + Φ dQ (2.20)

applies to black holes, then the coefficient γ in (2.18) is fixed to be 1/4.
This formula is simple and appealing, and has been generally accepted since
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soon after Hawking’s paper first appeared. However, simultaneously and
from the very beginning, a number of problems with this thermodynamic
interpretation made their appearance as well.

The first curious feature of (2.20) is that ~ cancels out between TH and
dSBH. Of course, this is a necessary consequence of the fact that (2.20) is
identical to the classical Smarr formula (2.15) in which ~ does not appear at
all. The identification of SBH with the entropy of a black hole is founded on
the purely classical dynamics of Christodoulou’s area law (2.13), in which
quantum mechanics played no part whatsoever. Clearly, multiplying and
dividing by ~ does not necessarily make a classical relation a valid one in
the quantum theory. On the other hand, the Hawking temperature (2.19)
is a quantum spontaneous emission effect, analogous to the Schwinger pair
creation effect in a strong electric field [21] which vanishes in the classical
limit ~ → 0. Temperature, usually accepted as a classical concept has no
apparent meaning for a black hole in the strictly classical limit, unless it is
identically zero. As a consequence, if the identification of the classical area
rescaled by kBL

−2
Pl with entropy and the thermodynamic interpretation of

(2.20) is to be generally valid in the quantum theory, then the classical limit
~→ 0 (with M fixed) which yields an arbitrarily low Hawking temperature,
assigns to the black hole an arbitrarily large entropy, completely unlike the
zero temperature limit of any other cold quantum system.

Closely related to this paradoxical result is the fact, pointed out by
Hawking himself [22], that a temperature inversely proportional to theM =
E/c2 implies that the heat capacity of a Schwarzschild black hole

dE

dTH
= −8πGkBM

2

~c
= −Mc2

TH
< 0 (2.21)

is negative. In statistical mechanics the heat capacity of any system (at
constant volume) is related to the energy fluctuations about its mean value
〈E〉 by

cV =
(
d〈E〉
dT

)
V

=
1

kBT 2

〈
(E − 〈E〉)2

〉
> 0 . (2.22)

If pressure, or some other thermodynamic variable is held fixed there is
an analogous formula. Hence on general grounds of quantum statistical
mechanics, the heat capacity of any system in (stable) equilibrium must
be positive. The positivity of the statistical average in (2.22) requires only
the existence of a well defined stable ground state upon which the thermal
equilibrium ensemble is defined, but is otherwise independent of the details
of the system or its interactions.
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In fact, it is easy to see that a black hole in thermal equilibrium with a
heat bath of radiation at its own Hawking temperature T = TH cannot be
stable [22]. For if by a small thermal fluctuation it should absorb slightly
more radiation in a short time interval than it emits, its mass would increase,
∆M > 0, and hence from (2.19) its temperature would decrease, ∆T < 0,
so that it would now be cooler than its surroundings and be favored to
absorb more energy from the heat bath than it emits in the next time step,
decreasing its temperature further and driving it further from equilibrium.
In this way a runaway process of the black hole growing to absorb all of the
surrounding radiation in the heat bath would ensue. Likewise, if the original
fluctuation has ∆M < 0, the temperature of the black hole would increase,
∆T > 0, so that it would now be hotter than its surroundings and favored
to emit more energy than it absorbs from the heat bath in the next time
step, increasing its temperature further. Then a runaway process toward
hotter and hotter evaporation of all its mass to its surroundings would take
place. In either case, the initial equilibrium is clearly unstable, and hence
cannot be a candidate for the quantum ground state for the system. This is
the physical reason why the positivity property of (2.22) is violated by the
Hawking temperature (2.19). The instability has also been found from the
negative eigenvalue of the fluctuation spectrum of a black hole in a box of
(large enough) finite volume [23].

The time scale for this unstable runaway process to grow exponentially is
the time scale for fluctuations away from the mean value of the Hawking flux,
not the much longer time scale associated with the lifetime of the hole under
continuous emission of that flux. This time scale for thermal fluctuations is
easily estimated. It is the typical time between emissions of a single quantum
with typical energy (at infinity) of kBT , of a source whose energy emission
per unit area per unit time is of the order of (kBTH)4/~3c2. Multiplying by
the area of the hole A ∼ (GM)2/c4, and dividing by the typical energy kBT ,
we find the average number of quanta emitted per unit time. The inverse of
this, namely

∆t ∼ 1
A

(~c)3

(kBTH)3
∼ rS

c
∼ 10−5

(
M

M�

)
sec (2.23)

is the typical time interval (as measured by a distant observer) between suc-
cessive emissions of individual Hawking quanta (again as observed far from
the black hole). This time scale is quite short: 10 µsec for a solar mass black
hole. Any tendency for the system to become unstable would be expected to
show up on this short a time scale, governing the fluctuations in the mean
flux, which is of the order of the collapse time itself and before a steady state
flux could even be established. With the existence of a stable equilibrium in
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doubt, one may well question whether macroscopic equilibrium thermody-
namic concepts such as temperature or entropy are applicable to black holes
at all.

Another rather peculiar feature of the formula (2.18) for the entropy
is that it is non-extensive, growing not like the volume of the system but
its area. It is non-extensive in a second important respect. The fixing of
γ = 1/4 by (2.19) and (2.20) is independent of the number or kind of particle
species. Normally, we would expect the entropy of a system to grow linearly
with the number of distinct particle species it contains. For example, if the
number of light neutrino species in the Universe were doubled, the entropy
in the primordial plasma would be doubled as well, because the available
states of one species are independent of and orthogonal to the states of a
second distinct species, and must be counted separately. The formula (2.18)
with only fundamental constants and the pure number coefficient γ = 1/4
does not seem to allow for this. ‘t Hooft found a way to compensate the
number of species factor in the horizon “atmosphere”, but this configuration
with matter or radiation densely concentrated near r = r = rS is no longer
then a Schwarzschild black hole [24]. It also remains singular at the origin.

Finally, let us state the obvious: a solution of any set of classical field
equations is simply one particular configuration in the space of field con-
figurations. As such, one would not usually associate any entropy with it.
Matter sources to the field equations which have internal degrees of freedom
may carry entropy of course, but a vacuum solution to the equations such as
the Schwarzschild solution (2.1), (2.2), with at most a singular point source
at the origin would not ordinarily be expected to carry any entropy what-
soever. What “entropy” should one associate with the structureless classical
Coulomb field (2.3)?

In this connection it may be worth pointing out that although the Cou-
lomb field does not have an event horizon, there would still be an “informa-
tion paradox” if we allowed charged matter to be attracted into
(or emitted from) the Coulomb field singularity in (2.3) at r = 0 and disap-
pear from (or appear in) the visible universe. Such disappearance or appear-
ance processes would clearly violate unitarity as well. In quantum theory we
exclude such a possibility by restricting the Hilbert space of states to those
with wave functions that are normalizable at the origin, so that no energy
or momentum flux can either vanish or appear at the Coulomb singularity.
Note that we impose this boundary condition at r = 0 without any detailed
knowledge of the extreme short distance structure of a charged particle in
QED, confident that whatever it is, unitarity must be respected. In the case
of black hole radiance by contrast, the positive Hawking energy flux at infin-
ity must be balanced by a compensating flux down the hole and eventually
into the singularity at r = 0, which makes clear why problems with unitarity
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and loss of information must result from such a flux. Boundary conditions on
the horizon have consequences for the behavior of the fluctuations at both
the singularity and at infinity. As even the example of scattering off the
Coulomb potential shows, these boundary conditions require physical input.
Unphysical boundary conditions can easily lead to unphysical behavior.

Returning to the entropy (2.18), it is instructive to evaluate SBH for
typical astrophysical black holes. Taking again as our unit of mass the mass
of the sun, M� ' 2× 1033 g, we have

SBH ' 1.050× 1077 kB

(
M

M�

)2

. (2.24)

This is truly an enormous entropy. For comparison, we may estimate the
entropy of the sun as it is, a hydrogen burning main sequence star, whose
entropy is given to good accuracy by the entropy of a non-relativistic perfect
fluid. This is of the order of NkB where N is the number of nucleons in the
sun N ∼ M�/mN ∼ 1057, times a logarithmic function of the density and
temperature profile which may be estimated to be of the order of 20 for the
sun. Hence the entropy of the sun is roughly

S� ∼ 2× 1058 kB , (2.25)

or nearly 19 orders of magnitude smaller than (2.24).
A simple scaling argument that the entropy of any gravitationally bound

object with the mass of the sun cannot be much more than (2.25) can be
made as follows. The entropy of a relativistic gas at temperature T in
equilibrium in a box of volume V is of the order of V T 3. The total energy
is of order V T 4. Eliminating T from these relations gives S ∼ V 1/4E3/4.
For a relativistic bound system the energy E ∼Mc2 while the volume is of
the order of r3

S ∼ (GM/c2)3. Hence S ∼ (
√
GM)3/2. Keeping track of kB,

~ and c in this estimate gives

S ∼ kB

(
M

MPl

)3/2

∼ 1057 kB

(
M

M�

)3/2

, (2.26)

where MPl =
√

~c/G = 2.176× 10−5 g. If there are ν species of relativistic
particles in the object then this estimate should be multiplied by ν1/4. This
estimate applies to the entropy of relativistic radiation within the body,
and is lower than (2.25) because the radiation pressure in the sun is small
compared to the non-relativistic fluid pressure. However, the entropy from
the relativistic radiation pressure (2.26) grows with the 3/2 power of the
mass, whereas the non-relativistic fluid entropy (2.25) grows only linearly
with M . For stars with masses greater than about 50M� which are hot
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enough for their pressure to be dominated by the photons’ T 4 radiation
pressure, (2.26) indeed gives the correct order of magnitude estimate of
such a star’s entropy at a few times 1059kB [25]. In order to have such an
entropy, the temperature of the star must be of the order of E/S ∼ 10 MeV
or 1011 ◦K, while the Hawking temperature (2.19) for the same 50M� black
hole is very, very cold — 10−9 ◦K. It is difficult to see how the entropy of the
black hole could be a factor of 1020 larger while its temperature is a factor
of 1020 lower than a relativistic star of the same mass.

The point is that even for the extreme relativistic fluid the entropy (2.26)
for a gravitationally bound system in thermal equilibrium (in which entropy
is always maximized) grows only like the 3/2 power of the mass, and hence
will always be much less than (2.24), proportional to M2 for very massive
objects. Moreover, the discrepant factor between (2.24) and (2.26) is of
the order of (M/MPl)1/2 ' 1019(M/M�)1/2, no matter what the non-black
hole progenitor of the black hole is. Since the formula (2.24) makes no
reference to how the black hole was formed, and a black hole may always be
theoretically idealized as forming from an adiabatic collapse process, which
keeps the entropy constant, (2.24) states that this entropy must suddenly
jump by a factor of the order of 1019 for a solar mass black hole at the
instant the horizon forms. When Boltzmann’s formula

S = kB lnW (E) (2.27)

is recalled, relating the entropy to the total number of microstates in the
system W (E) at the fixed energy E, we see that the number of such mi-
crostates of a black hole satisfying (2.24) must jump by exp(1019) at that
instant at which the event horizon is reached, a truly staggering proposition.

This tremendous mismatch between the number of microstates of a black
hole inferred from SBH and that of any conceivable physical non-black hole
progenitor is one form of the information paradox. Another form of the
paradox is that since black holes are supposed to radiate thermally at tem-
perature TH up until their very last stages, when their mass falls to a value
of order MPl, there would seem to be no way to recover all the information
apparently lost in the black hole formation and evaporation process. This
difficulty with SBH is so severe that it led Hawking to speculate that per-
haps even the quantum mechanical unitary law of evolution of pure states
into pure states would have to be violated by black hole physics [26]. Al-
though this speculation has currently fallen into disfavor [27], it is still far
from clear what the missing microstates of an uncharged black hole are, and
how exactly unitarity can be preserved in the Hawking evaporation process
if (2.19) and (2.24) are correct.
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For all of these reasons the thermodynamic interpretation of (2.20) re-
mains problematic in quantum theory. On the other hand, if the ~ is can-
celed and one simply returns to the differential Smarr relation (2.15), derived
from classical GR, these difficulties immediately vanish. One would only be
left to explain the relationship of surface gravity κ to surface tension. In
Refs. [28, 29] and Sec. 7 a possible resolution is proposed in which area is
not entropy at all but indeed the area of a physical surface and the surface
gravity can be related to the surface tension of this surface.

Although the thermodynamic interpretation of (2.20) and (2.24), leads
to myriad difficulties, it has been essentially universally assumed, and great
ingenuity has been devoted to postulating the new physics of some kind
which would be needed to account for the vast number of microstates in
the interior of a black hole required by (2.24). It is not possible to do
justice to the various approaches in detail here. Curiously the multitude
of approaches all seem to give the same answer, despite the fact that the
states they are counting are very different [30]. Of course, any theory that
reduces to Einstein’s theory in an appropriate limit will conserve energy and
obey the first law of thermodynamics. If the effective action of the theory
reduces to the Einstein–Hilbert action then the logarithm of its generating
functional Z should produce the entropy (2.24), suggesting that these formal
results are actually a feature of the classical theory, embodied in the Smarr
formula (2.15), and independent of the model used or microstates counted.

The lines of research involving exotic internal constituents to obtain SBH

are all the more remarkable when one recalls where we began, with the clas-
sical GR expectation that all one has to do is change coordinates as in
(2.7) to see that “nothing happens” at the event horizon to a particle falling
through. If the horizon is really just a harmless coordinate singularity — the
very assumption underlying the arguments leading to the Hawking temper-
ature, and hence the entropy (2.24), how can the semi-classical assumption
of no energy or stresses, and analyticity and regularity at the geometry at
the horizon with no substructure in the interior then lead to the diametri-
cally opposite conclusion of exotic new physics, with exp(1019) additional
microstates, and perhaps the radical alteration of classical spacetime itself
the instant the horizon is reached?

Counting the microstates hiding in electrically charged black holes in
string theory or other models also leave unanswered the question of how a
presumably well-defined quantum theory with a stable ground state (which
always has a positive heat capacity) could ever yield the negative heat ca-
pacity (2.21) of the original, uncharged Schwarzschild black hole in 3 + 1
dimensions.
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Another line of thought has attempted to identify the entropy (2.24)
with quantum entanglement entropy [31–33]. This is the entropy that results
when a quantum system is divided into two spatial partitions and one sums
over the microstates of one of the partitions, forming a mixed state density
matrix from a pure state wave functional even at zero temperature. This
has the attractive feature that on general grounds it is proportional to the
area of the surface at which the two partitions are in contact. It has the
unattractive feature that the coefficient of the area law in quantum field
theory is infinite. The reason for this ultraviolet divergence is the same as
the reason for the area law itself, namely that the largest contribution to
the entanglement entropy comes from the ultraviolet components of the wave
functional within a vanishingly thin layer near the surface. If this divergence
is cut off at a length scale of the order of LPl, a large but finite entropy of
order of (2.18) is obtained [32].

Counting these states at very high frequencies as contributing to the
entropy is sensible only if those states are occupied. In quantum statisti-
cal mechanics the unoccupied states at arbitrarily high energies, no matter
how many of them, do not contribute to the thermodynamic entropy of the
system. In the black hole case, the standard classical assumption of the
horizon as a harmless coordinate singularity and the Hawking–Unruh state
corresponding to this classical assumption (discussed in more detail in the
next section) treats these high frequency states as unoccupied vacuum states
with respect to a locally regular coordinate freely falling system at the hori-
zon, such as (2.7). Hence it is difficult to see why they should be counted
as contributing to the entropy. If on the contrary one treats these modes as
occupied with respect to the singular static frame (2.1), then it is difficult
to see why their mean energy-momentum or fluctuations in 〈T ab〉 should be
negligible near the horizon. Since the Hawking thermal flux originates as ra-
diation closer and closer to rS with arbitrarily high frequencies at late times,
if these states are occupied it is also difficult to see why any cutoff at the
Planck scale or otherwise should be imposed to compute the entanglement
entropy.

The attempt to count microstates near the horizon to account for the
black hole entropy associated with the Hawking effect brings us face to face
with questions about the structure and meaning of the “vacuum” itself at
trans-Planckian frequencies. One way or another, some physical input is
needed to determine the precise boundary conditions on the near horizon
modes upon which the entire set of results and physical consequences for
macroscopic black hole physics hinge. At the horizon the classical supposi-
tion that nothing happens at a coordinate singularity is in tension with the
behavior and assumptions of quantum field theory (in a fixed background)
at very high frequencies. This tension is the source of the paradoxes, since
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it is the classical supposition that leads to (2.18) and (2.19) which seem
themselves to lead to the opposite conclusion that either quantum states
at arbitrarily short distances near the horizon are playing an important
physical role (unlike in flat space), or entirely new physics and degrees of
freedom must be invoked to explain black hole entropy, undermining the
semi-classical assumption of mild behavior at the horizon. Once arbitrarily
high frequency modes near the horizon are admitted into the discussion,
one should reconsider whether it is reasonable to treat gravity classically
with the background geometry known and completely determined and ask
whether the near-horizon behavior is indeed mild, or whether there might
be large quantum backreaction effects on the local geometry of spacetime
in its vicinity. Notice also that this trans-Planckian problem for ultrashort
distance modes arises near a black hole horizon despite the fact that the
horizon radius (2.4) itself is quite macroscopic and very large compared to
the Planck scale.

The trans-Planckian problem and the divergence of the entanglement
entropy, as the black hole horizon is approached, is also reminiscent of
the ultraviolet catastrophe of the energy density of classical thermal ra-
diation. The cancellation of ~ from dE in (2.20) is similar to the can-
cellation in the energy density of modes of the radiation field in thermo-
dynamic equilibrium, ~ω nBE(ω)ω2dω → kBT ω

2dω in the Rayleigh–Jeans
limit of very low frequencies, ~ω � kBT where the Bose–Einstein distribu-
tion nBE(ω) = [exp(~ω/kBT )− 1]−1 → kBT/~ω. If this low energy relation
from classical Maxwell theory is improperly extended into the quantum high
frequency regime, ~ω � kBT it leads to a divergent integral over ω and hence
an infinite energy density of the radiation field at any finite temperature.
This ultraviolet catastrophe and the low temperature thermodynamics of
solids led Planck and Einstein to take the first steps towards a quantum
theory of radiation and bulk matter [1, 2]. The analogous high frequency
divergence of the entanglement entropy near a black hole horizon suggests
that it results from a similar improper extension and misinterpretation of the
classical formula (2.15) extended into the high frequency, low temperature
regime where quantum effects become important.

2.3. Quantum fields in Schwarzschild spacetime

The preceding discussion indicates that quantum effects, particularly at
short distances need to be treated very carefully when black hole horizons
are involved. Given the high stakes of the possibility of fundamental revision
of the laws of physics and/or vast numbers of new degrees of freedom and
the role of ultrahigh frequency trans-Planckian modes to account for the
Hawking effect and black hole entropy, it would seem reasonable to return
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to first principles, and re-examine carefully the strictly classical view of the
event horizon as a harmless kinematic singularity, when ~ 6= 0 and the
quantum fluctuations of matter are taken into account.

Consider the basic set up of a quantum theory of a scalar field in fixed
Schwarzschild spacetime. Although the locally high energy matter self-inter-
actions and gravitational self-interactions themselves are almost certainly
important near the event horizon, we ignore them here in order to simplify
the discussion. Then the generally covariant free Klein–Gordon equation(

− + µ2
)
Φ = − 1√

−g
∂a

(√
−ggab∂bΦ

)
+ µ2Φ = 0 (2.28)

for a scalar field of mass µ in the static, spherically symmetric Schwarzschild
geometry (2.2) is separable, with eigenfunctions of the form

ϕω`m(t, r, θ, φ) =
e−iωt√

2ω
fω`(r)
r

Y`m(θ, φ) . (2.29)

Here Y`m is a spherical harmonic, and the radial function fω` satisfies the
ordinary differential equation[

− d2

dr∗ 2
+ V`

]
fω` = ω2 fω` , (2.30)

in terms of the Regge–Wheeler (“tortoise”) radial coordinate

r∗ = r + rS ln
(
r

rS
− 1
)
, (2.31)

with the potential

V` =
(

1− rS

r

)[`(`+ 1)
r2

+
rS

r3
+ µ2

]
(2.32)

which may be viewed as an implicit function of r∗ through the relation
(2.31). Note that as r ranges from rS to ∞, r∗ ranges over the entire real
line from −∞ to +∞, and that the potential V` vanishes at the lower limit,
but is otherwise everywhere positive. As a corollary note also from (2.32)
that at the horizon r = rS, the scalar field mass µ drops out. Since we are
interested in the near horizon behavior we may concentrate on the massless
case and set µ = 0.
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Eq. (2.30) defines a standard one dimensional scattering problem,with
two linearly independent scattering solutions that have the asymptotic forms,
e±iωr

∗ as r → rS, r
∗ → −∞, and as r, r∗ → +∞. Accordingly, we may de-

fine the two fundamental linearly independent scattering solutions of (2.30)
fL,R
ω` by their asymptotic behaviors as [34]

fL
ω` →

{
B`(ω)e−iωr

∗
, r∗ → −∞ ,

e−iωr
∗

+AR
` (ω)eiωr

∗
, r∗ → +∞ ,

(2.33a)

fR
ω` →

{
eiωr

∗
+AL

` (ω)e−iωr
∗
, r∗ → −∞ ,

B`(ω)eiωr
∗
, r∗ → +∞ .

(2.33b)

Because of the constancy of the Wronskian associated with Eq. (2.30), the
reflection and transmission coefficients of (2.33) obey

|AL
` (ω)|2 + |B`(ω)|2 = |AR

` (ω)|2 + |B`(ω)|2 = 1 , (2.34a)
AL ∗
` (ω)B`(ω) = −AR

` (ω)B∗` (ω) , (2.34b)
|AL

` (ω)| = |AR
` (ω)| . (2.34c)

Because these two scattering solutions are linearly independent, indepen-
dent creation and destruction operators must be introduced for them in the
canonical quantization of the Heisenberg field operator

Φ(t, r, θ, φ) =

∞∫
0

dω

2π

∑
`m

∑
I=L,R

(
ϕIω`m a

I
ω`m + ϕI ∗ω`m a

I †
ω`m

)
. (2.35)

The independent canonical commutation relations[
aIω`m, a

J †
ω′`′m′

]
−

= 2π~ δ(ω − ω′)δ``′δmm′δIJ , (2.36)

with each of I, J taking the values L, R enforce the canonical equal time
commutation relation[

Φ(t, r, θ, φ),
∂Φ
∂t

(t, r′, θ′, φ′)
]
−

= i~
δ(r∗ − r∗′) δ(θ − θ′) δ(φ− φ′)

r2 sin θ
(2.37)

on the field, provided the normalization condition

∞∫
−∞

dr∗f I∗ω` f
J
ω′` = 2π δIJδ(ω − ω′) (2.38)

is satisfied.
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From (2.33) and (2.34) the non-vanishing of the reflection coefficient
AL,R
` implies that outgoing spherical waves at the black hole horizon are a

linear superposition of outgoing and ingoing spherical waves at infinity, and
similarly for ingoing spherical waves. Notice that this differs from flat space
in spherical coordinates, both in the presence of a scattering potential and
the existence of two linearly independent regular solutions (2.33) of the radial
wave equation (2.30). In flat space, rS = 0 and r∗ = r so the corresponding
wave equation has a singular point at the origin r = 0 within the finite range
of the radial variable. This forces one to accept only the solutions of (2.30)
which are regular at the origin, namely rj`(kr) (with k =

√
ω2 − µ2) and

exclude the irregular solutions whose derivatives diverge there. The mass µ
does not drop out and there remains a gap between the positive and negative
energy solutions in flat space.

In contrast, in the Schwarzschild case the change of variables (2.30) and
wave equation (2.31) shows that the equation and both its solutions are
regular at the horizon r∗ → −∞. The origin r = 0 is not present within
the range −∞ ≤ r∗ ≤ +∞ at all. Hence no particular linear combination
of (2.33) is preferred a priori, and we need to retain both solutions. The
frequency integral in (2.35) also extends down to ω = 0. At ω = 0 the
differential equation (2.30) admits solutions which behave linearly in r∗,
hence logarithmically as ln(r/rS − 1) near the horizon. Whereas modes
behaving this way over an infinite domain are excluded by initial conditions
with compact support, the horizon is a finite distance away from any point
of fixed r > rS in the physical Schwarzschild line element (2.1), and hence
these modes are no longer excluded a priori. In several important respects,
the radial wave equation (2.30) and Hilbert space spanned by its solutions
are discontinuously different in the flat and Schwarzschild cases.

Since the static Schwarzschild geometry (2.2) approaches ordinary flat
space as r → ∞ one natural definition of the “vacuum” would seem to be
the state annihilated by all of the aIω`m, viz.

aL
ω`m|B〉 = aRω`m|B〉 = 0 . (2.39)

This state and its Green’s functions were studied in detail by Boulware [35]
and is denoted here by |B〉. If one calculates the expectation value of the
stress-energy tensor of the massless (conformally coupled) scalar field,

T a b = 2
3(∇aΦ)(∇bΦ)− 1

6 δ
a
b (∇Φ)2 − 1

3 Φ∇a∇bΦ , (2.40)

in the Boulware state, one finds the usual (quartic) divergence of the vacuum
energy, obtained also in flat space, which must be removed, and a finite
remainder, which vanishes as r →∞ (as r2

S/r
6) just as one would expect for
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the Minkowski vacuum far from the black hole. However the renormalized
expectation value of (2.40) has the property that [36]

〈B|T ab|B〉R → −
π2

90
~c

(4πrS)4

(
1− rS

r

)−2
diag (−3, 1, 1, 1) , (2.41)

as r → rS, where it diverges. Thus in this Boulware state the apparent coor-
dinate singularity of the Schwarzschild horizon is now the locus of arbitrarily
high energy densities. Clearly, if such a state were realized in practice, its
stress-energy would act as a physical source for the semi-classical Einstein’s
equations

Rab −
R

2
δab + Λ δab = 8πG〈T ab〉R (2.42)

(with Λ = 0 here) and necessarily influence the background spacetime (2.1)
which assumed T ab = 0. Such large stresses as present in (2.41) would cause
the solution of (2.42) to deviate markedly from the classical Schwarzschild
geometry (2.2) near the horizon, and require re-evaluation of the entire start-
ing point of the discussion, and certainly the analytic continuation (2.7).

The stress-energy in (2.41) is the negative of that of a scalar field in a
thermal state at the local blueshifted Tolman–Hawking temperature [37]

Tloc = TH

(
1− rS

r

)−1/2
. (2.43)

Mathematically, the stress-energy is proportional to an integral over fre-
quencies whose finite part is proportional to T 4

loc, and the behavior (2.41)
as r → rS is obtained. This contribution to the frequency integral is dom-
inated by frequencies ω ∼ c/rS, defined by (2.29) with respect to the time
at infinity, which is the only fixed scale entering the scattering potential V`
in (2.32) if µ = 0. (Since near the horizon the potential V` vanishes and
the mass µ drops out of the leading behavior of 〈T ab〉R as r → rS, all fields
behave essentially as massless fields there in any case). The local frequency
of these finite ω modes becomes arbitrarily large, even exceeding the Planck
scale on the horizon, which is what leads to the divergence in (2.41).

It is clear that the trans-Planckian issue arises because of the infinite
blue shift of frequencies at the event horizon, a necessary consequence of
the gravitational redshift of waves followed backwards to their origin at the
horizon, expressed in the relation (2.5). Classically, this infinite blueshift
presents no particular problem, since the energy of classical waves can be
made arbitrarily small, no matter how high their frequency, simply by mak-
ing their amplitude small enough. As soon as ~ 6= 0 (no matter how small),
the situation is quite different, as the amplitude of quantized wave modes is
bounded from below by the Heisenberg uncertainty relation, encoded in the
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commutation rules (2.36), (2.37). The local energy of the wave mode with
local frequency ωlocal is

Elocal = ~ωlocal = ~ω
(

1− rS

r

)−1/2
∼ ~c
rS

(
1− rS

r

)−1/2
(2.44)

which also diverges on the horizon. Since energy-momentum couples uni-
versally to gravity, the very large local vacuum zero point energy can affect
the geometry there. Let us emphasize that this large effect derives from the
choice of state in (2.39), and cannot be removed by a coordinate transfor-
mation, once the state has been specified. In the Boulware state the finite
vacuum polarization effects and their backreaction on the geometry near the
horizon are very large in any coordinates.

The relation (2.44) shows that the limits ~ → 0 and r → rS do not
commute. If ~ → 0, Elocal → 0, for all r > rS, and one might entertain the
logical possibility of analytically continuing the exterior Schwarzschild geom-
etry into the interior region, by extending the notion of general coordinate
invariance for real, differentiable coordinate transformations, xµ → x′µ(x)
to complex meromorphic transformations, and get around coordinate singu-
larities on the real axis. However, the behavior of the quantum vacuum zero
point energy near the horizon depends on arbitrarily high local frequencies
and is not smooth. In the Boulware state |B〉 it diverges, (2.41). Hence
analytic continuation around the coordinate singularity there may not be
physically justified in the quantum theory, and certainly not if the matter
field is in this state.

Hawking and Unruh argued for a different state in the gravitational
collapse problem, different from the Boulware state and one which is no
longer time symmetric [20, 38]. In that state, denoted by |U〉, only the L
ingoing modes are taken to be in the vacuum in the first half of (2.39),
but the R outgoing modes in the final state are thermally populated at
infinity with T = TH. The additional finite thermal flux has a stress-energy
tensor that just cancels the diverging negative energy density (2.41) of the
Boulware state near the future horizon, T = +X (in any proper set of
regular coordinates there), and gives a positive flux of Hawking radiation to
infinity. Indeed, the Unruh state |U〉 is constructed by the requirement that
its “vacuum” modes are analytic in the Kruskal null coordinate U = T −X
across the future horizon. The Hawking flux in the Unruh state may be
thought of as bringing the quantum expectation value up to its vacuum
value at the future horizon where the Unruh state is locally similar to the
flat space vacuum. This adjustment necessarily produces a non-vacuum
state of flux of real quanta at infinity.
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In this way, the Hawking–Unruh state maintains the regularity (and
smallness) of the stress-energy tensor on the future horizon, consistent with
the assumption of negligible local backreaction of the radiation on the space-
time geometry itself. To obtain this result, however, one must use the same
set of modes (2.33) in either case, and follow them to arbitrarily large local
frequencies near the horizon, with a specific boundary condition of analyt-
icity in U = T − X there. This produces an outward Hawking flux by a
compensating negative energy flux through the future horizon and into the
coordinate singularity at r = 0. In other words, one must assume that or-
dinary quantum field theory and the wave equation (2.28) holds on a fixed
classical background geometry with arbitrary accuracy all the way down to
the distances of the order (and even arbitrarily smaller than) of the Planck
scale LPl, at which short distances one would normally expect the semi-
classical theory to break down completely.

Whereas, for example, in the Coulomb scattering problem one assumes
regular wave functions, unitarity and no flux into or out of the Coulomb
singularity (and a formally divergent stress-energy density there), in the
Schwarzschild case the Hawking–Unruh state assumes a regular stress-tensor
on the future horizon which necessarily requires a negative energy flux
through it and down to the singularity, violating unitarity. Conversely,
the Boulware state has no energy flux through the horizon but a diverg-
ing stress-energy there (2.41). Finally the Hartle–Hawking–Israel state is a
thermal one for both the L and R modes, and therefore has no flux into
or out of the singularity, and a regular stress tensor on the horizon, but it
is a state thermally populated with both ingoing and outgoing quanta even
at infinity [39–41]. As we already have seen, such a state is thermodynam-
ically unstable. Unlike in flat space, there is no choice of boundary condi-
tions which satisfies all three criteria of (i) regularity on the future horizon,
(ii) zero flux there (and hence zero flux into the future singularity at r = 0),
and (iii) vacuum-like at infinity. So an inescapable conclusion is that at
least one of these three criteria must be abandoned, but pure mathematics
cannot tell us which.

Despite the apparently thermal expectation values of the two states |B〉
and |U〉, each are pure states related to each other by a Bogoliubov trans-
formation. In the case of |U〉 the apparently thermal emission is consistent
with a pure state because precise quantum mechanical phase correlations
are set up and maintained between the modes outgoing to infinity and those
infalling into the future singularity. The pure state becomes a mixed thermal
state if and only if one sums over the modes localized behind the horizon as
unobservable [42–44]. Of course, such an averaging procedure entails giving
up any hope of keeping track of the correlations that might exist between
the radiated quanta at different times. It is also somewhat paradoxical that
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although information seems to be “lost” by the pair creation process in which
one member of the pair falls into the black hole, the mass of the hole and
hence the Bekenstein–Hawking entropy (2.24) is decreased by the thermal
emission. This is very different from a normal thermal emission process
from a star such as the sun, for example. In thermal equilibrium the star’s
radiant energy is supplied by its nuclear interactions in its core, and simply
passed outward at a steady rate. Neither the temperature profile nor the
total entropy of the sun changes in this steady state process, and the change
is its mass is completely negligible.

Later authors have shown that the stress-tensor for a thermally popu-
lated state at an arbitrary temperature T 6= TH behaves like [45]

〈T ab〉R →
π2

90
k4

B

(~c)3

(
T 4 − T 4

H

) (
1− rS

r

)−2
diag (−3, 1, 1, 1) (2.45)

near the horizon. This divergence and its disappearance if the temper-
ature equals the Hawking temperature can be understood geometrically.
From the Kruskal coordinate transformation (2.7), we observe that if the
Schwarzschild static time coordinate t is continued to imaginary values, then
the resulting Euclidean signature Riemannian manifold has a conical singu-
larity at r = rS unless the Euclidean time variable is periodic with periodicity
an integer multiple of 4πrS/c ≡ βH. Likewise, in order to avoid a singularity
in the Green’s functions and stress-energy tensor of a quantum field on this
background, they too must have this Euclidean periodicity. This is nothing
other than the Kubo–Martin–Schwinger (KMS) Euclidean periodicity con-
dition [46] for the thermal state of a quantum field theory at temperature
~/kBβH = TH. In fact, this is one way in which the Hawking temperature
was intuitively arrived at in Ref. [39, 42]. If T 6= TH, the Euclidean pe-
riodicity of the thermal state does not match 2π~/kBTH, and the conical
singularity at r = rS leads to the divergence in (2.45).

Although the divergence in the renormalized expectation value is can-
celed if the modes are populated with a thermal distribution at a tempera-
ture precisely equal to the Hawking temperature, c.f. (2.45), our discussion
of fluctuations in the previous section leads us to expect that even a slight
variation of the temperature away from the mean value of 〈T ab〉 will produce
very large fluctuations in the energy density near the horizon. Fluctuations
are intrinsic to both thermal and quantum theory, and require calculating
〈T ab(x)T cd(x

′)〉, for a linear response treatment of their effect on the space-
time for their quantitative analysis [47]. One would expect that the natural
time scale for the instability at the horizon to develop in such an analysis is
the only dynamical timescale available, given by (2.23) and therefore very
rapid.
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The minimal conclusion from these considerations is that the macro-
scopic quantum physics of black holes is quite delicately dependent upon
what one assumes for the population of trans-Planckian frequency modes
in the near vicinity of the black hole horizon. Depending upon how they
are treated, by boundary conditions, either these ultrahigh frequencies are
responsible for the thermal evaporation, or they cause the stress-tensor to
diverge and can produce significant backreaction. The results depend radi-
cally on the choice of state, and the correct physics can be determined only
if fluctuations about typical states are studied in a systematic way in the
collapse problem. To date this investigation has not been carried out. In
any case it is clear that one cannot maintain vacuum boundary conditions
at both the horizon and large distances from the black hole. Thus the ob-
struction to a global vacuum in Schwarzschild spacetime has a topological
character, related to the possible appearance of a conical singularity on the
horizon and involving singular coordinate transformations there.

Examples of singular coordinate transformations, conical-like singular-
ities and global obstructions associated with genuine physical effects are
known in other areas of quantum physics. In classical electromagnetism the
gauge potential Aµ is unmeasurable locally and may be gauged away. Only
the field strength tensor Fµν = ∂µAν−∂νAµ and functions of it are gauge in-
variant and locally measurable. However, the circulation integral

∮
C Aµdx

µ

is also gauge invariant, and quantum mechanically, therefore so is the phase
factor

W (C) = exp

 iq

~c

∮
C

Aµdx
µ

 (2.46)

around any closed loop C. It measures the magnetic flux threading the loop.
IfW (C) 6= 1, then the gauge potential cannot be set equal to zero everywhere
along C by a regular gauge transformation, even if the local electromagnetic
field evaluated at all points along C vanishes. The singular gauge trans-
formation which is necessary to set Aµ = 0 physically corresponds to the
creation or destruction of a magnetic vortex in a superconductor, which
would be pointlike and have infinite energy (were it not for its normal, non-
superconducting core of finite radius). The requirement that the complex
valued electron pair density 〈ΨΨ〉 be single valued around any closed loop
leads to flux quantization of magnetic flux in superconductors [48], with
q = 2e for the Cooper pair [49,50].

A second example of the physical relevance of the non-local phase factor
(2.46) is the Aharonov–Bohm effect [52], which shows that the interference
pattern of electron waves passing around a solenoidal magnetic field con-
fined to a certain region of space is affected by the presence of the field in
the interior enclosed by the interfering trajectories, even if the electrons’
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classical trajectories are confined to the region where the local field strength
tensor Fµν vanishes identically. The non-local gauge invariant phase factor
(2.46) has physical consequences for interference of electron waves that do
not depend upon the strength of the local field along the classical electron
trajectory.

Both of these physical effects of gauge potentials which can be gauged
away locally but not globally are expressed mathematically by the state-
ment that QED is properly defined as a theory of a U(1) fiber bundle over
spacetime. Depending upon the topology of the base manifold of spacetime
(for example whether or not it is “punctured” by excising a region where the
magnetic field of the Aharonov–Bohm solenoid is non-zero), the topology of
this fiber bundle may be non-trivial and non-local gauge invariant quantities
such as (2.46) can carry information about physical processes.

The global quantum effect of blueshift near a black hole horizon has a
topological aspect which is similar. Although the contractions of the local
Riemann curvature tensor remain finite in the classical Schwarzschild geom-
etry (2.6), this static geometry has a timelike Killing field with components

Ka = (1, 0, 0, 0) (2.47)

in the static coordinates (t, r, θ, φ) of (2.2). The norm of this Killing vector is

(−KaKa)1/2 =
√
−gtt = f1/2(r) (2.48)

exactly the gravitational redshift (blueshift) factor appearing in (2.5) or
(2.44), and to the inverse fourth power in (2.41). The quantum state of the
system, specified in Fourier space by (2.39) retains this global information
about the infinite blueshift at the horizon relative to the standard of time in
the asymptotically flat region, r →∞, because of the existence of the global
timelike Killing field (2.47). This generator of time translation symmetry has
been used in defining the Boulware state (2.39) to distinguish positive from
negative frequencies, and hence distinguish particle-waves from antiparticle-
waves in the quantum theory. The norm (2.48) is a completely coordinate
invariant (albeit non-local) scalar quantity, not directly related to the local
curvature. Hence there is no reason of coordinate invariance that precludes
it from having physical effects, and in particular, large physical effects at
the horizon in a state like |B〉.

The horizon where the norm (2.48) vanishes has topological significance.
On the Euclidean section t → it with it → it + βH periodically identi-
fied as suggested by Hawking and the Unruh state boundary conditions, the
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Euler characteristic, defined in terms of the Riemann dual tensor ∗Rabcd =
εabefR

ef
cd/2, is

χE =
1

32π2

∫
d4x
√
g ∗Rabcd

∗Rabcd

=
1

32π2

∫
d4x
√
g
[
RabcdR

abcd − 4RabRab +R2
]

=
1

32π2
4πβH

∞∫
rS

12r2
S

r6
r2dr = 2 , (2.49)

where we have used βH = ~/kBTH = 4πrS (with c = 1), (2.6) and the
vacuum Einstein equations Rab = R = 0 for the Schwarzschild solution.
The Euclidean Schwarzschild manifold with period βH and r ≥ rS has the
topology R2×S2, unlike flat R4. This is reflected in the Euler characteristic
(2.49), and the doubling of regular solutions to the radial equation (2.30).
General theorems in differential geometry relate the number of fixed points
of a Killing field where the norm (2.48) vanishes to the Euler characteristic
of the manifold [51], so that χE = 2 is associated with the vanishing of (2.48)
at r = rS. A periodicity condition on the orbits of the Killing field (2.47),
particularly in the complexified domain, in order to eliminate the conical
singularity at rS when the period of it is different than βH is completely
non-trivial at the quantum level and an a priori unwarranted assumption.
It is analogous to assuming the triviality of the U(1) bundle and of the phase
factor (2.46), which would miss genuine physical effects such as Abrikosov
vortices and the quantization of circulation and magnetic flux in superfluids
and superconductors [50], and the Bohm–Aharanov effect in QED [52].

In the gravitational case the possible non-triviality of the GL(4) bundle
of General Relativity is encoded in the fact that the Euler density in (2.49)
can be expressed as the total divergence of a frame dependent topological
current [53], dual to an anti-symmetric 3-form gauge potential

∗Rabcd
∗Rabcd = ∇aΩa = ∇a(εabcdAbcd) (2.50)

and the surface integral of this gauge potential over a closed bounding
3-surface, ∮

Σ

εabcdAabc dΣd (2.51)

is coordinate (gauge) invariant, under the gauge transformation,

Aabc → Aabc +∇[aθbc] . (2.52)
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Thus if Σ is the S2 ⊗ R tube at fixed r from t1 to t2, the integral (2.51)
measures the topological Gauss–Bonnet–Chern charge residing in the inte-
rior of the tube, much as the circulation integral in the exponent of (2.46)
measures the magnetic flux from a superconducting vortex or an Aharonov–
Bohn solenoid threading its interior.

Concerning the Riemann tensor itself, we note that in the general static
metric of (2.1), the tensor component

Rtrtr =
h

4

(
f ′ 2

f2
− 2f ′′

f
− h′

h

f ′

f

)
(2.53)

(where primes denote differentiation with respect to r) becomes −f ′′/2 and
hence remains finite when the two functions f = h are equal. However,
Einstein’s equations in the static geometry,

−Gtt =
1
r2

d

dr
[r (1− h)] = −8πGT tt = 8πGρ , (2.54a)

Grr =
h

rf

df

dr
+

1
r2

(h− 1) = 8πGT rr = 8πGp , (2.54b)

give
d

dr

(
h

f

)
= −8πG(ρ+ p)

r

f
. (2.55)

Hence if the non-vacuum stress-energy has ρ + p > 0 in the region where
f or h vanishes, in general h 6= f and the cancellation of the singularities
at h = f = 0, special for static vacuum solutions to Einstein’s equations,
will not occur. Any perturbation of the vacuum Schwarzschild spacetime
with ρ + p 6= 0 in a static frame in the vicinity of the horizon has the
potential to produce Riemann tensor perturbations, δRtrtr ∼ (r2

Sf)−1, which
are generically large at the horizon, where f → 0, and thus will produce a
large change in the local geometry there. Further, the equation of stress-
energy conservation in a static, spherically symmetric spacetime is

∇aT ar =
dp

dr
+

(ρ+ p)
2f

df

dr
+

2 (p− p⊥)
r

= 0 (2.56)

(where p⊥ = T θθ = T φφ is the transverse pressure while p = T rr is the radial
pressure). This shows that any matter with the effective equation of state
p = p⊥ = wρ must have a stress-energy which behaves like f−(1+w)/2w,
which diverges on the horizon if w > 0. Note that this is consistent with
(2.41) for w = 1

3 producing a conical singularity.
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From these various considerations we conclude that the cancellation of
divergences on a black hole event horizon is an extremely delicate matter,
and there is no reason to expect it to be generic in quantum theory. This does
not violate the Principle of Equivalence, if that principle is understood to be
embodied in the requirement that physics should respect general coordinate
invariance under all real, non-singular coordinate transformations. Singular
coordinate transformations are another matter.

Mathematically, gauging away coordinate singularities on the horizon
amounts to an additional assumption about the triviality of the GL(4) frame
bundle of General Relativity, which may not be warranted. Experimentally
well-established applications of quantum theory already teach us by a num-
ber of examples in other fields that such improper “gauge” transformations
generally contain new physical effects. Physically these effects are associated
with the quantum wavelike nature of matter which cannot be idealized as
arbitrarily small, isolated pointlike particles, particularly in gravity where
such an extreme local limit must produce infinite energies. Instead, matter
fields obey wave equations such as (2.28) which require boundary conditions
for their full solution. In quantum theory the dependence of local physics
on these boundary conditions, through specification of the quantum state of
the system as in (2.39) does not violate the Principle of Equivalence. It is
only our uncritical and unexamined classical notions of strict and absolute
locality that are violated in known quantum phenomena such as entangle-
ment and macroscopic coherence. Expectation values of the stress-energy
tensor T ab can perfectly well depend on non-local invariants such as (2.48)
and (2.51), analogous to (2.46) in QED. A new set of calculation tools is
needed in order to determine these quantum effects in a systematic way, and
bring gravity into accordance with general quantum principles on macro-
scopic scales. This is what we seek to provide in the succeeding sections.

3. The challenge of cosmological dark energy

The second challenge for macroscopic quantum effects in gravity arise
on the cosmological scale of the Hubble expansion itself, and in particular
upon the discovery of the acceleration of the expansion rate of the Universe.

3.1. The cosmological constant and energy of the vacuum

In classical General Relativity, the requirement that the field equations
involve no more than two derivatives of the metric tensor allows for the
possible addition of a constant term, the cosmological term Λ, to Einstein’s
equations

Rab −
R

2
δab + Λ δab =

8πG
c4

T ab . (3.1)
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If transposed to the right side of this relation, the Λ term corresponds
to a constant energy density ρΛ = c4Λ/8πG and isotropic pressure pΛ =
−c4Λ/8πG permeating all of space uniformly, and independently of any lo-
calized matter sources. Hence, even if the matter T ab = 0, a cosmological
term causes spacetime to become curved with a radius of curvature of the
order of |Λ|−1/2.

With Λ = 0 there is no fixed length scale in the vacuum Einstein equa-
tions, G/c4 being simply a conversion factor between the units of energy and
those of length. Hence in purely classical physics there is no natural funda-
mental length scale to which Λ can be compared, and Λ may take on any
value whatsoever with no difficulty (and with no explanation) in classical
General Relativity.

As soon as we allow ~ 6= 0, there is a quantity with the dimensions of
length that can be formed from ~, G, and c, namely the Planck length (2.17).
Hence in quantum theory the quantity

λ ≡ ΛL2
Pl =

~GΛ
c3

(3.2)

becomes a dimensionless pure number, whose value one might expect a the-
ory of gravity incorporating quantum effects to address. Notice that like the
effects we have been considering in black hole physics this quantity requires
both ~ and G to be different than zero.

Some eighty years ago Pauli was apparently the first to consider the
question of the effects of quantum vacuum fluctuations on the the curvature
of space [54]. Pauli recognized that the sum of zero point energies of the
two transverse electromagnetic field modes in vacuo

ρΛ = 2

L−1
min∫

d3k

(2π)3

~ωk

2
=

1
8π2

~c
L 4

min

= −pΛ (3.3)

contribute to the stress-energy tensor of Einstein’s theory as would an ef-
fective cosmological term Λ > 0. Since the integral (3.3) is quartically di-
vergent, an ultraviolet cutoff L−1

min of (3.3) at large k is needed. Taking this
short distance cutoff Lmin to be of the order of the classical electron radius
e2/mc2, Pauli concluded that if his estimate were correct, Einstein’s theory
with this large a Λ would lead to a universe so curved that its total size
“could not even reach to the moon” [54]. If instead of the classical electron
radius, the apparently natural but much shorter length scale of Lmin ∼ LPl

is used to cut off the frequency sum in (3.3), then the estimate for the cos-
mological term in Einstein’s equations becomes vastly larger, and the entire
universe would be limited in size to the microscopic scale of LPl itself, in
even more striking disagreement with observation.
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Clearly Pauli’s estimate of the contribution of short distance modes of the
electromagnetic field to the curvature of space, by using (3.3) as a source for
Einstein’s equations (3.1) is wrong. The question is why. Here the Casimir
effect may have something to teach us [55]. The vacuum zero point fluc-
tuations being considered in (3.3) are the same ones that contribute to the
Casimir effect, but this estimate of the scale of vacuum zero point energy,
quartically dependent on a short distance cutoff Lmin, is certainly not rele-
vant for the effect observed in the laboratory. In calculations of the Casimir
force between conductors, one subtracts the zero point energy of the electro-
magnetic field in an infinitely extended vacuum (with the conductors absent)
from the modified zero point energies in the presence of the conductors. It is
this subtracted zero point energy of the electromagnetic vacuum, depending
upon the boundary conditions imposed by the conducting surfaces, which
leads to experimentally well verified results for the force between the con-
ductors. In this renormalization procedure the ultraviolet cutoff L−1

min drops
out, and the distance scale of quantum fluctuations that determine the mag-
nitude of the Casimir effect is not the microscopic classical electron radius,
as in Pauli’s original estimate, nor much less the even more microscopic
Planck length LPl, but rather the relatively macroscopic distance d between
the conducting boundary surfaces. The resulting subtracted energy density
of the vacuum between the conductors is [55]

ρv = − π2

720
~c
d4
. (3.4)

This energy density is of the opposite sign as (3.3), leading to an attractive
force per unit area between the plates of 0.013 dyne/cm2 (µm/d)4, a value
which is both independent of the ultraviolet cutoff L−1

min, and the microscopic
details of the atomic constituents of the conductors. This is a clear indica-
tion, confirmed by experiment, that the measurable effects associated with
vacuum fluctuations are infrared phenomena, dependent upon macroscopic
boundary conditions, which have little or nothing to do with the extreme
ultraviolet modes in (3.3).

Actually, the original Casimir calculation of the force between exactly
parallel flat plates of infinite conductivity hides some important features of
the general case. As soon as the conducting plates have any finite curvature,
the local stress-energy tensor diverges on the boundary. A general classifi-
cation of these divergences has been given in Ref. [56]. This shows that in
the presence of curved boundaries, there is residual sensitivity to ultraviolet
effects, much as in the divergence of the stress-energy tensor (2.41) in the
Boulware state in the Schwarzschild geometry. By now the meaning of these
divergences and the correct physical method of handling them have been
understood [57]. The divergences are artifacts of the theoretical overideal-
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ization of the conductors as perfect at arbitrarily high frequencies. Any real
metal has a finite conductivity which leads to a finite skin depth and van-
ishing reflection coefficient at arbitrarily high frequencies. When the effects
of finite conductivity of real metals such as gold used in the experiments
are taken into account, all local stresses and energy densities are finite, and
the theoretical predictions in accord with experiment [57]. Thus although
the Casimir effect itself and in its original form (3.4) is a macroscopic effect
of vacuum zero point energy, the details do retain some sensitivity to the
physics of the surface, which is short distance compared to the macroscopic
separation d (although, of course, completely unrelated to an ultrashort dis-
tance cutoff on the scale of the electron radius or LPl).

By the Equivalence Principle, local ultrashort distance behavior in a
mildly curved spacetime is essentially equivalent to that in flat spacetime.
Hence on physical grounds we should not expect the extreme ultraviolet
cutoff dependence of (3.3) to affect the Universe in the large any more than
it affects the force between metallic conductors in the laboratory, although
any possible surface boundary effects will have to be treated carefully.

In the case of the Casimir effect a constant zero point energy of the
vacuum, no matter how large, does not affect the force between the plates.
In the case of cosmology it is usually taken for granted that any effects of
boundary conditions can be neglected. It is not obvious then what should
play the role of the conducting plates in determining the magnitude of ρv in
the Universe, and the magnitude of any effect of quantum zero point energy
on the curvature of space has remained unclear from Pauli’s original estimate
down to the present. In recent years this has evolved from a question of fun-
damental importance in theoretical physics to a central one of observational
cosmology as well. Observations of type Ia supernovae at moderately large
redshifts (z ∼ 0.5 to 1) have led to the conclusion that the Hubble expansion
of the Universe is accelerating [58]. According to Einstein’s equations this
acceleration is possible if and only if the energy density and pressure of the
dominant component of the Universe satisfy the inequality

ρ+ 3p ≡ ρ (1 + 3w) < 0 . (3.5)

A vacuum energy with ρ > 0 and w ≡ pv/ρv = −1 leads to an accelerated
expansion, a kind of “repulsive” gravity in which the relativistic effects of
a negative pressure can overcome a positive energy density in (3.5). Taken
at face value, the observations imply that some 74% of the energy in the
universe is of this hitherto undetected w = −1 dark variety. This leads to a
non-zero inferred cosmological term in Einstein’s equations of

Λmeas ' (0.74)
3H2

0

c2
' 1.4× 10−56 cm−2 ' 3.6× 10−122 c3

~G
. (3.6)
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Here H0 is the present value of the Hubble parameter, approximately
73 km/sec/Mpc ' 2.4 × 10−18 sec−1. The last number in (3.6) expresses
the value of the cosmological dark energy inferred from the SN Ia data in
terms of Planck units, L−2

Pl = c3/(~G), i.e. the dimensionless number in (3.2)
has the value

λ ' 3.6× 10−122 . (3.7)

Explaining the value of this smallest number in all of physics is the basic
form of the cosmological constant problem.

3.2. Classical de Sitter spacetime

Just as in our discussion of black hole physics in Sec. 2, we begin our
discussion of cosmological dark energy with a review of the simplest classical
spacetime that serves as the stage for discussion of quantum effects of a cos-
mological term. The maximally symmetric solution to the classical Einstein
equations (3.1) with a positive cosmological term is the one found by de
Sitter in 1917 [59]. In fact, de Sitter expressed his solution of the vacuum
Einstein equations (3.1) with Λ > 0 and T ab = 0 in a static, spherically
symmetric form analogous to that of the Schwarzschild solution (2.1). In
those coordinates de Sitter’s solution can be presented as

f(r) = h(r) = 1−H2r2 = 1− r2

r2
H

, (3.8)

instead of (2.2). The length scale rH is related to the cosmological term by

rH =
1
H

=

√
3
Λ
. (3.9)

In this spherically symmetric static form, the de Sitter metric has rotational
O(3) symmetry about the point r = 0 and an apparent horizon at r = rH.

Actually the de Sitter solution has a larger O(4,1) symmetry which can
be made manifest in its global analytic extension, analogous to the T,X
Kruskal–Szekeres coordinates in the Schwarzschild case. Consider a five
dimensional Minkowski space with the standard flat metric

ds2 = ηAB dX
A dXB = −dT 2 + dW 2 + dX2 + dY 2 + dZ2 , (3.10)

subject to the condition

ηABX
AXB = −T 2 +W 2 +X2 + Y 2 + Z2 = r2

H = H−2 , (3.11)

with the indices A,B = 0, 1, 2, 3, 4 raised and lowered with the five dimen-
sional Minkowski metric ηAB = diag (−1, 1, 1, 1, 1). Here and henceforward
we generally set the speed of light c = 1, except when needed for emphasis.
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If T were a spacelike coordinate rather than timelike so that the four
dimensional manifold defined by (3.10) and (3.11) had a Euclidean signa-
ture, we would clearly be discussing a four-sphere S4 with an O(5) symmetry
group. Because of the Lorentzian signature, these relations instead define
a single sheeted hyperbolid of revolution, depicted in Fig. 2, with the non-
compact symmetry group O(4,1), the maximal possible symmetry for any
solution of the vacuum Einstein field equations (3.1) with a positive cosmo-
logical term and T ab = 0 in four dimensions.

Fig. 2. The de Sitter manifold represented as a single sheeted hyperboloid of rev-
olution about the T axis, in which the X1, X2 coordinates are suppressed. The
hypersurfaces at constant T are three-spheres, S3. The three-spheres at T = ±∞
are denoted by I±.

The curvature tensor of de Sitter space satisfies

Rabcd = H2
(
δac δ

b
d − δad δbc

)
, (3.12a)

Rab = 3H2 δab , (3.12b)
R = 12H2 (3.12c)

the Lie algebra so(4,1) is generated by the generators of the Lorentz group
in the 4 + 1 dimensional flat embedding spacetime (3.10). In the coordinate
(adjoint) representation the 10 anti-Hermitian generators of this symmetry
are

LAB = XA
∂

∂XB
−XB

∂

∂XA
= −LBA . (3.13)
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These 10 generators satisfy

[LAB, LCD] = −ηAC LBD + ηBC LAD − ηBD LAC + ηAD LBC (3.14)

the Lie algebra so(4,1). De Sitter space has 10 Killing vectors corresponding
to these 10 generators.

The hyperbolic coordinates of de Sitter space are defined by

T =
1
H

sinhu , (3.15a)

W =
1
H

coshu cosχ , (3.15b)

Xi =
1
H

coshu sinχ n̂i , i = 1, 2, 3 , (3.15c)

where
n̂ = (sin θ cosφ , sin θ sinφ , cos θ) (3.16)

is the unit vector on S2, and cast the de Sitter line element in the form

ds2 =
1
H2

[
−du2 + cosh2 u

(
dχ2 + sin2 χdΩ2

)]
. (3.17)

The quantity in round parentheses is

dΩ2
3 ≡

[
d
(
sinχ n̂i

)]2 + [d(cosχ)]2 = dχ2 + sin2 χdΩ2 (3.18)

the standard round metric on S3. Hence in the geodesically complete coordi-
nates of (3.15) the de Sitter line element (3.17) is an hyperboloid of revolu-
tion whose constant u sections are three spheres, represented in Fig. 2, which
are invariant under the O(4) subgroup of O(4,1). It is sometimes convenient
to define the hyperbolic conformal time coordinate υ by sec υ = coshu, so
that (3.17) becomes

ds2 = H−2 sec2 υ
(
−dυ2 + dΩ2

3

)
(3.19)

conformal to the Einstein static cylinder with −π/2 ≤ υ ≤ π/2.
In cosmology it is more common to use instead the Friedmann–Lemaître–

Robertson–Walker (FLRW) line element with flat R3 spatial sections, viz.

ds2 = −dτ2 + a2(τ) d~x · d~x = −dτ2 + a2(τ) (dx2 + dy2 + dz2)
= −dτ2 + a2(τ)(d%2 + %2dΩ2) . (3.20)

De Sitter space can be brought in the FLRW form by setting

T =
1

2H

(
a− 1

a

)
+
Ha

2
%2 , (3.21a)

W =
1

2H

(
a+

1
a

)
− Ha

2
%2 , (3.21b)

Xi = a % n̂i , (3.21c)
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with

a(τ) = eHτ , (3.22a)

% = |~x| =
√
x2 + y2 + z2 . (3.22b)

From (3.21) and (3.22), T + W ≥ 0 in these coordinates. Hence the flat
FLRW coordinates cover only one half of the full de Sitter hyperboloid,
with the hypersurfaces of constant RW time τ slicing the hyperboloid in
Fig. 2 at a 45◦ angle.

The change of time variable to the conformal time coordinate

η = −H−1e−Hτ = − 1
Ha

, a = − 1
Hη

(3.23)

is also often used to express the de Sitter line element is the conformally flat
form

ds2 = a2
(
−dη2 + d~x2

)
=

1
H2η2

(
−dη2 + d~x2

)
. (3.24)

From (3.15) and (3.21)

coshu sinχ = H%a = −%
η
, (3.25a)

sinhu+ coshu cosχ = a = − 1
Hη

(3.25b)

which gives the direct relation between hyperbolic coordinates and flat
FLRW coordinates.

The de Sitter static coordinates (t, r, θ, φ) are defined by

T =
1
H

√
1−H2r2 sinh(Ht) , (3.26a)

W =
1
H

√
1−H2r2 cosh(Ht) , (3.26b)

Xi = r n̂i . (3.26c)

They bring the line element (3.10) into the static, spherically symmetric
form (2.1) with (3.8), i.e.

ds2 = −
(
1−H2r2

)
dt2 +

dr2

(1−H2r2)
+ r2dΩ2 . (3.27)
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Just as in the Schwarzschild case (2.2) these static coordinates cover only
part of the analytically fully extended de Sitter manifold (3.11). From (3.26),
real static (t, r) coordinates cover only the quarter of the de Sitter manifold
where W ≥ 0 and both W ± T ≥ 0. This quarter is represented as the
rightmost wedge of the Carter–Penrose conformal diagram of de Sitter space
in Fig. 3.

Fig. 3. The Carter–Penrose conformal diagram for de Sitter space. Future and past
infinity are at I±. Only the quarter of the diagram labeled as the static region are
covered by the static coordinates of (3.27). The orbits of the static time Killing
field ∂/∂t are shown. The angular coordinates θ, φ are again suppressed.

The Regge–Wheeler radial coordinate r∗ can be defined in the static
frame by

r∗ =
1

2H
ln
(

1 +Hr

1−Hr

)
=

1
H

tanh−1(Hr) , (3.28a)

r =
1
H

tanh(Hr∗) , so that (3.28b)

dr∗ =
dr

1−H2r2
,

√
1−H2r2 = sech(Hr∗) , (3.28c)

and

ds2 = sech2(Hr∗)
(
−dt2 + dr∗ 2

)
+

1
H2

tanh2(Hr∗) dΩ2

=
1
H2

sech2(Hr∗)
[
−H2dt2 +H2dr∗ 2 + sinh2(Hr∗) dΩ2

]
. (3.29)
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Note that the horizon at r = H−1 = rH is mapped to r∗ = ∞ in these
coordinates, and that the spatial part of the line element in square brackets
(the “optical” metric) is

ds2
opt = H2dr∗ 2 + sinh2(Hr∗) dΩ2 = 4

d~y · d~y
(1− y2)2

, (3.30)

where the second form is obtained by defining

~y ≡ y n̂ , (3.31a)

y ≡ tanh
(
Hr∗

2

)
=

Hr

1 +
√

1−H2r2
(3.31b)

so that

r =
2
H

y

1 + y2
, r∗ =

1
H

ln
(

1 + y

1− y

)
. (3.31c)

Eq. (3.30) is a standard form of the line element of three-dimensional
Łobachewsky (hyperbolic or Euclidean anti-de Sitter) space H3. Thus, one
expects conformal field theory (CFT) behavior at the horizon boundary,
y = 1, r = rH . This is reflected also in the wave equation analogous
to (2.30) in which the corresponding potential V` of (3.44) vanishes at the
horizon, which we consider in the next subsection.

Since these various coordinatizations of the de Sitter manifold are quite
different globally, and involve singular coordinate transformations at the
horizon, much of the discussion of the Schwarzschild geometry have their
analogs in de Sitter spacetime. The Carter–Penrose conformal diagram for
the analytically extended de Sitter hyperboloid, Fig. 3, is similar to the
corresponding diagram in the Schwarzschild case, Fig. 1. In each case the
horizon is bifurcate (i.e. has two distinct parts) and the region covered by
the static coordinates (3.27) is duplicated by a second region centered on the
antipodal point of S3 where the sense of increasing static time t is reversed.
Thus the static Killing vector Ka (2.47) becomes null on either horizon and
spacelike in the upper and lower quarter wedges of Fig. 3.

3.3. Quantum effects in de Sitter spacetime

Quantum fluctuations and their backreaction effects in de Sitter space-
time were considered in [47,60–63]. These studies indicate that fluctuations
at the horizon scale rH are responsible for important backreaction effects
on the classical de Sitter expansion that could potentially relax the effec-
tive cosmological vacuum energy to zero. The authors of Refs. [64] have
performed a perturbative analysis of long wavelength gravitational fluctu-
ations in non de Sitter invariant initial states up to two-loop order. This
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work indicates the presence of secular terms in the quantum stress tensor of
fluctuations about de Sitter space, tending to decrease the effective vacuum
energy density, consistent with the earlier considerations in Refs. [47,60–63].
The authors of Ref. [65] have studied the stress tensor for long wavelength
cosmological perturbations in inflationary models as well, and also found a
backreaction effect of the right sign to slow inflation. See also Refs. [66,67],
and a discussion of these various approaches in Ref. [68].

One of the first indications of non-trivial quantum effects in de Sitter
spacetime is particle creation [60]. A space or time dependent background
field generally creates particles. Schwinger first studied this effect in QED in
a series of classic papers [21]. The rate of spontaneous decay of the electric
field into charged particles is

Γ =
(eE)2

c~2π2
exp

(
−m

2c3

eE~

)
(3.32)

in the limit eE � m2c3/~. From this point of view the exponential de Sitter
expansion (3.20)–(3.22) provides a time dependent background field which
can create particle pairs from the “vacuum”, converting the energy of the
classical gravitational background into that of particle modes. The rate of
this spontaneous creation of matter in de Sitter space can be calculated in
analogy to the Schwinger effect in an electric field, with a similar result for
the decay rate per unit volume [60],

Γ =
16H4

π2
exp

(
−2πm

~H

)
(3.33)

for a scalar massive field with arbitrary curvature coupling (i.e. m2 =
µ2 + ξR = µ2 + 12ξH2).

In the case of a spatially uniform electric field (and no magnetic fields)
the Maxwell equation,

∂ ~E

∂t
= −

〈
~j
〉

(3.34)

indicates that the creation of these particle pairs tends (at least initially)
to decrease the strength of the electric field. In cosmology the Friedmann
equation, (

ȧ

a

)2

= H2 =
8πG

3
ρ , (3.35)

together with the equation of covariant energy conservation,

ρ̇+ 3H (ρ+ p) = 0 (3.36)
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(with over dots here denoting differentiation with respect to proper time τ)
imply that

Ḣ = −4πG
c2

(ρ+ p) . (3.37)

In both cases there is a classical static background that solves the equation
trivially, namely H or ~E a constant with zero source terms on the right hand
side of (3.34) or (3.37). In the case of (3.37) this is de Sitter spacetime with
ρΛ +pΛ = 0. Any creation of matter with ρ+p > 0 will tend to decrease the
strength of the classical background field H. The particle creation process
has been studied in greater detail in the electric field [69] and de Sitter [70]
cases, and backreaction effects were also taken into account in the QED case
in the large N limit [69]. In this limit self-interactions between the created
charge particles are neglected, but such scatterings are essential to the final
decay of the coherent classical field into particles. In the gravitational case
it has so far not been feasible to carry out a full dynamical calculation of
backreaction and particle scattering which would establish ρ + p > 0 and
final decay of the background value ofH. Unlike electromagnetism in gravity
there are massless particles which couple to the background field, and from
(3.33) these will give the largest effect. However, for minimally coupled
massless scalar particles and for gravitons themselves, the definition of the
“vacuum” state becomes more subtle, so that computing the infrared effects
of massless particles and their interactions requires a different approach.

One possible way to define a preferred state of a system is by its sym-
metries. Since the symmetry group of the maximally analytically extended
de Sitter hyperboloid is O(4,1), a maximally O(4,1) symmetric state can be
defined, for most field theories, including massive and massless conformally
invariant fields, such as the photon. Since under analytic continuation of
T → iT the de Sitter manifold becomes S4, which is compact, one can de-
fine a state by the requirement of maximal O(5) invariance, regularity on
S4, whose n-point functions are all analytic under the continuation. This is
often referred to as the Bunch–Davies (BD) state in the literature [71]. Since
the Euclidean S4 radius is rH, the Euclidean Green’s functions are periodic
in imaginary time with period 2πrH/c. This is again the KMS property of
a thermal Green’s function, and hence the BD state defined by this analytic
continuation from S4 is a thermal state with temperature [42,44],

TH =
~H

2πkB
, (3.38)

the Hawking temperature of de Sitter space. Hence the BD state in de Sitter
space is not a “vacuum” state, but is a state thermally populated with quanta
at temperature TH. In this respect it is rather like the Hartle–Hawking state
in the Schwarzschild background. In these fully time symmetric states there
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is no net particle creation on average and no decay rate. Because of the
full O(4,1) symmetry of the BD state, the expectation value of the energy-
momentum tensor of any matter fields in this state must itself be of the
form of a quantum correction to the cosmological term with ρ = −p ∼ H4

constant. The BD state usually assumed, tacitly or explicitly in models of
inflation. It is interesting that because of infrared divergences the BD state
does not exist for massless, minimally coupled scalar fields and gravitons
themselves [72], which implies that these fields must be in a state with less
than the full O(4,1) de Sitter symmetry. Once the de Sitter symmetry is
broken, however, it is not clear what the residual symmetry and final state
of the system is, or how to go about determining it.

Even the existence of a maximally symmetric state does not guaran-
tee its stability against small fluctuations. For example, it can be shown
that in the uniform constant electric field background there are exactly 10
isometries, the same number as with zero external field [73]. Thus one can
construct mathematically a state which respects all these isometries, includ-
ing a discrete symmetry corresponding to time reversal invariance, and no
net pair creation, without necessarily guaranteeing the stability of the vac-
uum against pair creation in an external electric field. A subtle point, easily
overlooked in Schwinger’s elegant effective action method, is that either time
asymmetric boundary/initial conditions must be specified in such a decay
problem, or it must be shown that the time symmetric state is dynami-
cally unstable to quantum fluctuations, spontaneously breaking the larger
isometry group to a smaller subgroup.

One may construct an argument analogous to that in the Schwarzschild
case that the de Sitter invariant BD should be quantum mechanically unsta-
ble, under fluctuations in its Hawking temperature. Note that the vacuum
energy within a spherical volume of radius rH is

EH =
4πr3

H

3
ρΛ =

c4

2G
1
H

(3.39)

which is inversely proportional to (3.38). Therefore,

dEH

dTH
= −EH

TH
= −πc

3kB

GH2
< 0 , (3.40)

and the heat capacity of the region of de Sitter space within one horizon
volume is apparently negative. This indicates that if the region can exchange
energy with its environment external to the cosmological horizon, the BD
thermal state will be unstable to such energy exchanges, analogously to the
black hole case. The problem of negative heat capacity is also similar.
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It has also been suggested that the Bekenstein–Hawking 1/4 area formula
for the entropy

SH
?= kB

AH
4L2

Pl

=
πc5kB

~GH2
(3.41)

be taken over to the de Sitter case [74]. However what degrees of freedom
this “entropy” counts are even less clear than in the black hole case. Note
also that from (3.39)

dEH = d(ρΛVH) = dρΛ VH + ρΛ dVH

= dρΛVH − pΛdVH

6= THdSH − pΛdVH . (3.42)

In fact, THdSH and dρΛVH have opposite signs. This implies that SH cannot
be interpreted as an entropy and/or additional contributions, such as surface
terms, are missing from (3.42).

Like the Schwarzschild case, de Sitter spacetime admits a static Killing
field which is timelike in one region of its maximal analytic extension. If one
considers any thermal state with a temperature T different from TH, defined
with respect to the static Killing time in one patch of de Sitter space, then
the renormalized stress-energy tensor is [45]

〈T ab〉R →
π2

90
k4

B

(~c)3

(
T 4 − T 4

H

) (
1−H2r2

)−2 diag (−3, 1, 1, 1) , (3.43)

as r → rH, analogous to (2.45) in the Schwarzschild case. Thus any fi-
nite deviation of the temperature from the Hawking–de Sitter temperature
(3.38) in the region interior to the horizon will produce a arbitrarily large
stress-energy on the horizon. The previous discussion in Sec. 2 about the
dependence of 〈T ab〉R on the gauge invariant but non-local norm of the static
Killing vector field, the non-commutivity of the limits ~ → 0 and r → rH,
and the breakdown of the analytic continuation hypothesis through coordi-
nate or conical singularities apply to the de Sitter case as well.

The wave equation of a quantum field propagating in de Sitter space can
also be separated in the static coordinates (3.27). By following the analogous
steps as used in (2.28)–(2.32) in the Schwarzschild case, one arrives at the
identical form of the radial scattering equation (2.30) in terms of the r∗
coordinate (3.28), with the scattering potential in de Sitter space given by

V`
∣∣
dS

= (1−H2r2)
[
`(`+ 1)
r2

+ µ2 + 2H2(6ξ − 1)
]

= H2

[
`(`+ 1) csch2(Hr∗) +

(
1
4
− ν2

)
sech2(Hr∗)

]
, (3.44)



2076 E. Mottola

where −ξ/2 is the RΦ2 coupling in the scalar field Lagrangian, and

ν ≡
√

9
4
− µ2

H2
− 12ξ . (3.45)

A significant difference of the effective one dimensional scattering problem
of spherical waves in the de Sitter case is that the coordinate singularity at
the origin r = 0 is in the physical range, compared to the Schwarzschild
case in which the r∗ coordinate range (−∞,∞) covers only the exterior
Schwarzschild geometry. Thus in order to avoid a singularity at the origin
we must require that the scattering solutions to (2.30) with (3.44) satisfy

fω`
∣∣
dS
∼ r`(`+1) as r → 0 , (3.46)

thereby excluding a possible singular r−` behavior for ` ≥ 1. This means
that in de Sitter space only the particular linear combination of ingoing
and outgoing solutions of the corresponding (2.30) vanishing at the origin
should be used in the quantization of the Φ field and not the general linear
combination in (2.33)–(2.35) appropriate in the Schwarzschild background.
As a corollary, this implies that there can be no analog of the Unruh state
in de Sitter spacetime, since (3.46) is equivalent to the requirement of no
net flux into or out of the origin at r = 0 in static de Sitter coordinates
(3.27). Otherwise the quantization of a scalar field in de Sitter space in these
coordinates is analogous to the Schwarzschild case, and one can again easily
find states regular at the origin which have diverging stress tensors on the
horizon, as in (3.43). The appearance of such states and large stress tensors
would necessarily mean large quantum backreaction effects in the vicinity of
the horizon r = rH, and the breakdown of O(4,1) de Sitter symmetry down
to O(3), with perhaps a very different global geometry than the analytic
continuation implied by extending the coordinates (3.17) globally. As in
the Schwarzschild case, this is ultimately a question of physics, not simply
mathematical analytic continuation of coordinates.

The earlier work on the behavior of the graviton propagator in de Sitter
space [75–77] also indicates the existence of infrared divergent contributions
to correlations at large distances. This violates cluster decomposition and
makes the definition of a graviton scattering matrix in global de Sitter space
problematic. The existence of long distance correlations and infrared diver-
gences is a signal of the breakdown of the global BD state. The relevance
of matter self-interactions, first studied in Refs. [78, 79] has been taken up
again recently in Refs. [80], where the phenomenon of runaway stimulated
emission in de Sitter space is explored. This adds to the by now substantial
literature on non-trivial quantum infrared behavior in de Sitter space [68].
Since infrared effects are the common feature of all these studies, one might
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well suppose that there should be some relevant operator(s) in the low en-
ergy effective theory of gravity which describes in a general and universal
way (i.e. independently of specific matter self-interactions) the quantum ef-
fects of matter/radiation fields on the macroscopic scales of both the black
hole and cosmological horizons, and which points to a possible resolution of
the physics in both cases. This is what a predictive effective field theory
(EFT) approach should provide.

4. Effective field theory: the role of anomalies

The important role of quantum anomalies in the low energy effective
field theory approach to the strong interactions is reviewed in this section,
and their relevance to the EFT of gravity discussed. The first and best
known example of this is the axial anomaly in QED and QCD. Since the
two-particle correlations that give rise to non-trivial infrared effects can be
seen already in this flat space case, we digress and review that here before
returning to the curved spacetime application in gravity.

4.1. The axial anomaly in QED and QCD

Although the triangle axial anomaly in both QED has been known for
some time [81–83], the general behavior of the amplitude off mass shell,
its spectral representation, the appearance of a massless pseudoscalar pole
in the limit of zero fermion mass, and the infrared aspects of the anomaly
generally have received only limited attention [84,85]. It is this generally less
emphasized infrared character of the axial anomaly which will be important
for our EFT considerations in gravity, so we begin by reviewing this aspect
of the axial anomaly in QED in some detail.

The vector and axial currents in QED are defined by1

Jµ(x) = ψ̄(x)γµψ(x) , (4.1a)
Jµ5 (x) = ψ̄(x)γµγ5ψ(x) . (4.1b)

The Dirac equation,

−iγµ(∂µ − ieAµ)ψ +mψ = 0 , (4.2)

implies that the vector current is conserved,

∂µJ
µ = 0 , (4.3)

1 We use the conventions that {γµ, γν} = −2 gµν = 2 diag (+−−−), so that γ0 = (γ0)†,
and γ5 ≡ iγ0γ1γ2γ3 = (γ5)† are hermitian, and tr(γ5γµγνγργσ) = −4iεµνρσ, where
εµνρσ = −εµνρσ is the fully anti-symmetric Levi–Civita tensor, with ε0123 = +1.
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while the axial current apparently obeys

∂µJ
µ
5 = 2im ψ̄γ5ψ (classically) . (4.4)

In the limit of vanishing fermion mass m → 0, the classical Lagrangian
has a Uch(1) global symmetry under ψ → eiαγ

5
ψ, in addition to U(1) local

gauge invariance, and Jµ5 is the Noether current corresponding to this chiral
symmetry. As is well known, both symmetries cannot be maintained simul-
taneously at the quantum level. Let us denote by 〈Jµ5 (z)〉A the expectation
value of the chiral current in the presence of a background electromagnetic
potential Aµ. Enforcing U(1) gauge invariance (4.3) on the full quantum
theory leads necessarily to a finite axial current anomaly,

∂µ〈Jµ5 〉A
∣∣∣
m=0

=
e2

16π2
εµνρσFµνFρσ =

e2

2π2
~E · ~B , (4.5)

in an external electromagnetic field. Varying this expression twice with
respect to the external A field we see that anomaly must appear in the
amplitude

Γµαβ(p, q) ≡ −i
∫
d4x

∫
d4y eipx+iqy δ2〈Jµ5 (0)〉A

δAα(x)δAβ(y)

∣∣∣∣∣
A=0

= ie2

∫
d4x

∫
d4y eiptx+iqy 〈T Jµ5 (0)Jα(x)Jβ(y)〉

∣∣
A=0

. (4.6)

At the lowest one-loop order it is given by the triangle diagram of Fig. 4,
plus the Bose symmetrized diagram with the photon legs interchanged.�

�
�
��� � �

� � ���	




Fig. 4. The triangle diagram contributing to the axial current anomaly. The four-
momentum of integration is l.

Elementary power counting indicates that the triangle diagram of Fig. 4
is superficially linearly divergent. The formal reason why (4.3) and (4.4)
cannot both be maintained at the quantum level is that verifying them
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requires the ability to shift the loop momentum integration variable l in the
triangle amplitude. Because the diagram is linearly divergent, such shifts
are inherently ambiguous, and can generate finite extra terms. It turns
out that there is no choice for removing the ambiguity which satisfies both
the vector and chiral Ward identities simultaneously, and one is forced to
choose between them. Thus although the ambiguity results in a well-defined
finite term, the axial anomaly has most often been presented as inherently
a problem of regularization of an apparently ultraviolet linearly divergent
loop integral [81–83].

There is an alternative derivation of the axial anomaly that emphasizes,
instead, its infrared character. The idea of this approach is to use the tensor
structure of the triangle amplitude to extract its well-defined ultraviolet fi-
nite parts, which are homogeneous of degree three in the external momenta
p and q. Then the remaining parts of the full amplitude may be determined
by the joint requirements of Lorentz covariance, Bose symmetry under in-
terchange of the two photon legs, and electromagnetic current conservation,

pαΓµαβ(p, q) = 0 = qβΓµαβ(p, q) , (4.7)

at the two vector vertices. By this method the full one-loop triangle contribu-
tion to Γµαβ(p, q), becomes completely determined in terms of well-defined
ultraviolet finite integrals which require no further regularization [86, 87].
The divergence of the axial current may then be computed unambiguously,
and one obtains (4.5) in the limit of vanishing fermion mass. It is this latter
method which makes clear that the anomaly is a consequence of symmetries
of the low energy theory, no matter how its UV behavior is tamed, provided
only that the regularization respects these symmetries. There is of course
no contradiction between these two points of view, since it is the same Ward
identities which are imposed in either method, and in any case in the con-
formal limit of vanishing fermion mass the infrared and ultraviolet behavior
of the triangle amplitude are one and the same.

The details of the calculation by this method may be found in Refs.
[86–88]. One first uses the Poincaré invariance of the vacuum to assert that
Γµαβ(p, q) can be expanded in the set of all three-index tensors constructible
from the p and q, with the correct Lorentz transformation properties. There
are exactly eight such tensors, two of which are linear in p or q, namely
εµαβλpλ and εµαβλqλ, while the remaining six are homogeneous of degree
three in the external momenta. However only certain linear combinations of
these eight tensors satisfy (4.7). Define first the two index tensor,

υαβ(p, q) ≡ εαβρσpρqσ , (4.8)
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which satisfies

υαβ(p, q) = υβα(q, p) , (4.9a)
pαυ

αβ(p, q) = 0 = qβυ
αβ(p, q) . (4.9b)

Then the six third rank tensors, τµαβi (p, q), i = 1, . . . , 6 which satisfy the
conditions (4.7),

pατ
µαβ
i (p, q) = 0 = τµαβi (p, q) qβ = 0 , i = 1, . . . , 6 (4.10)

are given in Table I.

TABLE I

The 6 third rank (pseudo)tensors obeying (4.10).

i τµαβi (p, q)

1 −p · q εµαβλpλ − pβ υµα(p, q)
2 p2εµαβλqλ + pαυµβ(p, q)
3 pµ υαβ(p, q)

4 p · q εµαβλqλ + qα υµβ(p, q)
5 −q2εµαβλpλ − qβυµα(p, q)
6 qµ υαβ(p, q)

Hence we may express the amplitude (4.6) satisfying (4.7) as a linear
combination

Γµαβ(p, q) =
6∑
i=1

fi τ
µαβ
i (p, q) , (4.11)

where fi = fi(k2; p2, q2) are dimension −2 scalar functions of the three in-
variants, p2, q2, and k2. Note from Table I that the two tensors of dimension
one which could potentially have logarithmically divergent scalar coefficient
functions occur only in linear combination with dimension three tensors.
Hence the coefficient functions fi of these linear combinations obeying (4.7)
are all ultraviolet finite. These finite contributions can be obtained unam-
biguously from the imaginary part of the triangle graph of Fig. 5, which are
finite a priori and then determining the real part from the imaginary part by
an unsubtracted, i.e. UV finite dispersion relation. This leads to the finite
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Fig. 5. The discontinuous or imaginary part of the triangle diagram of Fig. 4 with
respect to k2. The propagators which are cut by the dashed line are replaced by
their corresponding on-shell delta functions.

coefficients given in the literature [86–88], viz.

f1 = f4 =
e2

π2

1∫
0

dx

1−x∫
0

dy
xy

D
, (4.12a)

f2 =
e2

π2

1∫
0

dx

1−x∫
0

dy
x(1− x)

D
, (4.12b)

f5 =
e2

π2

1∫
0

dx

1−x∫
0

dy
y(1− y)

D
, (4.12c)

f3 = f6 = 0 , (4.12d)

where the denominator of the Feynman parameter integral is

D ≡ p2x(1− x) + q2y(1− y) + 2p · q xy +m2

= (p2 x+ q2 y)(1− x− y) + xy k2 +m2 , (4.13)

strictly positive for m2 > 0, and spacelike momenta, k2, p2, q2 > 0.
Thus, the full amplitude Γµαβ(p, q) satisfying

(i) Lorentz invariance of the vacuum,

(ii) Bose symmetry under interchange of photon lines,

(iii) vector current conservation (4.7),

(iv) unsubtracted dispersion relation of real and imaginary parts,
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with the finite imaginary parts determined by the cut triangle diagram of
Fig. 5, is given by (4.11) and (4.12), without any need of regularization of
ultraviolet divergent loop integrals at any step.

Since this amplitude is fully determined by (i)–(iv), its contraction with
kµ, and the divergence of the axial vector current is determined as well.
There is no further freedom to demand the naive axial Ward identity corre-
sponding to (4.4). Instead, we find

kµ Γµαβ(p, q) = A υαβ(p, q) , (4.14)

where

A
(
k2; p2, q2

)
= 2p · q f1 + p2f2 + q2f5

=
e2

π2

1∫
0

dx

1−x∫
0

dy
D −m2

D

=
e2

2π2
− e2

π2
m2

1∫
0

dx

1−x∫
0

dy
1
D
. (4.15)

The second term proportional to m2 is what would be expected from the
naive axial vector divergence (4.4) [87]. The first term in (4.15) in which
the denominator D is canceled in the numerator is

e2

π2

1∫
0

dx

1−x∫
0

dy =
e2

2π2
(4.16)

and which remains finite and non-zero in the limit m → 0 is the axial
anomaly.

Thus the finite anomalous term is unambiguously determined by our four
requirements above, and may be clearly identified even for finite m, when
the chiral symmetry is broken. This construction of the amplitude from
only symmetry principles and its finite parts may be regarded as a proof
that the same finite axial anomaly must arise in any regularization of the
original triangle amplitude which respects these symmetries and leaves the
finite parts unchanged. Explicit calculations in dimensional regularization
and Pauli–Villars regularization schemes, which respect these symmetries
confirm this [89].

Now the important consequence of the anomaly in (4.15) in the diver-
gence is that when the photons p2 = q2 = 0 are on shell, the amplitude
Γµαβ(p, q) develops a simple pole at in k2 as the electron mass m → 0.
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This follows from the first line of (4.15) which shows that when p2 = q2 = 0,
2p q = k2 so A is explicitly proportional to k2. Since A is finite whenm→ 0,
the amplitude function f1(k2; 0, 0) must develop a pole in k2. Indeed by ex-
plicit calculation from (4.12)–(4.13), we have

f1(k2; p2 = 0, q2 = 0)
∣∣
m=0

=
e2

2π2

1
k2
. (4.17)

The corresponding imaginary part (discontinuity in k2) becomes a δ(k2) in
the same limit. Moreover, even for arbitrary p2, q2,m2 ≥ 0, the spectral
function obtained from this imaginary part obeys an ultraviolet finite sum
rule [87,88].

The appearance of a massless pseudoscalar pole (4.17) in the triangle
anomaly amplitude in the massless fermion limit suggests that this can be
described as the propagator of a pseudoscalar field which couples to the axial
current. Indeed it is not difficult to find the field description of the pole. To
do so, let us note first that the axial current expectation value 〈Jµ5 〉A can be
obtained from an extended action principle in which we introduce an axial
vector field source, Bµ into the Dirac Lagrangian

iψ̄γµ
(↔
∂ µ −ieAµ

)
ψ−mψ̄ → iψ̄γµ

(↔
∂ µ −ieAµ − igγ5Bµ

)
ψ−mψ̄ψ (4.18)

so that the variation of the corresponding action with respect to Bµ gives

δS
δBµ

= g〈Jµ5 〉A . (4.19)

Henceforth we shall set the axial vector coupling g = 1. Next, let us decom-
pose the axial vector Bµ into its transverse and longitudinal parts

Bµ = B⊥µ + ∂µB (4.20)

with ∂µB⊥µ = 0 and B a pseudoscalar. Then, by an integration by parts in
the action corresponding to (4.18), we have

∂µ〈Jµ5 〉A = −δS
δB

. (4.21)

Thus the axial anomaly (4.5) implies that there is a term in the one-loop
effective action in a background Aµ and Bµ field, linear in B of the form,

Seff = − e2

16π2

∫
d4x εµνρσFµνFρσ B , (4.22)
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or since ∂λBλ = B,

Seff = − e2

16π2

∫
d4x

∫
d4y , [εµνρσFµνFρσ]x −1

xy [∂λBλ]y , (4.23)

where −1
xy is the Green’s function for the massless scalar wave operator

= ∂µ∂
µ. Thus from (4.19), this non-local action gives [90]

〈Jµ5 〉A =
e2

16π2
∂µ −1εαβρσFαβFρσ , (4.24)

which exhibits the massless scalar pole in the massless limit of (4.17), and
which agrees with the explicit calculation of the physical 〈0|Jµ5 |p, q〉 triangle
amplitude to two photons for p2 = q2 = m2 = 0. The existence of this pole
or δ function in the two-particle intermediate e+e− intermediate state is the
first indication that a phenomenon similar to Cooper pairing in condensed
matter systems can exist in relativistic quantum field theory, and this effect
is connected to anomalies.

In Ref. [88] a local action corresponding to (4.61) was found by introduc-
ing two pseudoscalar fields. The introduction of two fields is necessary if the
only term in the effective action with this massless pole is the term (4.23)
which is off-diagonal in FF̃ and ∂ · B. If, on the other hand, the effective
action contains the perfect square,∫

d4x
(
∂λBλ + −1FµνF̃

µν
)2

then this effective action can be represented by a single pseudoscalar field.
The possible existence of the additional terms in massless QED necessary
to complete the square is currently under investigation,

Since it contains kinetic terms for the additional pseudoscalar field(s),
the effective action of Ref. [88] describes additional pseudoscalar degree(s)
of freedom. These degrees of freedom are two-particle 0− correlated e+e−

states, composite bilinears of ψ̄ and ψ, which appear in anomalous ampli-
tudes as massless poles. In condensed matter physics, or electrodynamics
at finite temperature or in polarizable media, where Lorentz invariance is
broken, it is a familiar circumstance that there are low energy collective
modes of the many body theory, which are not part of the single particle
constituent spectrum. This occurs also in vacuo in the two dimensional
massless Schwinger model, whose anomaly and longitudinal “photon” can
be described by the introduction of an effective scalar field composed of an
e+e− pair [91]. In 3 + 1 dimensions, relativistic kinematics and symmetries
severely limit the possibilities for the appearance of such composite massless
scalars, with the triangle anomaly the only known example [92]. The fact
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that the e+e− pair becomes collinear in the massless limit shows that this
effectively reduces the dimensionality back to 1 + 1. In the well studied
1 + 1 dimensional case, the commutation relations of fermion bilinear cur-
rents Jµ and Jν5 , which create the composite e+e− massless state are due to
the anomaly [93]. A similar phenomenon occurs in the triangle amplitude
in 3 + 1 dimensions. The axial anomaly thus implies additional long range
correlations and collective degrees of freedom in the many body quantum
theory, similar to Cooper pairs in a superconductor, which are not present
in the classical or first quantized single particle theory.

In real QED these infrared effects are suppressed by the non-zero physi-
cal electron mass m > 0, and the additional fact that macroscopic chirality
violating sources for Jµ5 which would be sensitive to the anomaly are difficult
to create. In QCD the situation is complicated both by the strong interac-
tions in the infrared and chiral symmetry breaking. The neutral member of
the isotriplet of pseudoscalar Goldstone bosons in the low energy EFT is the
π0, whose decay to two photons, π0 → 2γ is correctly given by the triangle
amplitude [94, 95]. In fact, it was the experimental agreement between the
measured decay rate to that predicted by the axial anomaly computed in
the UV theory of 3 colors of fractionally charged quarks that gave one of
the strongest early confirmations of QCD. The fact that this amplitude is
non-vanishing in the chiral limit, yet cannot be described by a local operator
of dimension 4 or less in the chiral Lagrangian, violates naive decoupling and
illustrates how an anomaly couples UV to low energy physics. It is the fact
that the anomaly may be computed in the UV theory of QCD but gives rise
to a low energy amplitude of meson decay, π0 → 2γ that led to the principle
of anomaly matching [96].

The apparent massless pseudoscalar anomaly pole of (4.17) in the isosin-
glet channel in the chiral limit of QCD is even more interesting. The 0− state
described by this pole in the isosinglet channel mixes with the pseudoscalar
axial gluon density Q(x) = Gaµν(x)G̃aµν(x), and gives rise to a non-vanishing
susceptibility of axial gluon densities

χ(k2) =
∫
d4x eik·x〈Q(x)Q(0)〉 , (4.25)

as k2 → 0, despite the fact that Q is a total derivative and therefore one
would naively expect χ(k2) to be proportional to k2 and vanish in this limit.
The fact that the susceptibility χ(0) is non-vanishing is a direct effect of
the massless anomaly pole [97]. The degree of freedom this infrared pole
represents combines with a non-dynamical but gauge invariant Q2 term in
the effective action of QCD to yield finally one propagating massive isosinglet
psuedoscalar state which can be identified with the η′ meson, solving the
U(1) problem in QCD [97]. Thus there is no doubt that the pseudoscalar
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0− state which appears in the isosinglet anomaly channel in perturbation
theory is physical and propagating in the final S-matrix of the theory, but
it becomes massive by a topological variant of the Higgs mechanism [98].

The lesson to be taken away from this QCD example is that anomalies
are a unique window which the low energy EFT provides to short distance
physics. Two particle correlated pair states appear in anomalous amplitudes,
which can be described as propagating massless fields that have consequences
for low energy physics. The anomalous Ward identities and the long distance
effects they generate must be taken into account by explicitly adding the IR
relevant terms they induce in the low energy effective action [94,95].

4.2. The 〈TJJ〉 triangle amplitude in QED

In this section we consider the amplitude for the trace anomaly in flat
space that most closely corresponds to the triangle amplitude for the axial
current anomaly reviewed in the previous section, and give a complete cal-
culation of the full 〈TµνJαJβ〉 amplitude for all values of the mass and the
off-shell kinematic invariants. Although the tensor structure of this ampli-
tude is more involved than the axial vector case, the kinematics is essentially
the same, and the appearance of the massless pole very much analogous to
the axial case.

Classical fields satisfying wave equations with zero mass, which are in-
variant under conformal transformations of the spacetime metric, gµν →
e2σgab have stress tensors with zero classical trace, Tµµ = 0. In quantum
theory the stress tensor Tµν becomes an operator with fluctuations about its
mean value. The mean value itself 〈Tµν〉 is formally UV divergent, due to
its zero point fluctuations, as in (3.3), and requires a careful renormaliza-
tion procedure. The result of this renormalization consistent with covariant
conservation in curved spacetime is that classical conformal invariance can-
not be maintained at the quantum level. The trace of the stress tensor is
generally non-zero when ~ 6= 0, in non-trivial background fields, provided
one preserves the covariant conservation of Tµν (a necessary requirement of
any theory respecting general coordinate invariance and consistent with the
Equivalence Principle) yields an expectation value of the quantum stress
tensor with a non-zero trace.

The fundamental quantity of interest for us now is the expectation value
of the energy-momentum tensor bilinear in the fermion fields in an external
electromagnetic potential Aµ,

〈Tµν〉A = 〈Tµνfree〉A + 〈Tµνint 〉A , (4.26)
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where

Tµνfree = −iψ̄γ(µ
↔
∂
ν)ψ + gµν

(
iψ̄γλ

↔
∂λψ −mψ̄ψ

)
, (4.27a)

Tµνint = − eJ (µAν) + egµνJλAλ (4.27b)

are the contributions to the stress tensor of the free and interaction terms of
the Dirac Lagrangian (4.18). The notations, t(µν) ≡ (tµν + tνµ)/2 and

↔
∂µ ≡

(
→
∂ µ−

←
∂ µ)/2, for symmetrization and ant-symmetrization have been used.

The expectation value 〈Tµν〉A satisfies the partial conservation equation

∂ν〈Tµν〉A = eFµν〈Jν〉A (4.28)

upon formal use of the Dirac equation of motion (4.2). Just as in the chi-
ral case, the relation is formal because of the a priori ill-defined nature of
the bilinear product of Dirac field operators at the same spacetime point in
(4.27). Energy-momentum conservation in full QED (i.e. when the electro-
magnetic field Aµ is also quantized) requires adding to the fermionic Tµν of
(4.27) the electromagnetic Maxwell stress tensor

TµνMax = FµλF ν λ − 1
4g
µνF λρFλρ (4.29)

which satisfies ∂νT
µν
Max = −FµνJν . This cancels (4.28) at the operator level,

so that the full stress tensor of QED is conserved upon using Maxwell’s
equations, ∂νFµν = Jµ. Since in our present treatment Aµ is an arbi-
trary external potential, rather than a dynamical field, we consider only the
fermionic parts of the stress tensor (4.27) whose expectation value satisfies
(4.28) instead.

At the classical level, i.e. again formally, upon use of (4.2), the trace of
the fermionic stress tensor obeys

Tµ (cl)
µ ≡ gµνTµν (cl) = −mψ̄ψ (classically) , (4.30)

analogous to the classical relation for the axial current (4.4). From this it
would appear that 〈Tµν〉A will become traceless in the massless limitm→ 0,
corresponding to the global dilation symmetry of the classical theory with
zero mass. However, as in the case of the classical chiral symmetry, this
symmetry under global scale transformations cannot be maintained at the
quantum level, without violating the conservation law satisfied by a related
current, in this case the partial conservation law (4.28), implied by general
coordinate invariance. Requiring that (4.28) is preserved at the quantum
level necessarily leads to a well-defined anomaly in the trace [99–101]

〈Tµµ〉A
∣∣
m=0

= − e2

24π2
FµνF

µν (4.31)
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analogous to (4.5). It is the infrared consequences of this modified, anoma-
lous trace identity and the appearance of massless scalar degrees of freedom
for vanishing electron mass m = 0, analogous to those found in the axial
case that we will study.

The one-loop triangle amplitude analogous to (4.6) of the axial anomaly
must satisfy vector current conservation,

pαΓµναβ(p, q) = qβΓµναβ(p, q) = 0 (4.32)

and the (partial) conservation law of the fermion stress-tensor (4.28) gives
the Ward identity,

kνΓµναβ(p, q) = (gµαpν − δαν pµ) Π βν(q) +
(
gµβqν − δβν qµ

)
Π αν(p) , (4.33)

or since the polarization Π µν(p) is also a correlator of conserved currents,

Π αβ(p) =
(
p2gαβ − pαpβ

)
Π
(
p2
)

(4.34)

we obtain

kν Γµναβ(p, q) =
(
qµpαpβ − qµgαβp2 + gµβqαp2 − gµβpαp q

)
Π
(
p2
)

+
(
pµqαqβ − pµgαβq2 + gµαpβq2 − gµαqβp q

)
Π (q2) . (4.35)

These relations are still formal since the one-loop expressions are formally
divergent. However, analogously to the axial case, the joint requirements of:

(i) Lorentz invariance of the vacuum,

(ii) Bose symmetry, Γµναβ(p, q) = Γµνβα(q, p),

(iii) vector current conservation (4.32),

(iv) unsubtracted dispersion relation of real and imaginary parts, and

(v) energy-momentum tensor conservation (4.35)

are sufficient to determine the full amplitude Γµναβ(p, q) in terms of its
explicitly finite pieces, and yield a well-defined finite trace anomaly. As in
the axial anomaly case considered previously, this method of constructing
the full Γµναβ(p, q) may be regarded as a proof that the same finite trace
anomaly must be obtained in any regularization scheme that respects (i)–(v)
above. It is particularly important to recognize that the last condition (v)
is necessary to obtain a covariantly conserved stress tensor and avoid any
gravitational anomaly (i.e. breaking of general coordinate invariance) from
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arising at the quantum level. If this fifth condition is not applied, and the
naive conformal Ward identity arising from (4.30) is used instead, there is
a gravitational anomaly, general coordinate invariance is broken, but scale
invariance is preserved and the β function of the electromagnetic or QCD
coupling would vanish [88,99], in contradiction with experiment [102].

The tensor analysis in this case is somewhat more involved than in the
axial case and is given in detail in Ref. [88]. Lorentz invariance of the
vacuum (i) is again assumed first by expanding the amplitude in terms of
all the possible tensors with four indices depending on pα, qβ and the flat
spacetime metric gαβ = ηαβ . Define the two-index tensors

uαβ(p, q) ≡ (p · q)gαβ − qαpβ , (4.36a)
wαβ(p, q) ≡ p2q2gαβ + (p q)pαqβ − q2pαpβ − p2qαqβ , (4.36b)

each of which satisfies the conditions of Bose symmetry

uαβ(p, q) = uβα(q, p) , (4.37a)
wαβ(p, q) = wβα(q, p) , (4.37b)

and vector current conservation

pαu
αβ(p, q) = 0 = qβu

αβ(p, q) , (4.38a)

pαw
αβ(p, q) = 0 = qβw

αβ(p, q) . (4.38b)

Making use of uαβ(p, q) and wαβ(p, q), one finds that there are exactly 13
linearly independent four-tensors tµναβi (p, q), i = 1, . . . , 13, which satisfy

pαt
µναβ
i (p, q) = 0 = qβt

µναβ
i (p, q) , i = 1, . . . , 13 . (4.39)

These 13 tensors are cataloged in Table II.
Only the first two of the thirteen tensors possess a non-zero trace,

gµνt
µναβ
1 (p, q) = 3k2 uαβ(p, q) , (4.40a)

gµνt
µναβ
2 (p, q) = 3k2wαβ(p, q) , (4.40b)

while the remaining eleven tensors are traceless,

gµνt
µναβ
i (p, q) = 0 , i = 3, . . . , 13 . (4.41)

In the limit of zero fermion mass, the entire trace anomaly will reside only
in the first amplitude function, F1(k2; p2, q2).
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TABLE II

The 13-fourth rank tensors satisfying (4.39).

i tµναβi (p, q)

1
(
k2gµν − kµkν

)
uαβ(p q)

2
(
k2gµν − kµkν

)
wαβ(p q)

3
(
p2gµν − 4pµpν

)
uαβ(p q)

4
(
p2gµν − 4pµpν

)
wαβ(p q)

5
(
q2gµν − 4qµqν

)
uαβ(p q)

6
(
q2gµν − 4qµqν

)
wαβ(p q)

7 [p q gµν − 2(qµpν + pµqν)]uαβ(p q)
8 [p q gµν − 2(qµpν + pµqν)]wαβ(p q)
9

(
p q pα − p2qα

) [
pβ (qµpν + pµqν)− p q (gβνpµ + gβµpν)

]
10

(
p q qβ − q2pβ

) [
qα (qµpν + pµqν)− p q (gανqµ + gαµqν)

]
11

(
p q pα − p2qα

) [
2 qβqµqν − q2(gβνqµ + gβµqν)

]
12

(
p q qβ − q2pβ

) [
2 pαpµpν − p2(gανpµ + gαµpν)

]
13

(
pµqν + pνqµ

)
gαβ + p q

(
gανgβµ + gαµgβν

)
− gµνuαβ

−
(
gβνpµ + gβµpν

)
qα −

(
gανqµ + gαµqν

)
pβ

To proceed, one expands Γµναβ(p, q) in terms of these 13 tensors with
scalar coefficient functions Fi of the invariants k2, p2, q2 analogous to (4.11),
and then fixes as many of the 13 scalar functions Fi as possible by examining
the finite terms in the formal expressions for the triangle amplitude. This
turns out to give enough information to fix 10 linear combinations of the 13
scalar functions. The information needed to fix the remaining three functions
comes from our fifth and final requirement on the amplitude namely the
Ward identity (4.35). In this way, after some algebra one finds that all the
Fi are completely determined and hence there is no remaining freedom in
the trace part F1. The result of this calculation is [88]

3k2F1 =
e2

2π2

1∫
0

dx

1−x∫
0

dy (1− 4xy)
(D −m2)

D

=
e2

6π2
− e2 m2

2π2

1∫
0

dx

1−x∫
0

dy
(1− 4xy)

D
. (4.42)

The second term which vanishes in the limit m → 0 is the non-anomalous
part which one would have expected by naive application of the tree level
Ward identity (4.30). The first term where the denominator D appears
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also in the numerator of the integrand and cancels, giving a well-defined
contribution to the trace independent of m is the anomaly. As in the axial
case it again implies the existence of a pole in k2 for F1 in the full amplitude
in the massless limit (and when the photons are on-shell: p2 = q2 = 0). In
the imaginary part of the 〈TJJ〉 triangle amplitude a δ function develops
in the corresponding spectral density when p2 = q2 = 0 and m → 0+.
Otherwise, there is again an exact ultraviolet finite sum rule for this spectral
density [88], showing that the state persists even away from the conformal
on-shell limit.

The kinematics of the state appearing in the imaginary part and spectral
function in this limit is essentially 1+1 dimensional, and can be represented
as the two-particle collinear e+e− pair in Fig. 6. This is the only configu-
ration possible for one particle with four-momentum kµ converting to two
particles of zero mass, p2 = q2 = 0 as k2 → 0 as well. Although this special
collinear kinematics is a set of vanishing measure in the two particle phase
space, the δ(s) in the spectral function and finiteness of the anomaly itself
shows that this pair state couples to on shell photons on the one hand, and
gravitational metric perturbations, on the other hand, with finite amplitude.������� ����

	

Fig. 6. The two particle intermediate state of a collinear e+e− pair responsible for
the δ-fn in the k2 discontinuity of the triangle amplitude.

The two-particle correlated state of e+e− behaves like an effective mass-
less scalar exchange, and can be so described in an effective field theory
approach. Because this effective field theory contains massless fields, it can
have long distance, macroscopic effects. Before giving the general form of
this effective theory in four dimensional curved space, let us consider the
somewhat simpler case of two dimensions.

4.3. The trace anomaly and quantum gravity in two dimensions

In two dimensional curved space the trace anomaly takes the simple
form [103]

〈T aa〉 =
N

24π
R , (d = 2) , (4.43)

where N = NS + NF is the total number of massless fields, either scalar
(NS) or (complex) fermionic (NF ). The fact that the anomalous trace is
independent of the quantum state of the matter field(s), and dependent only



2092 E. Mottola

on the geometry through the local Ricci scalar R suggests that it should be
regarded as a geometric effect. However, no local coordinate invariant action
exists whose metric variation leads to (4.43). This is important because it
shows immediately that understanding of the anomalous contributions to the
stress tensor will bring in some non-local physics or boundary conditions on
the quantum state at large distance scales.

A non-local action corresponding to (4.43) can be found by introducing
the conformal parameterization of the metric,

gab = e2σ ḡab , (4.44)

and noticing that the scalar curvature densities of the two metrics gab and
ḡab are related by

R
√
−g = R̄

√
−ḡ − 2

√
−ḡ σ , (d = 2) (4.45)

a linear relation in σ in two (and only two) dimensions. Multiplying (4.43) by√
−g, using (4.45) and noting that

√
−g〈T aa〉 defines the conformal variation,

δΓ (2)/δσ of an effective action Γ (2), we conclude that the σ dependence
of Γ (2) can be at most quadratic in σ. Hence the Wess–Zumino effective
action [104] in two dimensions, Γ (2)

WZ is

Γ (2)
WZ[ḡ;σ] =

N

24π

∫
d2x
√
−ḡ
(
−σ σ + R̄ σ

)
. (4.46)

Mathematically the fact that this action functional of the base metric ḡab and
the Weyl shift parameter σ cannot be reduced to a single local functional of
the full metric (4.44) means that the local Weyl group of conformal transfor-
mations has a non-trivial cohomology, and Γ (2)

WZ is a one-form representative
of this cohomology [106,107]. This is just a formal mathematical statement
of the fact that a effective action that incorporates the trace anomaly in a
covariant EFT consistent with the Equivalence Principle must exist but that
this Sanom[g] is necessarily non-local.

It is straightforward, in fact, to find a non-local scalar functional S(2)
anom[g]

such that [105]

Γ (2)
WZ[ḡ;σ] = S(2)

anom

[
g = e2σ ḡ

]
− S(2)

anom[ḡ] . (4.47)

By solving (4.45) formally for σ, and using the fact that
√
−g =

√
−ḡ

is conformally invariant in two dimensions, we find that Γ (2)
WZ can be written

as a Weyl shift (4.47) with

S(2)
anom[g] =

Q2

16π

∫
d2x
√
−g
∫

d2x′
√
−g′R(x) −1(x, x′)R(x′) (4.48)
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and −1(x, x′) denoting the Green’s function inverse of the scalar differential
operator . The parameter Q2 is −N/6 if only matter fields in a fixed
spacetime metric are considered. It becomes (25−N)/6 if account is taken
of the contributions of the metric fluctuations themselves in addition to those
of the N matter fields, thus effectively replacing N by N − 25 [108]. In the
general case, the coefficient Q2 is arbitrary, related to the matter central
charge, and can be treated as simply an additional free parameter of the low
energy effective action, to be determined.

The anomalous effective action (4.48) is a scalar under coordinate trans-
formations and therefore fully covariant and geometric in character, as re-
quired by the Equivalence Principle. However, since it involves the Green’s
function −1(x, x′), which requires boundary conditions for its unique spec-
ification, it is quite non-local, and dependent upon more than just the local
curvature invariants of spacetime. In this important respect it is quite dif-
ferent from the classical terms in the action, and describes rather different
physics. In order to expose that physics it is most convenient to recast the
non-local and non-single valued functional of the metric, S(2)

anom into a local
form by introducing auxiliary fields. In the case of (4.48) a single scalar
auxiliary field, ϕ satisfying

− ϕ = R (4.49)

is sufficient. Then varying

S(2)
anom[g;ϕ] ≡ Q2

16π

∫
d2x
√
−g

(
gab∇aϕ∇bϕ− 2Rϕ

)
(4.50)

with respect to ϕ gives the equation of motion (4.49) for the auxiliary field,
which when solved formally by ϕ = − −1R and substituted back into
S

(2)
anom[g;ϕ] returns the non-local form of the anomalous action (4.48), up to

a surface term. The non-local information in addition to the local geometry
which was previously contained in the specification of the Green’s function
−1(x, x′) now resides in the local auxiliary field ϕ(x), and the freedom to

add to it homogeneous solutions of (4.49).
The variation of (4.50) with respect to the metric yields a stress-energy

tensor,

T
(2)
ab [g;ϕ] ≡ − 2√

−g
δS

(2)
anom[g;ϕ]
δgab

=
Q2

4π

[
−∇a∇bϕ+ gab ϕ− 1

2
(∇aϕ)(∇bϕ) +

1
4
gab (∇cϕ)(∇cϕ)

]
,(4.51)

which is covariantly conserved, by use of (4.49) and the vanishing of the
Einstein tensor, Gab = Rab −Rgab/2 = 0 in two (and only two) dimensions.
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The classical trace of the stress tensor (4.51) is

gabT
(2)
ab [g;ϕ] =

Q2

4π
ϕ = −Q

2

4π
R (4.52)

which reproduces the quantum trace anomaly in a general classical back-
ground (with Q2 proportional to ~). Hence (4.50) is exactly the local aux-
iliary field form of the effective action which should be added to the action
for two dimensional gravity to take the trace anomaly of massless quantum
fields into account.

Since the integral of R is a topological invariant in two dimensions, the
classical Einstein–Hilbert action contains no propagating degrees of freedom
whatsoever in d = 2, and it is S(2)

anom which contains the only kinetic terms of
the low energy EFT. In the local auxiliary field form (4.50), it is clear that
Sanom describes an additional scalar degree of freedom ϕ, not contained in
the classical action S(2)

cl . Once the anomalous term is treated in the effective
action on a par with the classical terms, its effects become non-perturbative
and do not rely on fluctuations from a given classical background to remain
small.

Extensive study of the stress tensor (4.52) and its correlators, arising
from this effective action established that the two dimensional trace anomaly
gives rise to a modification or gravitational “dressing” of critical exponents
in conformal field theories at second order critical points [108]. Since critical
exponents in a second order phase transition depend only upon fluctuations
at the largest allowed infrared scale, this dressing is clearly an infrared effect,
independent of any ultraviolet cutoff. These dressed exponents and shift of
the central term from N − 26 to N − 25 are evidence of the infrared fluctu-
ations of the additional scalar degree of freedom ϕ which are quite absent
in the classical action. The scaling dimensions of correlation functions so
obtained are clearly non-perturbative in the sense that they are not obtained
by considering perturbatively small fluctuations around flat space, or con-
trolled by a uniform expansion in λ� 1. The appearance of the gravitational
dressing exponents and the anomalous effective action (4.48) itself have been
confirmed in the large volume scaling limit of two dimensional simplicial lat-
tice simulations in the dynamical triangulation approach [109, 110]. Hence
there can be little doubt that the anomalous effective action (4.50) correctly
accounts for the infrared fluctuations of two dimensional geometries.

The importance of this two dimensional example is the lessons it allows
us to draw about the role of the quantum trace anomaly in the low energy
EFT of gravity, and in particular the new dynamics it contains in the confor-
mal factor of the metric. The effective action generated by the anomaly in
two dimensions contains a new scalar degree of freedom, relevant for infrared
physics, beyond the purely local classical action. It is noteworthy that the
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new scalar degree of freedom in (4.49) is massless, and hence fluctuates at
all scales, including the very largest allowed. In two dimensions its propaga-
tor −1(x, x′) is logarithmic, and hence is completely unsuppressed at large
distances. This is the precise analog of the massless pole found in flat space
triangle amplitudes in four dimensions. In d = 2 this pole appears already
in two-point amplitudes of current correlators in the Schwinger model [91],
and in correlators of the energy momentum tensor of conformal fields [93].
Physically this means that the quantum correlations at large distances re-
quire additional long wavelength information such as macroscopic boundary
conditions on the quantum state.

The action (4.50) due to the anomaly is exactly the missing relevant
term in the low energy EFT of two dimensional gravity responsible for non-
perturbative fluctuations at the largest distance scales. This modification of
the classical theory is required by general covariance and quantum theory,
and essentially unique within the EFT framework.

4.4. The general form of the trace anomaly in four dimensions

The line of reasoning in d = 2 dimensions just sketched to find the
conformal anomaly and construct the effective action may be followed also
in four dimensions. In d = 4 the trace anomaly takes the somewhat more
complicated form

〈T a
a 〉 = bF + b′

(
E − 2

3 R
)

+ b′′ R+
∑
i

βiHi (4.53)

in a general four dimensional curved spacetime,wherewe employ the notation

E ≡∗Rabcd ∗Rabcd = RabcdR
abcd − 4RabRab +R2 (4.54a)

and

F ≡ CabcdCabcd = RabcdR
abcd − 2RabRab +

R2

3
(4.54b)

with Rabcd the Riemann curvature tensor, ∗Rabcd = εabefR
ef
cd/2 its dual,

and Cabcd the Weyl conformal tensor. Note that E is the four dimensional
Gauss–Bonnet combination whose integral gives the Euler number of the
manifold, analogous to the Ricci scalar R in d = 2. The coefficients b,
b′ and b′′ are dimensionless parameters multiplied by ~. Additional terms
denoted by the sum

∑
i βiHi in (4.53) may also appear in the general form

of the trace anomaly, if the massless conformal field in question couples to
additional long range gauge fields. Thus in the case of massless fermions
coupled to a background gauge field, the invariant H = tr (FabF ab) appears
in (4.53) with a coefficient β determined by the anomalous dimension of the
relevant gauge coupling.
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As in d = 2 the form of (4.53) and the coefficients b and b′ are independent
of the state in which the expectation value of the stress tensor is computed,
nor do they depend on any ultraviolet short distance cutoff. Instead their
values are determined only by the number of massless fields [103,111],

b =
1

120(4π)2
(NS + 6NF + 12NV ) , (4.55a)

b′ = − 1
360(4π)2

(
NS +

11
2
NF + 62NV

)
, (4.55b)

with (NS , NF , NV ) the number of fields of spin (0, 1
2 , 1) respectively and we

have taken ~ = 1. Notice also that b > 0 while b′ < 0 for all fields of lower
spin for which they have been computed. Hence the trace anomaly can
lead to stress tensors of either sign. The anomaly terms can be utilized to
generate an effective positive cosmological term if none is present initially.
Such anomaly driven inflation models [112] require curvatures comparable
to the Planck scale, unless the numbers of fields in (4.55) is extremely large.
It is clear that conformally flat cosmological models of this kind, in which
the effects of the anomaly can be reduced to a purely local higher derivative
stress tensor, are of no relevance to the very small cosmological term (3.6)
we observe in the acceleration of the Hubble expansion today. Instead it is
the essentially non-local effects of the anomaly on the horizon scale, much
larger than LPl which should come into play. This requires a covariant action
functional analogous to (4.50) for a proper treatment. This is what we now
turn to computing.

Three local fourth order curvature invariants E,F and R appear in the
trace of the stress tensor (4.53), but only the first two (the b and b′) terms
of (4.53) cannot be derived from a local effective action of the metric alone.
If these terms could be derived from a local gravitational action we would
simply make the necessary finite redefinition of the corresponding local coun-
terterms to remove them from the trace, in which case the trace would no
longer be non-zero or anomalous. This redefinition of a local counterterm
(namely, the R2 term in the effective action) is possible only with respect
to the third b′′ coefficient in (4.53), which is therefore regularization depen-
dent and not part of the true anomaly. Only the non-local effective action
corresponding to the b and b′ terms in (4.53) are independent of the UV reg-
ulator and lead to effects that can extend over arbitrarily large, macroscopic
distances. The distinction of the two kinds of terms in the effective action
is emphasized in the cohomological approach to the trace anomaly [107].
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To find the WZ effective action corresponding to the b and b ′ terms
in (4.53), introduce as in two dimensions the conformal parameterization
(4.44), and compute

√
−g F =

√
−ḡ F̄ , (4.56a)

√
−g

(
E − 2

3
R

)
=
√
−ḡ

(
E − 2

3
R

)
+ 4
√
−ḡ ∆̄4 σ , (4.56b)

whose σ dependence is no more than linear. The fourth order differential
operator appearing in this expression is [107,113,114]

∆4 ≡ 2 + 2Rab∇a∇b − 2
3R + 1

3(∇aR)∇a (4.57)

which is the unique fourth order scalar operator that is conformally covari-
ant, viz. √

−g ∆4 =
√
−ḡ ∆̄4 , (4.58)

for arbitrary smooth σ(x) in four (and only four) dimensions. Thus multi-
plying (4.53) by

√
−g and recognizing that the result is the σ variation of

an effective action ΓWZ, we find immediately that this quadratic effective
action is

ΓWZ[ḡ;σ] = b

∫
d4x
√
−ḡ F̄ σ

+b′
∫

d4x
√
−ḡ

{(
Ē − 2

3
R̄

)
σ + 2σ∆̄4σ

}
, (4.59)

up to terms independent of σ. This Wess–Zumino action is a one-form rep-
resentative of the non-trivial cohomology of the local Weyl group in four
dimensions which now contains two distinct cocycles, corresponding to the
two independent terms multiplying b and b′ [107]. By solving (4.56b) for-
mally for σ, using (4.58), and substituting the result in (4.59) we obtain

ΓWZ[ḡ;σ] = Sanom

[
g = e2σ ḡ

]
− Sanom[ḡ] , (4.60)

with the non-local anomalous action is

Sanom[g] =
1
2

∫
d4x
√
g

∫
d4x′

√
g′
(
E

2
− R

3

)
x

×∆−1
4 (x, x′)

[
bF + b′

(
E

2
− R

3

)]
x′

(4.61)
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and ∆−1
4 (x, x′) denotes the formal Green’s function inverse of the fourth

order differential operator defined by (4.57). From the foregoing construction
it is clear that if there are additional Weyl invariant terms in the anomaly
(4.53) they should be included in the Sanom by making the replacement
bF → bF +

∑
i βiHi in the last square bracket of (4.61). The case of the

stress-energy of charged fermions coupled to photons in QED of Sec. 4.2
produces just such an additional term in the anomaly action, the effective
action for which is the flat space limit of the general anomaly action.

4.5. Anomaly effective action and massless scalar fields

As detailed in Ref. [115] we may render the non-local anomaly action
(4.61) into a local form, by the introduction of two scalar auxiliary fields ϕ
and ψ which satisfy fourth order differential equations

∆4 ϕ =
1
2

(
E − 2

3
R

)
, (4.62a)

∆4 ψ =
1
2
CαβµνC

αβµν +
c

2b
FαβF

αβ , (4.62b)

where we have added the last term in (4.62b) to take account of the back-
ground gauge field. For the case of Dirac fermions, b = 1/320π2, b′ =
−11/5760π2, and c = −e2/24π2. The local effective action corresponding to
(4.61) in a general curved space is given by

Sanom = b′S(E)
anom + bS(F )

anom +
c

2

∫
d4x
√
−g FαβFαβϕ , (4.63)

where

S(E)
anom ≡

1
2

∫
d4x
√
−g
{
−( ϕ)2+2

(
Rµν−R

3
gµν
)

(∇µϕ)(∇νϕ)

+
(
E − 2

3
R

)
ϕ

}
,

S(F )
anom ≡

∫
d4x
√
−g

{
− ( ϕ) ( ψ) + 2

(
Rµν − R

3
gµν
)

(∇µϕ)(∇νψ)

+
1
2
CαβµνC

αβµνϕ+
1
2

(
E − 2

3
R

)
ψ

}
. (4.64)

The free variation of the local action (4.63)–(4.64) with respect to ϕ and ψ
yields the equations of motion (4.62). Each of these terms when varied with
respect to the background metric gives a stress-energy tensor in terms of the
auxiliary fields satisfying Eqs. (4.62).
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If we are interested in only the first variation of the action with respect
to gµν , around flat spacetime, in order to compare to our calculation of the
〈TJJ〉 amplitude in Sec. 4.2, we may drop all terms in (4.63) which are
second order or higher in the metric deviations from flat space. Since δR is
first order in variation around flat space, we may assume from (4.62a) that
ϕ is as well. Then the entire b′S(E) contribution to (4.63) is at least second
order in this variation from flat space and cannot contribute to 〈TJJ〉. From
(4.62b) the field ψ has a contribution from FµνF

µν even in flat space, and
a potential second order pole, −2 → k−4 in its stress tensor. However,
retaining only terms in (4.63) and (4.64) which contribute at first order in
variation of the metric from flat space, we obtain the much simpler form,

Sanom[g,A]→ − c
6

∫
d4x
√
−g
∫
d4x′

√
−g′Rx −1

x,x′

[
FαβF

αβ
]
x′
, (4.65)

valid to first order in metric variations around flat space, or

Sanom[g,A;ϕ,ψ′] =
∫

d4x
√
−g
[
−ψ′ ϕ− R

3
ψ′ +

c

2
FµνF

µνϕ

]
, (4.66)

its local equivalent, where

ψ′ ≡ b ψ , (4.67a)

ψ′ =
c

2
FµνF

µν , (4.67b)

ϕ = −R
3
. (4.67c)

Then after variation we may set ϕ = 0 in flat space, and the only terms
which remain in the stress tensor derived from (4.63) are those linear in ψ′,
viz.

Tµν [ψ′(z)] =
2√
−g

δSanom

δgµν(z)

∣∣∣∣∣
flat,ϕ=0

=
2
3

(gµν − ∂µ∂ν)ψ′(z) , (4.68)

which is independent of b and b′, and contain only second order differential
operators, after the definition (4.67a). Solving (4.67b) formally for ψ′ and
substituting in (4.68), we find

Tµνanom(x) =
c

3
(gµν − ∂µ∂ν)

∫
d4x′ −1

x,x′

[
FαβF

αβ
]
x′
, (4.69)

a result that may be derived directly from (4.65) as well.
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By varying (4.69) again with respect to the background gauge potentials,
and Fourier transforming, we obtain

Γµναβ
anom (p, q) =

∫
d4x

∫
d4y eip·x+iq·y δ2Tµνanom(0)

δAα(x)Aβ(y)

=
e2

18π2

1
k2

(
gµνk2 − kµkν

)
uαβ(p, q) (4.70)

which gives the full trace for massless fermions

gµνT
µν
anom = cFαβF

αβ = − e2

24π2
FαβF

αβ , (4.71)

in agreement with (4.53). The tree amplitude of the effective action (4.66)
which reproduces the pole in the trace part of the 〈TJJ〉 triangle amplitude
computed in Sec. 4.2 is illustrated in Fig. 7.

T µν [ψ′]

Gψ′ϕ
FαβF

αβ

1

Fig. 7. Tree Diagram of the effective action (4.66), which reproduces the trace of
the triangle anomaly. The dashed line denotes the propagator Gψ′ϕ = −1 of the
scalar intermediate state, while the jagged line denotes the gravitational metric
field variation hµν = δgµν . Compare to Fig. 6.

The massless degrees of freedom ϕ and ψ′ are a necessary consequence
of the trace anomaly, required by imposition of all the other symmetries.
In this case these are scalar rather than pseudoscalar degrees of freedom.
An important physical difference with the axial case is that the introduction
in QED of a chiral current Jµ5 and axial vector source Bµ corresponding
to it appear rather artificial, and difficult to realize in Nature, whereas the
trace of the stress tensor obtained by a conformal variation of the effective
action is simply a particular metric variation already present in the QED
Lagrangian in curved space, required by general coordinate invariance and
the Equivalence Principle, without any additional couplings or extraneous
fields. Since the stress-energy tensor couples to the universal force of gravity,
we should expect that physical processes can excite the scalar ϕ and ψ′

scalar degrees of freedom required by the trace anomaly with a gravitational
coupling strength, which can produce effects of arbitrarily long range.
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4.6. The scalar anomaly pole and gravitational scattering amplitudes

In order to verify the existence of the massless scalar pole in a physical
process, consider the simple tree diagram of gravitational exchange between
an arbitrary conserved stress-energy source T ′µν and photons illustrated
in Fig. 8.

�� ��� � �� �
�

�

Fig. 8. Tree level gravitational scattering amplitude.

This process is described by the scattering amplitude [116]

M = 8πG
∫
d4x′

∫
d4x

×

[
T ′µν(x′)

(
1
)
x′,x

Tµν(x)− 1
2
T ′µµ(x′)

(
1
)
x′,x

T νν(x)

]
. (4.72)

The relative factor of −1
2 between the two terms is dictated by the require-

ment that there be no scalar or ghost state exchanged between the two
sources, and is exactly the prediction of General Relativity, linearized about
flat space. That only a spin-2 propagating degree of freedom is exchanged
between the two sources in Fig. 8 can be verified by introducing the following
3 + 1 decomposition for each of the conserved stress tensors

T 00 = T00 , (4.73a)

T 0i = −V ⊥ i − ∂i 1
∇2

Ṫ00 , (4.73b)

T ij = T⊥ ij + ∂i
1
∇2

V̇ ⊥ j + ∂j
1
∇2

V̇ ⊥ i +
1
2

(
gij − ∂i 1

∇2
∂j
)

(Tµµ + T00)

−1
2

(
gij − 3 ∂i

1
∇2

∂j
)

1
∇2

T̈00 , (4.73c)

where ∂iV ⊥ i = 0, ∂iT⊥ ij = T⊥ ii = 0, and ∇−2 denotes the static Green’s
function of the Laplacian operator, ∇2 = ∂i∂i in flat space. This parame-
terization assumes only the conservation of the stress-tensor source(s), i.e.
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∂µT
µν = 0, so that there remain six independent components of Tµν which

must be specified, and we have chosen these six to be T00, V
⊥ i, T⊥ ij and the

total trace Tµµ, which is a spacetime scalar. Substituting the decomposition
(4.73) into (4.72) gives

M = 8πG
∫
d4x′

∫
d4x

[
T ′⊥ij

(
1
)
x′,x

T⊥ij − 2V ′⊥i

(
1
∇2

)
x′,x

V ⊥i

+
3
2
T ′00

1
(∇2)2

x′,x

T00 +
1
2
T ′00

(
1
∇2

)
x′,x

Tµµ +
1
2
T ′µµ

(
1
∇2

)
x′,x

T00

]
(4.74)

which becomes

M → −8πG
[
T ′⊥ij

1
k2
T⊥ij − 2V ′⊥i

1
~k2

V ⊥i

+
3
2
T ′00

k2

(~k2)2
T00 +

1
2
T ′00

1
~k2

Tµµ +
1
2
T ′µµ

1
~k2

T00

]
(4.75)

in momentum space. These expressions show that only the spatially trans-
verse and tracefree components of the stress tensor, T⊥ij exchange a physical
propagating helicity ±2 graviton in the intermediate state, characterized by
a Feynman (or for classical interactions, a retarded) massless propagator
− −1 → k−2 pole in the first term of (4.74) or (4.75). All the other terms
in either expression contain only an instantaneous Coulomb-like interaction
−∇−2 → ~k−2 or ∇−4 → ~k−4 between the sources, in which no propagating
physical particle appears in the intermediate state of the cut diagram. This
is the gravitational analog of the decomposition,

J0 = ρ , (4.76a)

J i = J⊥ i − ∂i 1
∇2

ρ̇ , (4.76b)

of the conserved electromagnetic current and corresponding tree level scat-
tering amplitude,∫

d4x′
∫
d4xJ ′µ(x′)

(
1
)
x′,x

Jµ(x)→ −J ′µ 1
k2
Jµ = −J ′⊥i

1
k2
J⊥i + ρ′

1
~k2

ρ ,

(4.77)
which shows that only a helicity ±1 photon is exchanged between the trans-
verse components of the current, the last term in (4.77) being the instanta-
neous Coulomb interaction between the charge densities.

We now replace one of the stress tensor sources by the matrix element
of the one-loop anomalous amplitude, considering first the trace term with
the anomaly pole in F1. This corresponds to the diagram in Fig. 9.
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Fig. 9. Gravitational scattering of photons from the source T ′µν via the triangle
amplitude.

We find for this term

〈0|T00|p, q〉1 = −~k2F1(k2)uαβ(p, q)Ãα(p)Ãβ(q) , (4.78a)

〈0|Tµµ|p, q〉1 = 3k2F1(k2)uαβ(p, q)Ãα(p)Ãβ(q) , (4.78b)

〈0|V ⊥i |p, q〉1 = 〈0|T⊥ij |p, q〉1 = 0 . (4.78c)

Hence the scattering amplitude (4.75) becomes simply

M1 = 4πGT ′µµ F1(k2)uαβ(p, q)Ãα(p)Ãβ(q) =
4πG

3
T ′µµ

1
k2
〈0|T νν |p, q〉1 ,

(4.79)
where (4.42) has been used form = 0. Thus for massless fermions the pole in
the anomaly amplitude becomes a scalar pole in the gravitational scattering
amplitude, appearing in the intermediate state as a massless scalar exchange
between the traces of the energy-momentum tensors on each side. The
standard gravitational interaction with the source has produced an effective
interaction between the scalar auxiliary field ψ′ and the trace T ′µµ with a
well defined gravitational coupling. Thus we may equally well represent
the scattering as Fig. 9 involving the fermion triangle, or as the tree level
diagram Fig. 10 of the effective theory, with a massless scalar exchange.

This tree diagram is generated by the effective action in flat space mod-
ified from (4.66) to

Seff [g,A;ϕ,ψ′] =
∫

d4x
√
−g
[
−ψ′ ϕ+

8πG
3

T ′µµ ψ
′ +

c

2
FαβF

αβϕ

]
,

(4.80)
to include the coupling to the trace of the energy-momentum tensor of any
matter T ′µµ source. Correspondingly the equation (4.67c) for ϕ becomes

ϕ =
8πG

3
T ′µµ , (4.81)
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Fig. 10. Gravitational scattering of photons from the trace of a source T ′µµ via
massless scalar exchange in the effective theory.

instead (4.67c). The equation of motion for ψ′ remains (4.67b). We note
that if the source T ′µν generates the curvature R by Einstein’s equations,
then R = −8πGT ′µµ, so that (4.80) and (4.81) are equivalent to (4.66) and
(4.67c) at leading order in G.

We conclude that in the conformal limit of massless electrons, the pole
in the trace sector of the 〈TJJ〉 anomaly amplitude contributes to gravita-
tional scattering amplitudes as would a scalar field coupled to the trace of the
energy-momentum tensor of classical sources. The gravitationally coupled
intermediate scalar can be understood as arising from collinear e+e− corre-
lated pairs in a total spin 0+ state in Fig. 6. Although the result appears
similar in some respects to a Brans–Dicke scalar [117], and indeed (4.81) is
identical in form to that of a Brans–Dicke scalar with vanishing Brans–Dicke
coupling (ω = 0), because of the unusual off-diagonal kinetic term dictated
by the structure of the trace anomaly, (4.80) is certainly not a Brans–Dicke
theory. Thus, although (4.81) tells us that ϕ is sourced by the trace of mat-
ter stress tensor with gravitational strength, ϕ cannot react back on matter
except through ψ′ and hence FαβFαβ , reproducing (4.65), from whence it
was derived. Each of the two scalar fields couples to a different source, with
an off-diagonal propagator, Gψ′ϕ. There is no direct coupling of the trace of
matter stress tensors T ′µµ to T νν via a scalar exchange as there would be in
a classical scalar tensor theory of the Jordan–Brans–Dicke kind. Hence the
phenomenology of (4.80) will be quite different, and the observational limits
on a Jordan–Brans–Dicke scalar [8] do not apply. Note also that the matrix
elements of FαβFαβ = 2( ~E2 − ~B2) vanish for monochromatic photons on
shell. Thus to leading order the scattering diagram in Fig. 9 also does not
contribute to photon scattering on shell. The contribution of the massless
scalar pole to higher order or off shell physical processes and the prospects for
detecting its effects experimentally are important and interesting questions
currently under investigation.
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4.7. The effective action of low energy gravity

With the foregoing detailed consideration of anomalies, massless poles
and their long distance effects, we consider finally the EFT of four dimen-
sional macroscopic gravity. This gravitational EFT is determined by the
same general principles as in other contexts [118], namely by an expansion
in powers of derivatives of local terms consistent with symmetry. Short dis-
tance effects are parameterized by the coefficients of local operators in the
effective action, with higher order terms suppressed by inverse powers of
an ultraviolet cutoff scale MUV. The effective theory need not be renor-
malizable, as indeed Einstein’s theory is not, but is expected nonetheless to
be quite insensitive to the details of the underlying microscopic degrees of
freedom, because of decoupling [118]. It is the decoupling of short distance
degrees of freedom from the macroscopic physics that makes EFT techniques
so widely applicable, and which, we assume, applies also to gravity.

As a covariant metric theory with a symmetry dictated by the Equiv-
alence Principle, General Relativity may be regarded as just such a local
EFT, truncated at second order in derivatives of the metric field gab(x) [119].
When quantum matter is considered, the stress tensor T ab becomes an op-
erator. Because the stress tensor has mass dimension four, containing up
to quartic divergences, the proper covariant renormalization of this operator
requires fourth order terms in derivatives of the metric. However, the effects
of such higher derivative local terms in the gravitational effective action are
suppressed at distance scales L � LPl in the low energy EFT limit. Hence
surveying only local curvature terms, it is often tacitly assumed that Ein-
stein’s theory contains all the low energy macroscopic degrees of freedom
of gravity, and that General Relativity cannot be modified at macroscopic
distance scales, much greater than LPl, without violating general coordi-
nate invariance and/or EFT principles. As we have argued previously in
two dimensions, this presumption should be re-examined in the presence of
quantum anomalies.

When a classical symmetry is broken by a quantum anomaly, the naive
decoupling of short and long distance physics assumed by an expansion in
local operators with ascending inverse powers ofMUV fails. In this situation
even the low energy symmetries of the effective theory are changed by the
presence of the anomaly, and some remnant of the ultraviolet physics sur-
vives in the low energy description. An anomaly can have significant effects
in the low energy EFT because it is not suppressed by any large energy cutoff
scale, surviving even in the limit MUV → ∞. Any explicit breaking of the
symmetry in the classical Lagrangian serves only to mask the effects of the
anomaly, but in the right circumstances the effects of the non-local anomaly
may still dominate the local terms. The axial anomaly in QCD, discussed in
Sec. 4.1 has low energy effects, unsuppressed by the EFT ultraviolet cutoff
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scale, MUV ∼ ΛQCD in that case. Although the quark masses are non-zero,
and chiral symmetry is only approximate in Nature, the chiral anomaly gives
the dominant contribution to the low energy decay amplitude of π0 → 2γ in
the standard model [81,94], a contribution that is missed entirely by a local
EFT expansion in pion fields. Instead, the existence of the chiral anomaly
requires the explicit addition to the local effective action of a non-local term
in four physical dimensions to account for its effects [104, 118]. Although
when an anomaly is present, naive decoupling between the short and long
distance degrees of freedom fails, it does so in a well-defined way, with a
coefficient that depends only on the quantum numbers of the underlying
microscopic theory.

The low energy effective action for gravity in four dimensions contains
first of all, the local terms constructed from the Riemann curvature tensor
and its derivatives and contractions up to and including dimension four.
This includes the usual Einstein–Hilbert action of General Relativity,

SEH[g] =
1

16πG

∫
d4x
√
−g (R− 2Λ) , (4.82)

as well as the spacetime integrals of the fourth order curvature invariants,

S
(4)
local[g] =

1
2

∫
d4x
√
−g

(
αCabcdC

abcd + βR2
)
, (4.83)

with arbitrary dimensionless coefficients α and β. There are two additional
fourth order invariants, namely E =∗Rabcd ∗Rabcd and R, which could be
added to (4.83) as well, but as they are total derivatives yielding only a
surface term and no local variation, we omit them. All the possible local
terms in the effective action may be written as the sum

Slocal[g] =
1

16πG

∫
d4x
√
−g (R− 2Λ) + S

(4)
local +

∞∑
n=3

S
(2n)
local (4.84)

with the terms in the sum with n ≥ 3 composed of integrals of local cur-
vature invariants with dimension 2n ≥ 6, and suppressed by M−2n+4

UV at
energies much less than MUV. Here MUV is the ultraviolet cutoff scale of
the low energy effective theory which we may take to be of the order of
MPl. The higher derivative terms with n ≥ 3 are irrelevant operators in the
infrared, scaling with negative powers under global rescalings of the metric,
and may be neglected at macroscopic distance scales, at least with respect
to the classical scaling dimensions. On the other hand, the two terms in the
Einstein–Hilbert action n = 0, 1 scale positively, and are clearly relevant in
the infrared. The fourth order terms in (4.83) are neutral under such global
rescalings.
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The exact quantum effective action also contains non-local terms in gen-
eral. All possible terms in the effective action (local or not) can be classified
according to how they respond to global Weyl rescalings of the metric, i.e.
σ = σ0 = const. If the non-local terms are non-invariant under global
rescalings, then they scale either positively or negatively under (4.44). If
m−1 is some fixed length scale associated with the non-locality, arising, for
example, by the integrating out of fluctuations of fields with mass m, then
at much larger macroscopic distances (mL � 1) the non-local terms in the
effective action become approximately local. The terms which scale with
positive powers of eσ0 are constrained by general covariance to be of the
same form as the n = 0, 1 Einstein–Hilbert terms in Slocal, (4.82). Terms
which scale negatively with eσ0 become negligibly small as mL� 1 and are
infrared irrelevant at macroscopic distances. This is the expected decoupling
of short distance degrees of freedom in an effective field theory description,
which are verified in detailed calculations of loops in massive field theories
in curved space. The only possibility for contributions to the effective field
theory of gravity at macroscopic distances, which are not contained in the
local expansion of (4.84) arise from fluctuations not associated with any fi-
nite length scale, i.e. m = 0. These are the non-local contributions to the
low energy EFT which include those associated with the anomaly.

The anomaly effective action is associated with non-trivial cohomology
of the rigid Weyl group in the space of metrics. Since ΓWZ (4.59) from which
the effective action of the anomaly was derived satisfies WZ consistency, i.e.
is closed but not exact under the Weyl group, it is unique up to an arbitrary
admixture of local trivial cocycles, which in physical terms are either trivial
because they are completely Weyl invariant effective actions obeying

Sinv[e2σg] = Sinv[g] , (4.85)

and drop out of difference (4.60), or they are purely local terms easily cat-
aloged by ascending powers of the Riemann curvature tensor, its covariant
derivatives and contractions in (4.84). Thus the classification of terms ac-
cording to their global Weyl scaling properties tells us that the exact effective
action of any covariant theory must be of the form [107]

Sexact[g] = Slocal[g] + Sinv[g] + Sanom[g] , (4.86)

with Slocal given by the expansion (4.84), Sinv the (generally non-local) Weyl
invariant terms satisfying (4.85), and Sanom the anomaly action given by
(4.63)–(4.64). The higher dimension local terms in (4.84) are strictly irrele-
vant in the IR, since they scale to zero with negative powers of eσ0 and may
be neglected for physics far below the Planck scale, while the lower dimension
local terms are nothing but the terms of the usual Einstein–Hilbert classical
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action (4.82). These classical terms grow as positive powers of eσ0 under
global dilations and are clearly IR relevant terms. Indeed the naive classical
scaling of these terms are positive powers (L4 and L2) under rescaling of
distance, and are clearly relevant operators of the low energy description.

The local dimension four terms involving the Weyl tensor squared C2

are fully locally Weyl invariant while that involving R2 is invariant under
global Weyl rescalings and among the many terms that can appear in Sinv.
Because both of these are neutral under global dilations, scaling like L0 we
expect them to be marginally irrelevant in the IR (as well as in the UV).
All the higher dimension local terms in the sum in (4.84) for n ≥ 3 scale
to zero as σ0 → ∞ and are clearly strictly IR irrelevant. However, among
all the possible terms that can be generated by quantum loops in the exact
effective action of gravity, the anomaly effective action is unique in scaling
logarithmically under the global Weyl group. Indeed, we note that in the
form (4.64) the simple shift of the auxiliary field ϕ by a spacetime constant,

ϕ→ ϕ+ 2σ0 (4.87)

corresponding to a global logarithmic variation of length scales yields the
entire dependence of Sanom on the global Weyl rescalings (4.44), viz.

Sanom[g;ϕ,ψ] → Sanom[e2σ0g;ϕ+2σ0, ψ]

= Sanom[g;ϕ,ψ]+σ0

∫
d4x
√
−g
[
bF+b′

(
E− 2

3
R

)]
(4.88)

owing to the strict invariance of the terms quadratic in the auxiliary fields
under (4.44) and Eqs. (4.56). Hence Sanom scales logarithmically (∼ logL)
with distance under Weyl rescalings.

Because of this infrared sensitivity to global rescalings, unlike local higher
derivative terms in the effective action, which are either neutral or scale with
negative powers of L, the anomalous terms should not be discarded in the low
energy, large distance limit. Ordinarily, i.e. absent anomalies, the Wilson
effective action should contain only local infrared relevant terms consistent
with symmetry [120]. However, like the anomalous effective action generated
by the chiral anomaly in QCD, the non-local Sanom must be included in the
low energy EFT to account for the anomalous Ward identities, even in the
zero momentum limit, and indeed logarithmic scaling with distance (4.88)
indicates that Sanom is an infrared relevant term. Even if no massless matter
fields are assumed, the quantum fluctuations of the metric itself will generate
a term of the same form as Sanom in the infrared [106]. The scalar fields of
the local form (4.63), (4.64) of Sanom describe massless scalar degrees of
freedom of low energy gravity, not contained in classical General Relativity.
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As we have seen, these massless scalars may be understood as correlated two-
particle states of the underlying anomalous QFT, and show up as poles in
gauge invariant physical scattering amplitudes in the EFT where the original
quantum fields appear only in internal quantum loops. Thus the effective
action of the anomaly Sanom should be retained in the EFT of low energy
gravity, which is specified then by the first two strictly relevant local terms
of the classical Einstein–Hilbert action (4.82), and the logarithmic Sanom, i.e.

Seff [g] = SEH[g] + Sanom[g;ϕ,ψ] (4.89)

with Sanom given by (4.61) or in its local form by (4.63), (4.64).
The complete classification of the terms in the exact effective action

(4.86) into just three categories means that all possible infrared relevant
terms in the low energy EFT, which are not contained in Slocal of (4.84)
must fall into Sanom, i.e. they must correspond to non-trivial co-cycles of the
local Weyl group [107,115]. The Weyl invariant terms in the exact effective
action (4.85) are by definition insensitive to rescaling of the metric at large
distances. Hence the (generally quite non-local) terms in Sinv do not give
rise to infrared relevant terms in the Wilson effective action for low energy
gravity. By this classification of terms (local or non-local) according to their
behavior under global Weyl rescalings, the Wilson effective action (4.89)
contains all the infrared relevant terms in low energy gravity for energies
much less than MPl.

Note also that it would be inconsistent with the semi-classical Einstein
equations (2.42) to have as their source a stress tensor which is not covari-
antly conserved. Thus in a clash of symmetries which a quantum anomaly
presents, it is necessary to choose the option that conformal invariance is
broken, not general coordinate invariance. The action Sanom is invariant
under general coordinate transformations and under no conditions (i.e. in
the presence of an horizon or not) is there a gravitational anomaly [89].
This is not a state dependent condition dependent on whether an horizon
exists or not, but a condition of consistency of the semi-classical Einstein
Eqs. (2.42). Under the defining assumptions of general covariance and the
EFT hypothesis of decoupling of physics associated with massive degrees of
freedom, any infrared modifications of Einstein’s theory generated by quan-
tum effects is tightly constrained and the effective action (4.89) becomes
essentially unique. The addition of the anomaly term(s) and the scalar de-
grees of freedom ϕ and ψ they contain to the low energy effective action of
gravity amounts to a non-trivial infrared modification of General Relativity,
required by the existence of the trace anomaly, fully consistent with both
quantum theory and the Equivalence Principle.



2110 E. Mottola

5. Macroscopic effects of the trace anomaly

Having a fully covariant effective action the most straightforward appli-
cation is to compute the covariantly conserved stress-energy tensor corre-
sponding to it, and study its effects in particular backgrounds. If the effects
are significant it will be necessary then to include the anomalous stress ten-
sor as a source for Einstein’s equations to obtain new solutions, but at first
one can evaluate the stress tensor in certain fixed backgrounds, such as the
Schwarzschild black hole geometry discussed in Sec. 2 and the de Sitter ge-
ometry of Sec. 3. This will provide the first evidence of the relevance of the
anomaly effective action and the scalars ϕ and ψ for macroscopic gravity in
the presence of horizons.

After these studies in fixed classical backgrounds one can consider next
dynamical effects of the fluctuations associated with the anomaly scalars,
their role in cosmology and their relevance to both the problem of gravita-
tional collapse and cosmological dark energy.

5.1. Anomaly stress tensor in Schwarzschild spacetime

From (4.63) and (4.64) the stress tensor of the anomalous effective action
consists of two independent terms,

T
(anom)
ab ≡ − 2√

−g
δSanom

δgab
[g;ϕ,ψ] = b′Eab + bFab (5.1)

with

Eab = −2(∇(aϕ)(∇b) ϕ) + 2∇c [(∇cϕ)(∇a∇bϕ)]− 2
3∇a∇b [(∇cϕ)(∇cϕ)]

+2
3 Rab (∇cϕ)(∇cϕ)− 4Rc(a(∇b)ϕ)(∇cϕ) + 2

3 R (∇aϕ)(∇bϕ)

+1
6 gab

{
−3 ( ϕ)2 + [(∇cϕ)(∇cϕ)] + 2

(
3Rcd −Rgcd

)
(∇cϕ)(∇dϕ)

}
−2

3 ∇a∇b ϕ− 4C c d
a b ∇c∇dϕ− 4Rc(a∇b)∇cϕ+ 8

3 Rab ϕ+ 4
3 R∇a∇bϕ

−2
3

(
∇(aR

)
∇b)ϕ+ 1

3gab

{
2 2ϕ+ 6Rcd∇c∇dϕ− 4R ϕ+ (∇cR)∇cϕ

}
(5.2)

and Fab = −2(∇(aϕ)(∇b) ψ)− 2(∇(aψ)(∇b) ϕ)
+2∇c [(∇cϕ)(∇a∇bψ) + (∇cψ)(∇a∇bϕ)]
−4

3∇a∇b [(∇cϕ)(∇cψ)] + 4
3Rab(∇cϕ)(∇cψ)

−4Rc(a
[
(∇b)ϕ)(∇cψ) + (∇b)ψ)(∇cϕ)

]
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+4
3R (∇(aϕ)(∇b)ψ) + 1

3gab

{
− 3( ϕ)( ψ) + [(∇cϕ)(∇cψ)]

+2
(

3Rcd −Rgcd
)

(∇cϕ)(∇dψ)
}

−4∇c∇d
(
C c d

(a b) ϕ
)
− 2C c d

a b R
cdϕ

−2
3 ∇a∇b ψ − 4C c d

a b ∇c∇dψ
−4Rc(a(∇b)∇cψ) + 8

3 Rab ψ + 4
3 R∇a∇bψ

−2
3

(
∇(aR

)
∇b)ψ + 1

3gab

{
2 2ψ + 6Rcd∇c∇dψ

−4R ψ + (∇cR)(∇cψ)
}
. (5.3)

Each of these two tensors are individually conserved and they have the local
traces,

Eaa = 2∆4ϕ = E − 2
3 R , (5.4a)

F aa = 2∆4ψ = F = CabcdC
abcd , (5.4b)

corresponding to the two terms respectively in the trace anomaly in four
dimensions in (5.43) (with βi = 0).

In the four dimensional Schwarzschild geometry the full contraction of
the Riemann tensor is given by (2.6), and since Rab = 0 the invariants
F
∣∣
S

= E
∣∣
S

= 48M2/r6. (Where we temporarily set GM = M to simplify
the expressions below). A particular solution of either of the inhomogeneous
Eqs. (4.62) is given then by ϕ̄(r), with

dϕ̄

dr

∣∣∣
S

= − 4M
3r2f

ln
( r

2M

)
− 1

2M

(
1 +

4M
r

)
(5.5)

and f(r) = 1−2M/r. The general solution of (4.62) for ϕ = ϕ(r) away from
the singular points r = (0, 2M,∞) is easily found and may be expressed in
the form

dϕ

dr

∣∣∣
S

=
dϕ̄

dr

∣∣∣
S

+
2McH

r2f
+

q − 2
4M2r2f

r∫
2M

drr2 ln f +
c∞
2M

(
r

2M
+ 1 +

2M
r

)

=
q − 2
6M

(
r

2M
+ 1 +

2M
r

)
ln f − q

6r

[
4M

r − 2M
ln
( r

2M

)
+

r

2M
+ 3
]

− 1
3M
− 1
r

+
2McH

r(r − 2M)
+
c∞
2M

(
r

2M
+ 1 +

2M
r

)
(5.6)
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in terms of the three dimensionless constants of integration, cH, c∞, and q.
This expression has the limits,

dϕ

dr

∣∣∣
S
→ cH

r − 2M
+
q − 2
2M

ln
( r

2M
− 1
)

− 1
2M

(
3c∞ − cH − q −

5
3

)
+ . . . , r → 2M ; (5.7a)

dϕ

dr

∣∣∣
S
→ c∞r

4M2
+

2c∞ − q
4M

+
c∞
r
− 2M

3r2
q ln

( r

2M

)
+

2M
r2

[
cH −

7
18

(q − 2)
]

+ . . . , r →∞ . (5.7b)

Hence cH controls the leading behavior as r approaches the horizon, while
c∞ controls the leading behavior as r → ∞, which is the same as in flat
space. The leading behavior at the horizon is determined by the homoge-
neous solution to (4.62), cH ln f = cH ln(−KaKa)1/2 where K = ∂t is the
timelike Killing field of the Schwarzschild geometry for r > 2M . Because
of these singular behaviors in (5.7b), (5.6) is clearly a solution of (5.4) in
the distributional sense, i.e. containing possible δ functions or derivatives
thereof at the origin, at the horizon and at infinity.

To the general spherically symmetric static solution (5.6) we may add
also a term linear in t, i.e. we replace ϕ(r) by

ϕ(r, t) = ϕ(r) +
p

2M
t . (5.8)

Linear time dependence in the auxiliary fields is the only allowed time de-
pendence that leads to a time-independent stress-energy. The conformal
transformation to flat space near the horizon corresponds to the particular
choice cH = ±p = 1, leaving the subdominant terms in (5.7a) parameterized
by q and c∞ undetermined.

Since the equation for the second auxiliary field ψ is identical to that
forϕ, its solution for ψ = ψ(r, t) is of the same form as (5.6) and (5.8) with
four new integration constants, dH, d∞, q′ and p′ replacing cH, c∞, q, and p
in ϕ(r, t). Adding terms with any higher powers of t or more complicated
t dependence produces a time dependent stress-energy tensor. Inspection
of the stress tensor terms in (5.1) also shows that it does not depend on
either a constant ϕ0 or ψ0 but only the derivatives of both auxiliary fields
in Ricci flat metrics such as Schwarzschild spacetime. For that reason we
do not need an additional integration constant for either of the fourth order
differential equations (4.62).
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With the general spherically symmetric solution for ϕ(r, t) and ψ(r, t),
we can proceed to compute the stress-energy tensor (5.1) in a stationary,
spherically symmetric quantum state. For example, the Boulware state is
characterized as that state which approaches the flat space vacuum as rapidly
as possible as r →∞ [35]. In the flat space limit this means that the allowed
r2 and r behavior in the auxiliary fields (r and constant behavior in their
first derivatives) must be set to zero. Inspection of the asymptotic form
(5.7b) shows that this is achieved by requiring

c∞ = d∞ = 0 (5.9a)
and

q = q′ = 0 (Boulware) . (5.9b)

If we set p = p′ = 0 as well, in order to have a static ansatz for the Boulware
state, then the remaining two constants cH and dH are free parameters of
the auxiliary fields, which lead to a stress-energy which diverges as r → 2M
on the horizon. Matching the leading divergence of the stress-energy in the
Boulware state (2.41) by adjusting cH and dH appropriately, one then has a
one parameter fit to the numerical data of [121]. The results of this fit of
(5.1) with cH and dH treated as free parameters are illustrated in Figs. 1,
for all three non-zero components of the stress tensor expectation value of
a massless, conformally coupled scalar field in the Boulware state. The
(approximate) best fit values plotted were obtained with cH = − 7

20 and
dH = 55

84 .
For comparison purposes, we have plotted also the analytic approxima-

tion of Page, Brown, and Ottewill [122–124] (dashed curves in Figs. 11 to 13).
We observe that the two parameter fit with the anomalous stress tensor in
terms of the auxiliary ϕ and ψ fields is more accurate than the approximation
of Refs. [122–124] for the Boulware state.

The next important point to emphasize is that the stress-energy diverges
on the horizon in an entire family of states for generic values of the eight
auxiliary field parameters (cH, q, c∞, p; dH, q

′, d∞, p
′), in addition to the Boul-

ware state. Hence in the general allowed parameter space of spherically sym-
metric macroscopic states, horizon divergences of the stress-energy are quite
generic, and not restricted to the Boulware state. On the other hand, the
condition that the stress-energy on the horizon be finite gives four conditions
on these eight parameters, in order to cancel the four possible divergences
s−2, s−1, ln2 s, ln s. The simplest possibility with the minimal number of
conditions on the auxiliary field parameters is via

(2b+ b′)c2
H + p(2bp′ + b′p) = 0 (s−2) , (5.10a)

(b+ b′)cH = bdH (s−1) , (5.10b)
q = q′ = 2 (ln2 s and ln s) . (5.10c)
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Fig. 11. The expectation value 〈T t
t 〉 of a conformal scalar field in the Boulware

state in Schwarzschild spacetime, as a function of s = r−2M
M in units of π2T 4

H/90.
The solid curve is Eq. (5.1) with (5.5), (5.6), (5.9), and cH = − 7

20 , dH = 55
84 ,

the dashed curve is the analytic approximation of [122], and the points are the
numerical results of [121].
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Fig. 12. The radial pressure 〈T r
r 〉 of a conformal scalar field in the Boulware state

in Schwarzschild spacetime. The axes and solid and dashed curves and points are
as in Fig. 11.

It is clear that these finiteness conditions on the horizon are incompatible
with the conditions for fall off at infinity (5.9b), in their values of q and q′.
Thus the effective action and behavior of the anomaly scalar fields and stress
tensor illustrate at a glance the general topological obstruction discussed
in Sec. 2 for vacuum behavior of 〈T ab〉R at both the horizon and infinity
simultaneously. With conditions (5.9b) the anomaly scalar fields give a very
weak Casimir-like long-range interaction between massive bodies, that falls
off very rapidly with distance (at least as fast as r−7).
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Fig. 13. The tangential pressure 〈T θ
θ 〉 of a conformal scalar field in the Boulware

state in Schwarzschild spacetime. The axes and solid and dashed curves and points
are as in Fig. 11.

By taking different values of the parameters (cH, q, c∞, p; dH, q
′, d∞, p

′) of
the homogeneous solutions to (4.62), corresponding to different states of the
underlying quantum theory, it is possible to approximate the stress tensor of
the Hartle–Hawking and Unruh states as well [115,125]. In states which are
regular on the horizon there is no particular reason to neglect the Weyl in-
variant terms Sinv in the exact effective action, and the stress-energy tensor
it produces would be expected to be comparable in magnitude to that from
Sanom. In this case of bounded stress tensors, the contributions from both
Sanom and Sinv are both of order M−4 and negligibly small on macroscopic
scales in any case. However in states such as the previous Boulware exam-
ple, the diverging behavior of the stress tensor near the horizon is captured
accurately by the terms in (5.1) arising from the anomaly, which have the
same generically diverging behaviors as the quantum field theory expecta-
tion value 〈T ab〉R. This general behavior has been found in the Reissner–
Nordstrom case of electrically charged black holes as well [126]. We find no
a priori justification for excluding generic states with stress-energy tensors
that grow without bound as the horizon is approached. In any such states
the backreaction of the stress-energy on the geometry will be substantial in
this region and lead to large backreaction effects near the horizon.

5.2. Anomaly stress tensor in de Sitter spacetime

In conformally flat spacetimes with gab = e2σηab, one can choose ϕ = 2σ
and ψ = 0 to obtain the stress tensor of the state conformally transformed
from the Minkowski vacuum. In this state Fab vanishes, and ϕ can be
eliminated completely in terms of the Ricci tensor with the result [107,127]
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Eab = 2
9∇a∇bR+ 2R c

a Rbc − 14
9 RRab + gab

(
−2

9 R−RcdRcd + 5
9R

2
)
.

(5.11)
Thus all non-local dependence on boundary conditions of the auxiliary fields
ϕ and ψ drops out in conformally flat spacetimes for the state conformally
mapped from the Minkowski vacuum. In the special case of maximally
O(4,1) symmetric de Sitter spacetime, Rab = 3H2gab with R = 12H2 a
constant

Eab

∣∣∣
dS

= 6H4 gab . (5.12)

Hence we obtain immediately the expectation value of the stress tensor of a
massless conformal field of any spin in the Bunch–Davies (BD) state in de
Sitter spacetime,

Tab

∣∣∣
BD,dS

= 6b′H4gab = − H4

960π2
gab (Ns + 11Nf + 62Nv) , (5.13)

which is determined completely by the trace anomaly.
States in de Sitter space which are not maximally O(4,1) symmetric are

easily studied by choosing different solutions of (4.62) for ϕ and ψ. For
example, if de Sitter spacetime is expressed in the spatially flat coordinates
(3.20) and ϕ = ϕ(τ), we obtain from (5.1) the stress-energy in spatially
homogeneous, isotropic states. Since in de Sitter spacetime the ∆4 operator
factorizes,

∆4

∣∣∣
dS
ϕ =

(
− 2H2

)
( ϕ) = 12H4 , (5.14)

it is straightforward to show that the general solution to this equation with
ϕ = ϕ(τ) is

ϕ(τ) = 2Hτ + c0 + c−1e
−Hτ + c−2e

−2Hτ + c−3e
−3Hτ . (5.15)

When the full solution for ϕ(τ) of (5.15) is substituted into (5.2) we obtain
additional terms in the stress tensor which are not de Sitter invariant, but
which fall off at large τ , as e−4Hτ . The stress tensor of this time behavior is
traceless and corresponds to the redshift of massless modes with the equation
of state, p = ρ/3.

States of lower symmetry in de Sitter spacetime may be found by con-
sidering static coordinates (3.27), in terms of which the operator ∆4 again
separates. Inserting the ansatz ϕ = ϕ(r) in (5.14), the general O(3) spheri-
cally symmetric solution regular at the origin is easily found:

ϕ(r)
∣∣
dS

= ln
(
1−H2r2

)
+c0 +

q

2
ln
(

1−Hr
1 +Hr

)
+

2cH − 2− q
2Hr

ln
(

1−Hr
1 +Hr

)
.

(5.16)
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A possible homogeneous solution proportional to 1/r has been discarded,
since it is singular at the origin. An arbitrary linear time dependence 2Hpt
could also be added to ϕ(r), i.e. ϕ(r) → ϕ(r, t) = ϕ(r) + 2Hpt. The
particular solution,

ϕBD(r, t) = ln
(
1−H2r2

)
+ 2Ht = 2Hτ , (5.17)

is simply the previous solution for the Bunch–Davies state we found in the
homogeneous flat coordinates (3.20).

In the general O(3) symmetric state centered about the origin of the
coordinates r = 0, the stress tensor is generally dependent on r. In fact,
it generally diverges as the observer horizon r = H−1 is approached, much
as in the Schwarzschild case considered previously. From (5.16) we observe
that

ϕ(r)
∣∣
dS
→
[
cH +

(
cH − 1− q

2

)
(1−Hr) + . . .

]
ln
(

1−Hr
2

)
+ O(1−Hr) ,

(5.18)
as Hr → 1, so that the integration constant cH controls the most singular
behavior at the observer horizon r = H−1.

The second auxiliary field ψ satisfies the homogeneous equation,

∆4ψ = 0 , (5.19)

which has the general spherically symmetric solution linear in t,

ψ(r, t)
∣∣
dS

= d0 +2Hp′t+
q′

2
ln
(

1−Hr
1 +Hr

)
+

2dH − q′

2Hr
ln
(

1−Hr
1 +Hr

)
. (5.20)

Note that the constant dH enters this expression differently than cH enters
the corresponding Eq. (5.16), due to the inhomogeneous term in (5.14),
which is absent from the ψ equation. Since the anomalous stress tensor is
independent of c0 and d0, it depends on the six parameters (cH, dH, q, q

′, p, p′)
in the general stationary O(3) invariant state. The simplest way to insure
no r−2 or r−1 singularity of the stress tensor at the origin is to choose
q = q′ = 0. With q = q′ = 0 there are no sources or sinks at the origin and
the zero flux condition,

T rt = −4H2

r2

(
bpq′ + bp′q + b′pq

)
= 0 (5.21)

is satisfied automatically, for any p and p′. Because of the subleading loga-
rithmic behavior (5.18) of ϕ on the observer horizon at r = H−1, there will
ln2(1−Hr) and ln(1−Hr) divergences in the other components of the stress
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tensor (5.1) in general. These divergences are removed when q = q′ = 0 and
cH = 1. All the divergences of the stress-energy at both the origin and the
observer horizon are canceled if the four conditions,

2b
(
dH + pp′

)
= b′

(
1− p2

)
, (5.22a)

cH = 1 , (5.22b)
and

q = q′ = 0 (5.22c)

are satisfied. These are satisfied by the Bunch–Davies state with p = ±1
and dH = p′ = 0. In fact, with conditions (5.22) the tensor Fab of (5.3)
vanishes identically, the ψ field drops out entirely, and the full anomalous
stress tensor is given by (5.2), which takes the Bunch–Davies form (5.13).

If the first two of the four conditions (5.22) are relaxed, then the stress-
energy remains finite at the origin, but becomes divergent at r = H−1. This
is the generic case. It includes in particular the analog of the static Boulware
vacuum [35] in de Sitter space. There is no analog of the Unruh state [38]
in de Sitter spacetime, since by continuity a flux through the future or past
observer horizon at r = H−1 would require a source or sink of flux at the
origin r = 0, a possibility we have excluded by (5.21) above.

The important conclusion from these studies of the stress tensor (5.1)
obtained from the anomaly effective action is that rather than being a pathol-
ogy of a single state the divergent behavior of the stress tensor on the horizon
is generic. The general spherically symmetric solutions of the linear scalar
field Eqs. (4.62) are easy found, which allows an overview of a variety of
quantum states in the underlying field theory which would normally require
a laborious effort to study individually, and for each spin field separately.
This overview of possible states shows that at least four conditions (5.10)
on the set of eight parameters is necessary to eliminate divergences on the
future horizon of a Schwarzschild black hole, and a similar set of conditions
(5.22) are necessary to remove divergences on the de Sitter horizon. This
suggests that in the generic state of the gravitational collapse problem the
backreaction effects will be large, and alter significantly the classical picture
of a black hole horizon, which is the source of the paradoxes discussed in
Sec. 2, and that the black hole and cosmological horizon singularities may
be related.

5.3. Conformal phase of 4D gravity and infrared running of Λ

In order to understand the dynamical effects of the kinetic terms in the
anomaly effective action, one can consider simplest case of the quantization
of the conformal factor in the Wess–Zumino action (4.59) in the case that
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the fiducial metric is flat, i.e. gab = e2σηab. Then the Wess–Zumino effective
action (4.59) simplifies to

ΓWZ[η;σ] = − Q2

16π2

∫
d4x ( σ)2 , (5.23)

where
Q2 ≡ −32π2b′ . (5.24)

This action quadratic in σ is the action of a free scalar field, albeit with
a kinetic term that is fourth order in derivatives. The propagator for this
kinetic term is (p2)−2 in momentum space, which is a logarithm in position
space

Gσ(x, x′) = − 1
2Q2

ln
[
µ2(x− x′)2

]
. (5.25)

Of course, this is no accident but rather a direct consequence of the associ-
ation with the anomaly of a conformally invariant differential operator,
in two dimensions and ∆4 in four dimensions, a pattern which continues in
all higher even dimensions. Because of this logarithmic propagator a similar
sort of infrared fluctuations, conformal fixed point and dressing exponents
as those obtained in two dimensional gravity [114].

The classical Einstein–Hilbert action for a conformally flat metric gab =
e2σηab is

1
8πG

∫
d4x

[
3e2σ(∂aσ)2 − Λe4σ

]
, (5.26)

which has derivative and exponential self-interactions in σ. It is remarkable
that these complicated interactions can be treated systematically using the
the fourth order kinetic term of (5.23). In fact, these interaction terms are
renormalizable and their anomalous scaling dimensions due to the fluctua-
tions of σ can be computed in closed form [114,128,129]. Direct calculation
of the conformal weight of the Einstein curvature term shows that it acquires
an anomalous dimension β2 given by the quadratic relation

β2 = 2 +
β2

2

2Q2
. (5.27)

In the limit Q2 → ∞ the fluctuations of σ are suppressed and we recover
the classical scale dimension of the coupling G−1 with mass dimension 2.
Likewise the cosmological term in (5.26) corresponding to the four volume
acquires an anomalous dimension given by

β0 = 4 +
β2

0

2Q2
. (5.28)
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Again as Q2 → ∞ the effect of the fluctuations of the conformal factor
are suppressed and we recover the classical scale dimension of Λ/G, namely
four. The solution of the quadratic relations (5.27) and (5.28) determine the
scaling dimensions of these couplings at the conformal fixed point at other
values of Q2. This can be extended to local operators of any non-negative
integer mass dimension p, with associated couplings of mass dimension 4−p,
by

βp = 4− p+
β2
p

2Q2
. (5.29)

In order to obtain the classical scale dimension 4 − p in the limit Q2 → ∞
the sign of the square root is determined so that

βp = Q2

[
1−

√
1− (8− 2p)

Q2

]
, (5.30)

valid for Q2 ≥ 8− 2p for all p ≥ 0, and thus Q2 ≥ 8. These scaling dimen-
sions were computed both by covariant and canonical operator methods.
In the canonical method we also showed that the anomalous action for the
conformal factor does not have unphysical ghost or tachyon modes in its
spectrum of physical states [130].

In the framework of statistical mechanics and critical phenomena the
quadratic action (5.23) describes a Gaussian conformal fixed point, where
there are no scales and conformal invariance is exact. The positive correc-
tions of order 1/Q2 (for Q2 > 0) in (5.27) and (5.28) show that this fixed
point is stable in the infrared, that is, both couplings G−1 and Λ/G flow to
zero at very large distances. Because both of these couplings are separately
dimensionful, at a conformal fixed point one should properly speak only of
the dimensionless combination ~GΛ/c3 = λ. By normalizing to a fixed four
volume V =

∫
d4x one can show that the finite volume renormalization of λ

is controlled by the anomalous dimension

2δ − 1 ≡ 2
β2

β0
− 1 =

√
1− 8

Q2 −
√

1− 4
Q2

1 +
√

1− 4
Q2

≤ 0 . (5.31)

This is the anomalous dimension that enters the infrared renormalization
group volume scaling relation [106]

V
d

dV
λ = 4 (2δ − 1)λ . (5.32)

The anomalous scaling dimension (5.31) is negative for all Q2 ≥ 8, starting
at 1−

√
2 = −0.414 at Q2 = 8 and approaching zero as −1/Q2 as Q2 →∞.
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This implies that the dimensionless cosmological term λ has an infrared
fixed point at zero as V → ∞. Thus the cosmological term is dynamically
driven to zero as V → ∞ by infrared fluctuations of the conformal part of
the metric described by (5.23).

We emphasize that no fine tuning is involved here and no free parameters
enter except Q2, which is determined by the trace anomaly coefficient b′ by
(5.24). Once Q2 is assumed to be positive, then 2δ − 1 is negative, and λ is
driven to zero at large distances by the conformal fluctuations of the metric,
with no additional assumptions.

The result (5.32) does rely on the use of (5.23) or its curved space gen-
eralization (4.61) as the free kinetic term in the effective action for gravity,
treating the usual Einstein–Hilbert terms as interactions or “marginal defor-
mations” of the conformal fixed point. This conformal fixed point represents
a new phase of gravity, non-perturbative in any expansion about flat space.
In this phase conformal invariance is restored and the mechanism of screen-
ing λ due to quantum effects proposed in [114] is realized.

Identifying the fluctuations responsible for driving λ to zero within a
framework based on quantum field theory and the Equivalence Principle,
free of ad hoc assumptions or fine tuning is an important first step towards a
full solution of the cosmological constant problem. However, this is not yet
a complete or testable cosmological model. Near the conformal fixed point
the inverse Newtonian constant G−1 is also driven to zero when compared to
some fixed mass scale m [129]. This is clearly different from the situation we
observe in our local neighborhood. Under what conditions can (4.61) play
a decisive role in realistic cosmological models? How would the conformal
fixed point behavior of the scaling relations such as (5.32) be detectable by
cosmological observations?

6. Cosmological consequences of the anomaly effective action

Absent a full cosmological model, the simplest possibility is to con-
sider the essentially kinematic effects of conformal invariance in cosmology
and predictions for observables such as the Cosmic Microwave Background
(CMB), without specifying the dynamics or spacetime history of the uni-
verse which gave rise to that conformal invariance. Later in this section we
take a first step to a cosmological model by considering the semi-classical
linear response of quantum fluctuations generated by the anomaly terms in
the effective action around de Sitter space.

6.1. Conformal invariance in de Sitter space

To illustrate how conformal invariance on flat spatial sections of FLRW
cosmology can be a natural result of a de Sitter phase in the evolution of the
universe, consider the O(4,1) de Sitter symmetry group and its ten Killing
vectors, ξ(α)

a . In coordinates (3.20) the Killing equation,
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∇aξ(α)
b +∇bξ(α)

a = 0 , α = 1, . . . , 10 , (6.1)

becomes

∂τξ
(α)
τ = 0 , (6.2a)

∂τξ
(α)
i + ∂iξ

(α)
τ − 2Hξ(α)

i = 0 , (6.2b)

∂iξ
(α)
j + ∂jξ

(α)
i − 2Ha2δijξ

(α)
τ = 0 . (6.2c)

For ξτ = 0 we have the three translations, α = Tj ,

ξ
(Tj)
τ = 0 , ξ

(Tj)
i = a2δji , j = 1, 2, 3 , (6.3)

and the three rotations, α = R`,

ξ(R`)
τ = 0 , ξ

(R`)
i = a2εi`mx

m , ` = 1, 2, 3 . (6.4)

This accounts for 6 of the 10 de Sitter isometries which are self-evident in
the flat FLRW coordinates with ξτ = 0. The 4 additional solutions of (6.2)
have ξτ 6= 0. They are the three special conformal transformations of R3,
α = Cn,

ξ(Cn)
τ = −2Hxn ,

ξ
(Cn)
i = H2a2(δniδjkx

jxk − 2δijxjxn)− δni , n = 1, 2, 3 , (6.5)

and the dilation, α = D,

ξ(D)
τ = 1 , ξ

(D)
i = Ha2 δijx

j . (6.6)

This last dilational Killing vector is the infinitesimal form of the finite dila-
tional symmetry,

~x→ λ~x , (6.7a)
η → λη , (6.7b)
a(τ)→ λ−1a(τ) , (6.7c)
τ → τ −H−1 lnλ , (6.7d)

of de Sitter space. The existence of this symmetry explains why Fourier
modes of different |~k| leave the de Sitter horizon at a shifted FLRW time τ ,
so in an eternal de Sitter space, in which there is no preferred τ , one expects
a scale invariant spectrum.
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The existence of the three conformal modes of R3 (6.5) implies in addition
that any O(4,1) de Sitter invariant correlation function must decompose
into representations of the conformal group of three dimensional flat space.
Fundamentally this is because the de Sitter group O(4,1) is the conformal
group of flat Euclidean R3, as Eqs. (6.2)–(6.6) shows explicitly. Moreover,
because of the exponential expansion in de Sitter space, the decomposition
into representations of the conformal group become simple at distances large
compared to the horizon scale 1/H.

If we consider a massive scalar field in the Bunch–Davies state in de
Sitter space (with m2 = µ2 + ξR = µ2 + 12ξH2), its propagator function
G(z(x, x′);m2) satisfies(

− +m2
)
G
(
z(x, x′);m2

)
=

−H2

[
z(1− z) d

2

dz2
+ 2(1− 2z)

d

dz
− m2

H2

]
G(z;m2) = δ4(x, x′) , (6.8)

where z(x, x′) is the de Sitter invariant distance function given by

1− z(x, x′) =
1

4ηη′
[
−(η − η′)2 + (~x− ~x′)2

]
=

H2

4
a(η)a(η′)

[
−(η − η′)2 + (~x− ~x′)2

]
(6.9)

in the conformally flat coordinates of (3.24). Since for x 6= x′, (6.8) is a
standard form of the hypergeometric equation, it has the solution

G(z;m2) =
H2

16π2
Γ (α)Γ (β)F (α, β; 2; z) (6.10)

in terms of the hypergeometric function 2F1 = F , with parameters

α = 3
2 + ν , (6.11a)

β = 3
2 − ν , (6.11b)

where ν is defined by (3.45). The particular solution (6.10) and its nor-
malization is dictated by the requirement that (− + m2)G(x, x′) yield a
delta function of unit magnitude at x = x′ in (6.8) and possess no other
singularities.

To explicitly see the conformal behavior in the massive case consider
(6.10) in the limit a(τ), a(τ ′) � 1, that is, after many e-foldings of the
exponential de Sitter expansion [131]. From (6.9) in this limit

1− z(x, x′)→ H2

4
a(τ)a(τ ′) (~x− ~x ′)2 →∞ (6.12)
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for fixed ~x, ~x′. Using the asymptotic form of the hypergeometric function in
(6.10) for z → −∞, we obtain [131]

G
(
z(x, x′);M2

)
→ A+ |~x− ~x ′|−3+2ν +A− |~x− ~x ′|−3−2ν (6.13)

a sum of simple power law scaling behaviors in the distance |~x − ~x ′|, with
coefficients

A±(τ, τ ′) =
1

2Hπ2

(
H

2

)±2ν Γ (3
2 ∓ ν)Γ (±2ν)
Γ (1

2 ± ν)

× exp
[(
−3

2 ± ν
)
H(τ + τ ′)

]
. (6.14)

Thus even massive non-conformal fields in de Sitter space exhibit conformal
power law scaling behavior on the flat R3 spatial sections after sufficiently
long exponential expansion in a de Sitter inflationary phase. The corrections
to (6.13) are integer power law terms which are a Taylor series in z−1 � 1
given by (6.12). Moreover, if m2 < 9H2/4 then only the leading power
law term |~x − ~x ′|−3+2ν survives in the limit. This would identify the CFT
scaling exponent to be 3/2 − ν if the fluctuations responsible for the CMB
were generated in the late time de Sitter expansion by a field of mass m
such that ν defined in (3.45) is real. The conformal behavior of de Sitter
invariant correlation functions is an example of a kind of dS/CFT correspon-
dence [107], and the result of the mathematical isomorphism between the
conformal group of the flat R3 sections and the four-dimensional de Sitter
group SO(4,1) expressed by the solutions of the Killing equation.

Note that in this picture the fluctuations of a massless, minimally cou-
pled scalar field with m = 0 or gravitons themselves have ν = 3/2 and
∆ = ν − 3/2 = 0, as should be expected for the fluctuations of a dimension-
less variable such as the metric tensor, and a nearly conformally invariant
spectrum is generated on the FLRW flat spatial sections. This presumes
that the de Sitter isometry group is broken in a specific way, to a standard
spatially homogeneous, isotropic FLRW cosmology. In slow roll inflation
this breaking of de Sitter invariance is achieved by the addition of a scalar
field, the inflaton, with a nearly flat potential [132,133]. The fluctuations of
this field generate fluctuations in its stress tensor which act as a source for
scalar metric fluctuations through Einstein’s equations as the system rolls
slowly down the potential and out of de Sitter space everywhere in space uni-
formly, maintaining overall spatial homogeneity and isotropy and the form
(3.20) of the FLRW line element. Since gravity is treated purely classically,
in the limit of a strictly constant inflaton potential or in the absence of any
inflaton field at all there would be no coupling of the scalar inflaton modes
to the metric and hence the amplitude of the CMB power spectrum would
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vanish. For this reason also in this picture the non-Gaussian bi-spectrum
is expected to have a very small amplitude, higher order in the slow roll
parameters [134].

Now the effective action of the trace anomaly has the potential to modify
this picture in at least two fundamental ways. First, the scalar degrees
of freedom ϕ and ψ are present in the effective action and will generate
scalar fluctuations in a de Sitter epoch, independently of any inflaton field or
potential. Thus, the deviations from a strict Harrison–Zel’dovich spectrum
and primordial non-Gaussianities need not be controlled by any small slow
roll parameters. Second, as discussed in Sec. 5.3, the anomaly effective
action gives rise to dynamical dark energy, and the possibility of a departure
from global FLRW kinematics usually assumed in cosmological models.

6.2. Conformal invariance and the CMB

Let us consider first the consequences of conformal invariance on flat
FLRW sections, independently of any detailed model. Our studies of fluc-
tuations in de Sitter space suggest that the fluctuations responsible for the
screening of λ take place at the horizon scale. In that case then the mi-
crowave photons in the CMB reaching us from their surface of last scat-
tering should retain some imprint of the effects of these fluctuations. It
then becomes natural to extend the classical notion of scale invariant cos-
mological perturbations, pioneered by Harrison and Zel’dovich [135] to full
conformal invariance. In that case the classical spectral index of the pertur-
bations should receive corrections due to the anomalous scaling dimensions
at the conformal phase [136]. In addition to the spectrum, the statistics
of the CMB should reflect the non-Gaussian correlations characteristic of
conformal invariance.

Scale invariance was introduced into physics in early attempts to describe
the apparently universal behavior observed in turbulence and second order
phase transitions, which are independent of the particular short distance
dynamical details of the system. The gradual refinement and development
of this simple idea of universality led to the modern theory of critical phe-
nomena, one of whose hallmarks is well-defined logarithmic deviations from
naive scaling relations [120]. A second general feature of the theory is the
specification of higher point correlation functions of fluctuations according
to the requirements of conformal invariance at the critical point [137].

In the language of critical phenomena, the observation of Harrison and
Zel’dovich that the primordial density fluctuations should be characterized
by a spectral index n = 1 is equivalent to the statement that the observ-
able giving rise to these fluctuations has engineering or naive scaling dimen-
sion p = 2. This is because the density fluctuations δρ are related to the
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metric fluctuations by Einstein’s equations, δR ∼ Gδρ, which is second or-
der in derivatives of the metric. Hence, the two-point spatial correlations
〈δρ(x)δρ(y)〉 ∼ 〈δR(x)δR(y)〉 should behave like |x−y|−4, or |k|1 in Fourier
space, according to simple dimensional analysis.

One of the principal lessons of the modern theory of critical phenomena
is that the transformation properties of observables under conformal trans-
formations at the fixed point is not given by naive dimensional analysis.
Rather one should expect to find well-defined logarithmic deviations from
naive scaling, corresponding to a (generally non-integer) dimension ∆. The
deviation from naive scaling is the “anomalous” dimension of the observable
due to critical fluctuations, which may be quantum or statistical in origin.
Once ∆ is fixed for a given observable, the requirement of conformal invari-
ance determines the form of its two- and three-point correlation functions
up to an arbitrary amplitude, without reliance on any particular dynamical
model.

Consider first the two-point function of any observable O∆ with dimen-
sion ∆. Conformal invariance requires [120,137]

〈O∆(x1)O∆(x2)〉 ∼ |x1 − x2|−2∆ (6.15)

at equal times in three dimensional flat spatial coordinates. In Fourier space
this gives

G2(k) ≡
〈
Õ∆(k)Õ∆(−k)

〉
∼ |k|2∆−3 . (6.16)

Thus, we define the spectral index of this observable by

n ≡ 2∆− 3 . (6.17)

In the case that the observable is the primordial density fluctuation δρ, and
in the classical limit where its anomalous dimension vanishes, ∆ → 2, we
recover the Harrison–Zel’dovich spectral index of n = 1.

In order to convert the power spectrum of primordial density fluctuations
to the spectrum of fluctuations in the CMB at large angular separations we
follow the standard treatment [138] relating the temperature deviation to the
Newtonian gravitational potential ϕ at the last scattering surface, δTT ∼ δϕ,
which is related to the density perturbation in turn by

∇2δϕ = 4πGδρ . (6.18)

Hence, in Fourier space,

δT

T
∼ δϕ ∼ 1

k2

δρ

ρ
, (6.19)
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and the two-point function of CMB temperature fluctuations is determined
by the conformal dimension ∆ to be

C2(θ) ≡
〈
δT

T
(r̂1)

δT

T
(r̂2)

〉
∼
∫
d3k

(
1
k2

)2

G2(k)eik·r12 ∼ Γ (2−∆)
(
r2

12

)2−∆
, (6.20)

where r12 ≡ (r̂1 − r̂2)r is the vector difference between the two positions
from which the CMB photons originate. They are at equal distance r from
the observer by the assumption that the photons were emitted at the last
scattering surface at equal cosmic time. Since r2

12 = 2(1− cos θ)r2, we find
then

C2(θ) ∼ Γ (2−∆)(1− cos θ)2−∆ (6.21)

for arbitrary scaling dimension ∆.
Expanding the function C2(θ) in multipole moments

C2(θ) =
1

4π

∑
`

(2`+ 1)c(2)
` (∆)P`(cos θ) , (6.22)

c
(2)
` (∆) ∼ Γ (2−∆) sin [π(2−∆)]

Γ (`− 2 +∆)
Γ (`+ 4−∆)

(6.23)

shows that the pole singularity at ∆ = 2 appears only in the ` = 0 monopole
moment. This singularity is just the reflection of the fact that the Lapla-
cian in (6.18) cannot be inverted on constant functions, which should be
excluded. Since the CMB anisotropy is defined by removing the isotropic
monopole moment (as well as the dipole moment), the ` = 0 term does
not appear in the sum, and the higher moments of the anisotropic two-
point correlation function are well-defined for ∆ near 2. Normalizing to the
quadrupole moment c(2)

2 (∆), we find

c
(2)
` (∆) = c

(2)
2 (∆)

Γ (6−∆)
Γ (∆)

Γ (`− 2 +∆)
Γ (`+ 4−∆)

, (6.24)

which is a standard result [138]. Indeed, if ∆ is replaced by p = 2 we obtain
`(` + 1)c(2)

` (p) = 6c(2)
2 (p), which is the well-known predicted behavior of

the lower moments (` ≤ 30) of the CMB anisotropy where the Sachs–Wolfe
effect should dominate.
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Turning now from the two-point function of CMB fluctuations to higher
point correlators, we find a second characteristic prediction of conformal
invariance, namely non-Gaussian statistics for the CMB. The first correla-
tor sensitive to this departure from Gaussian statistics is the three-point
function of the observable O∆, which takes the form [137]

〈O∆(x1)O∆(x2)O∆(x3)〉 ∼ |x1 − x2|−∆|x2 − x3|−∆|x3 − x1|−∆ , (6.25)

or in Fourier space2,

G3(k1, k2) ∼
∫
d3p |p|∆−3 |p+ k1|∆−3 |p− k2|∆−3 ∼

Γ
(
3− 3∆

2

)[
Γ
(

3−∆
2

)]3
×

1∫
0

du

1∫
0

dv
[u(1− u)v]

1−∆
2 (1− v)−1+∆

2[
u(1−u)(1−v)k2

1
+ v(1−u)k2

2
+ uv(k1 + k2)2

]3− 3∆
2

. (6.26)

This three-point function of primordial density fluctuations gives rise to
three-point correlations in the CMB by reasoning precisely analogous as
that leading from Eqs. (6.16) to (6.20). That is

C3(θ12, θ23, θ31) ≡
〈
δT

T
(r̂1)

δT

T
(r̂2)

δT

T
(r̂3)

〉
∼
∫

d3k1 d
3k2

k2
1 k

2
2 (k1 + k2)2

G3(k1, k2) eik1 r13eik2 r23 , (6.27)

where rij ≡ (r̂i − r̂j)r and r2
ij = 2(1− cos θij)r2.

In the general case of three different angles, this expression for the non-
Gaussian three-point correlation function (6.27) is quite complicated, al-
though it can be rewritten in parametric form analogous to (6.26) to facil-
itate numerical evaluation. In the special case of equal angles θij = θ, it
follows from its global scaling behavior that the three-point correlator is

C3(θ) ∼ (1− cos θ)
3
2

(2−∆) . (6.28)

Expanding the function C3(θ) in multiple moments as in (6.22) with coeffi-
cients c(3)

` , and normalizing to the quadrupole moment, we find

c
(3)
` (∆) = c

(3)
2 (∆)

Γ (4 + 3
2(2−∆))

Γ (2− 3
2(2−∆))

Γ (`− 3
2(2−∆))

Γ (`+ 2 + 3
2(2−∆))

. (6.29)

2 Note that (6.26) corrects two minor typographical errors in Eq. (16) of Ref. [136].
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In the limit ∆→ 2, we obtain `(`+ 1)c(3)
` = 6c(3)

2 , which is the same result
as for the moments c(2)

` of the two-point correlator but with a different
quadrupole amplitude. The value of this quadrupole normalization c(3)

2 (∆)
cannot be determined by conformal symmetry considerations alone, and
requires more detailed dynamical information about the origin of conformal
invariance in the spectrum.

For higher point correlations, conformal invariance does not determine
the total angular dependence. Already the four-point function takes the
form

〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉 ∼ A4∏
i<j r

2∆/3
ij

, (6.30)

where the amplitude A4 is an arbitrary function of the two cross-ratios,
r2

13r
2
24/r

2
12r

2
34 and r2

14r
2
23/r

2
12r

2
34. Analogous expressions hold for higher

p-point functions. However, in the equilateral case θij = θ, the coefficient
amplitudes Ap become constants and the angular dependence is again com-
pletely determined, with the result

Cp(θ) ∼ (1− cos θ)
p
2

(2−∆) . (6.31)

The expansion in multiple moments yields coefficients c(p)
` of the same form

as in Eq. (6.29) with 3/2 replaced by p/2. In the limit ∆ = 2, we obtain the
universal `-dependence `(`+ 1)c(p)

` = 6c(p)
2 .

Again it bears emphasizing that these results depend upon the hypothesis
of conformal invariance on the flat spatial sections of FLRW geometries, but
otherwise makes no dynamical assumptions, such as in scalar field inflaton
models.

6.3. Linear response in de Sitter space

The first step to a cosmological model based on the effective action (4.89)
going beyond the essentially purely kinematic considerations of the previous
subsection is to study the dynamical effects of (4.89) in de Sitter space. This
one can do by performing a linear response analysis of perturbations about
de Sitter space with the anomaly scalars ϕ and ψ, in place of any ad hoc
inflaton field.

Because of the O(4,1) maximal symmetry, with 10 Killing generators
(6.2), the maximally symmetric Bunch–Davies (BD) state in de Sitter space-
time is the natural one about which to consider perturbations. This is
the state usually considered in cosmological perturbation theory. The lin-
ear response approach requires a self-consistent solution of equations (2.42),
around which we perturb the metric and stress tensor together. In the BD
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state O(4,1) de Sitter symmetry implies that 〈T ab〉 is also proportional to
δab, which therefore guarantees that de Sitter space is a self-consistent solu-
tion of the semi-classical Eqs. (2.42). The self-consistent value of the scalar
curvature R, including the quantum contribution from 〈T ab〉 is determined
by the trace of (2.42), i.e.

−R+ 4Λ = 8πGb′E =
4πGb′

3
R2 (6.32a)

or
R

12
= H2 =

Λ
3

(
1− 16πGb′Λ

3
+ . . .

)
, (6.32b)

in an expansion around the classical de Sitter solution with GΛ|b′| � 1.
Thus, in this limit the stress tensor source of the semi-classical Einstein’s
equations (2.42) in the BD state (5.13) gives a small finite correction to
the classical cosmological term in the self-consistent de Sitter solution. The
trace of (5.13) is exactly b′E = b′R2/6 used in determining the self-consistent
scalar curvature including the quantum BD corrections in (6.32). The solu-
tions for the anomaly scalar fields,

ϕ̄ = 2 ln a = 2Hτ , (6.33a)
ψ̄ = 0 , (6.33b)

correspond exactly to the BD state, and it is consistent to expand the semi-
classical Einstein Eqs. (2.42) around de Sitter space using the effective action
and stress tensor of the anomaly scalar fields with background values (6.33).

With the self-consistent BD de Sitter solution (5.13), (6.32), and (6.33),
one may consider the linear response variation of the semi-classical Einstein
equations (2.42) [139,140]

δ

{
Rab −

R

2
δab + Λδab

}
= 8πGδ〈T ab〉R , (6.34)

with the source the anomaly generated stress tensor (5.1). Considering the
general form of the exact quantum effective action (4.86), its variation in-
cludes three kinds of terms, corresponding to the local terms up to fourth
order in derivatives of the metric, Weyl invariant non-local terms, and those
terms coming from the anomaly generated effective action (4.63), (4.64).
Parameterizing the local fourth order geometric terms in (4.83) with finite
coefficients αR and βR, (6.34) with (4.86) gives then

δRab −
δR

2
δab = 8πG δ

[
(T ab)

loc + (T ab)
inv + (T ab)

anom
]

= 8πG
[
−αR δAab − βR δBa

b + (T ab)
inv + b′ δEab + b δF ab

]
, (6.35)
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where all terms to linear order in δgab = hab and in the variations of the
auxiliary fields

δϕ ≡ ϕ− ϕ̄ ≡ φ , (6.36a)
δψ ≡ ψ − ψ̄ = ψ , (6.36b)

are to be retained. All indices are raised and lowered by the background de
Sitter metric gab at linear order in the perturbations. Since (T ab)

inv is the
variation of a Weyl invariant action, it has zero trace.

Since the terms coming from the fourth order local invariants CabcdCabcd
and R2, namely δAab and δBa

b are higher order in derivatives than the
Einstein–Hilbert terms, they are important only in the extreme ultraviolet
regime at energies of the order of MPl, where in any case one should not
trust the semi-classical effective theory. These local terms were explicitly
analyzed in Ref. [140] and do not affect any physics on the cosmological
horizon scale H � MPl. In particular, from the trace of (6.35) one obtains
the purely local equation[(

3βR +
b

3

)
+
(

1
16πG

+ 2b′H2

)]
δR = 0 . (6.37)

Because of the G−1 = M2
Pl term, the only non-trivial solutions of (6.37) are

on Plank scale, and outside the range of applicability of the EFT approach.
Hence we restrict attention to only the remaining solutions of (6.35) and
(6.37) that satisfy

δR = 0 . (6.38)

Notice that by doing so we are excluding the trace anomaly driven inflation-
ary solutions studied by Starobinsky [112].

In general, the non-local Weyl invariant terms in the exact quantum effec-
tive action Sinv are difficult to calculate and are not known. However, in the
case of conformally invariant matter/radiation fields in the conformaly flat
de Sitter geometry, it is possible to keep track of these non-local terms, and
calculate the linearized stress tensor they provide δ(T ab)

inv completely from
the corresponding quantity in the conformally related flat space [141, 142].
By keeping track of these terms in the de Sitter linear response analysis,
we will then be able to provide a non-trivial check on our general argument
based on the classification of terms in (4.86) according to their response
under global Weyl transformations that these terms play no role in the in-
frared, and the Wilson effective action for low energy gravity consists of the
classical Einstein–Hilbert and anomaly terms only in (4.89).

The last two terms in the last line of (6.35) arise from the anomaly
action and give rise to new physical effects in cosmology. The variation of
the stress tensors Eab and F

a
b depend on both the variations of the metric
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and the variations of the auxiliary fields. The variation of the auxiliary field
equations (4.62) gives

δ( 2ϕ)−R
6
δ( ϕ) =

(
− + 2H2

)
δ(− ϕ)=−2

(
∇a∇bϕ̄

)
δRab , (6.39a)

δ( 2ψ)−R
6
δ( ψ) =

(
− +2H2

)
(− )ψ=0 . (6.39b)

The first of these two equations shows that at linear order there is mixing
between the fluctuations of the anomaly scalar field ϕ and the metric per-
turbation δgab = hab around de Sitter space. This mixing is algebraically
simplest to study by making a suitable gauge choice, although, of course,
the results in the end must be gauge invariant. Here we present only the
results of the gauge invariant analysis [140].

The metric perturbations which are scalar with respect to the back-
ground three-metric gij = a2ηij can be parameterized in terms of four func-
tions, (A,B, C, E) in the form [143,144]

htt = −2A , (6.40a)
htj = a∂jB → iakjB , (6.40b)

hij = 2a2
[
ηij C +

(ηij
3
k2 − kikj

)
E
]

(6.40c)

in momentum space. As is well known, only two linear combinations of these
four functions are gauge invariant (for ~k 6= 0). The two gauge invariant
metric perturbation variables may be taken to be

ΥA ≡ A+ ∂τ (aB)− ∂τ (a2∂τE) , (6.41a)

ΥC ≡ C −
∇2

3
E + (∂τa)B − a(∂τa)∂τE , (6.41b)

which correspond to the gauge invariant Bardeen–Stewart potentials denoted
by ΦA and ΦC in Refs. [143,144]. For ~k = 0 there is only one gauge invariant
metric combination, namely ∂τΥC −HΥA.

The variation for δR can be written in the form

δR = − h+∇a∇bhab −Rabhab
= 6(∂2

τΥC −H∂τΥA) + 24H(∂τΥC −HΥA)

− 2
a2
∇2 ΥA −

4
a2
∇2 ΥC , (6.42)

where ∇2 is the Laplacian on the flat R3 FLRW sections. Hence condition
(6.38), δR = 0, is gauge invariant, and equivalent to(

∂

∂τ
+ 4H

)(
∂ΥC
∂τ
−HΥA

)
− ∇

2

3a2
ΥA −

2∇2

3 a2
ΥC = 0 , (6.43)
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which provides one constraint between the two gauge invariant potentials
ΥA and ΥC . This means that there remains only one gauge invariant met-
ric function to be determined by linear response in this scalar sector. As
proven in [140] the information about this remaining metric degree of free-
dom is contained completely in the ττ component of the linear response
equations (6.35). Thus, recalling the condition (6.38), one can define the
gauge invariant quantity

q ≡ −2a2

H2
δGττ = −2a2

H2
δRττ =

12a2

H

(
∂ΥC
∂τ
−HΥA

)
− 4
H2
∇2 ΥC , (6.44)

which appears in the ττ component of the linear response equation (6.35),
and which contains the only remaining gauge invariant information in the
sector of scalar metric perturbations (6.40) after condition (6.38) has been
imposed.

It is easily checked and verified in Ref. [140] that the quantity

Φ ≡ φ+ 2(∂τa)B − 2a(∂τa)(∂τE) (6.45)

is gauge invariant. This is similar to the gauge invariant variable that can
be constructed from the scalar field in scalar inflaton models of slow roll
inflation [132]. The second anomaly scalar field ψ is already gauge invariant.
Defining also the explicitly gauge invariant quantities

u ≡ D0 Φ +
6
H

∂ΥC
∂τ
− 2
H

∂ΥA
∂τ
− 8 ΥA (6.46)

and

v ≡ D0 ψ =
1
H2

(
∂2

∂τ2
+H

∂

∂τ
− ∇

2

a2

)
ψ , (6.47)

where the differential operator Dn is defined for arbitrary integer n by

Dn ≡
1
H2

(
∂2

∂τ2
+ (2n+ 1)H

∂

∂τ
+ n(n+ 1)H2 − ∇

2

a2

)
, (6.48)

one finds that the linear response equations around de Sitter space can be
written in terms of the gauge invariant variables u, v, δR, and q. With the
condition δR = 0 imposed, the equations for u and v are found from (6.39)
and become simply

D2 u =
1
H2

(
∂2

∂τ2
+ 5H

∂

∂τ
+ 6H2 − ∇

2

a2

)
u = 0 , (6.49a)

D2 v =
1
H2

(
∂2

∂τ2
+ 5H

∂

∂τ
+ 6H2 − ∇

2

a2

)
v = 0 , (6.49b)
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while that for q is the somewhat more complicated, because of the non-
local Weyl invariant terms in δ(T ab)

inv. For the case of a conformal mat-
ter/radiation field in de Sitter space these terms can be computed exactly
[141,142], with the result [140](

1− β̄R −
5ε
3

)
q = εHτ (D1q)− ᾱR (D1q) + ε′

k2

H2
u− ε

3
k2

H2
v

− ε

2a2

η∫
η0

dη′K(η − η′; k;µ)
[
a2 (D1q)

]
η′
, (6.50)

in Fourier space where −∇2 → k2, and [a2 (D1q)] in the integrand is evalu-
ated at η′. The u and v terms coming from the stress tensor of the anomaly
and obeying the Eqs. (6.49) are particular realizations of the possible state
dependent terms mentioned in Ref. [103]. The last term in (6.50) is the non-
local Weyl invariant term from δ(T ab)

inv that involves the kernel K which is
defined in conformal time η by

K(η − η′; k;µ) ≡
∞∫
−∞

dω

2π
e−iω(η−η′) ln

[
−ω2 + k2 − iε sgnω

µ2

]
. (6.51)

It depends on an arbitrary renormalization scale µ, and derives from the
Weyl invariant term Sinv in the exact quantum one-loop action around de
Sitter space. The small (order ~) ᾱR, ε, ε′ parameters are defined by

ᾱR ≡ 16πGH2αR , (6.52a)

β̄R ≡ 192πGH2βR , (6.52b)

ε ≡ 32πGH2b , (6.52c)

ε′ ≡ −32π
3
GH2b′ . (6.52d)

Let us make some observations about the exact linear response Eqs. (6.49),
(6.50) for conformal quantum fields about de Sitter space. First it is impor-
tant to point out that although the anomaly scalar Eqs. (4.62) are fourth
order in time derivatives, in fact only the gauge invariant quantities u and
v satisfying the second order Eqs. (6.49) couple to the linearized Einstein
Eq. (6.50) to linear order. In other words, half of the solutions of the fourth
order Eqs. (6.35) are annihilated by the operator D0 in (6.46), (6.47) and
decouple entirely. Only the other half of the solutions with non-zero (u, v)
satisfying (6.49) couple to the physical metric perturbations. This seems
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to be the analog of the elimination of the ghost degrees of freedom of the
fourth order action ΓWZ of (4.59) by the diffeomorphism constraints found
previously in its quantization on R⊗ S3 [130].

Secondly, although the variations of the fourth order invariants in Slocal

are fourth order in time derivatives, they also appear in (6.50) only with the
second order differential operator (6.48) on the gauge invariant quantity q.
This is a consequence of the fact that the classical Einstein equations contain
no dynamical metric perturbations in the scalar sector (6.40) at all, and
would be completely constrained (i.e. q = 0) if it were not for the quantum
corrections on the right side of (6.50) which vanish in the limit ~→ 0. When
~ 6= 0, the character of the equations changes discontinuously in that there
are new non-trivial gauge invariant solutions of the second order equations
(6.49), (6.50).

Next, we showed in Ref. [140] that most of the complications of the exact
linear response equation (6.50) are irrelevant for macroscopic physics. First,
because all the dimensionless parameters defined in (6.52) are very small
compared to unity for H � MPl, the corrections in the parentheses on the
left side of (6.50) may be neglected. Then we analyzed the general homoge-
neous solutions of (6.49) and (6.50), i.e. with u = v = 0 but including the
effect of the non-local term involving K. If u = v = 0 the non-trivial ho-
mogeneous solutions of (6.50) involve oscillations on the Planck scale MPl,
and hence lie outside the range of applicability of the effective action of
low energy gravity. Hence all these homogeneous solutions of (6.50) may be
consistently neglected in the low energy theory for k �MPl, just as the non-
trivial solutions of (6.37) with δR 6= 0 lie outside the range of applicability
of the semi-classical effective theory and should be discarded as unreliable.
With the homogeneous solutions of (6.50) thereby discarded for the same
reason, the only non-trivial solutions remaining are the inhomogeneous ones
for which either u 6= 0 or v 6= 0 (or both). For these solutions all the terms
on the right side of (6.50) linear in q are suppressed by powers of H/MPl � 1
or kphys/MPl = k/aMPl � 1 compared to the u, v terms.

Thus, as far as the predictions valid for macroscopic gravity are con-
cerned with physical wavelengths of perturbations much greater than the
Planck length, one may replace the complicated, non-local exact (6.50) by
the much simpler and fully determined

δRττ = −H
2

2a2
q = −∇

2

2a2

(
−ε′u+

ε

3
v
)

= −16πGH2

3
∇2

a2
(b′u+ bv) , (6.53)

so that δRττ 6= 0 if and only if driven by the non-trivial solutions of the
additional degrees of freedom provided by the anomaly scalar field equations
(6.49). Hence we have verified explicitly by this analysis of the full linear
response of conformal matter/radiation field fluctuations around de Sitter
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space that the S(4)
local and Sinv terms in the exact quantum effective action do

not influence low energy or macroscopic physics, consistent with the general
classification and Weyl scaling arguments of Sec. 4. Instead we could have
started with only the low energy effective action (4.89) and obtained (6.53)
much more directly, which is correct at scales kphys � MPl. Conversely,
without inclusion of the anomaly generated terms one would miss entirely
the physics associated with the degrees of freedom u and v and the solutions
(6.49) in the scalar sector of cosmological perturbation theory not present
in the purely classical theory for which δRττ = 0 in this scalar sector.

The general solution of (6.49) for either u or v in FLWR coordinates is
easily found in Fourier space, namely

u± = v± =
1
a2

exp
(
± ik

Ha

)
ei
~k·~x = H2η2 e∓ikη+i~k·~x . (6.54)

Thus, the auxiliary fields of the anomaly action yield the non-trivial gauge
invariant solutions (6.53) with (6.54) for the linearized Ricci tensor pertur-
bations δRττ = −δRii in the scalar sector, which clearly are not present in
the purely classical Einstein theory without the anomaly action. Since with
(6.38)

δRττ = δRii = −6H
(
∂ΥC
∂τ
−HΥA

)
+

2∇2

a2
ΥC , (6.55)

using the solution for δRττ (6.53) in (6.55), differentiating and substituting
in (6.43), one can solve for ΥC , to obtain

−∇
2

a2
ΥC = 8πGH2

(
H
∂

∂τ
+ 4H2 +

∇2

3a2

)
(b′u+ bv) , (6.56)

where we have canceled a common factor of ∇2 from both sides (valid for
~k 6= 0). This can be rewritten as

−∇2ΥC = 8πGH2

(
H
∂

∂τ
+ 2H2 +

∇2

3a2

)[
a2(b′u+ bv)

]
. (6.57)

Since from (6.54)

a2(b′u+ bv) =
(
c+e
−ikη + c−e

−ikη
)
ei
~k·~x , (6.58)

with c± constants (depending on b, b′), at late times η → 0,

−∇2ΥC → 16πGH4 (c+ + c−) ei~k·~x as τ →∞ . (6.59)
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Thus the Bardeen–Stewart potential ΥC describing the gauge invariant lin-
earized perturbations of the de Sitter geometry, generated by the stress
tensor of the conformal anomaly in the scalar sector remains non-vanishing
at late times for every ~k (while ΥA and δRττ falls off with a−2).

Being solutions of (6.49) which itself is independent of the Planck scale,
these new solutions due to the effective action of the anomaly vary instead
on arbitrary scales determined by the wavevector ~k, and are therefore gen-
uine modes of the semi-classical effective theory. This is a non-trivial result
since these modes appear in the tracefree sector of the semi-classical Einstein
equations, with δR = 0, and hence cannot be deduced directly from the lo-
cal form of the trace anomaly itself, but only with the help of the covariant
action functional (4.61) and the additional scalar degrees of freedom which
the local form of this action implies. These additional modes, which couple
to the scalar sector of metric perturbations in a gauge invariant way are due
to a quantum effect because the auxiliary scalar fields from which they arise
are part of the one-loop effective action for conformally invariant quantum
fields, rather than a classical action for an ad hoc scalar inflaton field usually
considered in inflationary models [132,133]. This demonstrates the relevance
of the anomaly action for describing physical infrared fluctuations in the ef-
fective semi-classical theory of gravity, on macroscopic or cosmological scales
unrelated to the Planck scale.

The Newtonian gravitational constant G and the Planck scale enter
Eq. (6.53) only through the small coupling parameters ε and ε′ between
the anomaly scalar fields and the perturbation of the geometry δRττ , which
are defined in (6.52). Thus in the limit of either flat space, or arbitrarily
weak coupling GH2 → 0 the modes due to the anomaly scalars decouple
from the metric perturbations at linear order. As in the case of the grav-
itational scattering of Sec. 4 this explains why the anomaly scalars are so
weakly coupled and difficult to detect directly in the flat space limit.

The effective action (4.89 expanded to quadratic order about the self-
consistent de Sitter solution (6.32) in terms of the gauge invariant variables
u, v, ΥA, and ΥC is

S
(2)
eff

∣∣∣
dS

= SG + b′
∫
d3~x dτ a3

[
−H

4u2

2
+
H2u δR

3

]
+ b

∫
d3~x dτ a3

{
−H4uv +

H2v δR

3
+

4 ln a
3 a4

[
~∇2(ΥA −ΥC)

]2
}
, (6.60)
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where

SG =
1

8πG

∫
d3~x dτ a3

[
−3

(
∂ΥC

∂τ

)2

+ 6H ΥA
∂ΥC

∂τ

+
2
a2

(~∇ΥA) · (~∇ΥC) +
(~∇ΥC)2

a2
− 3H2 Υ2

A

]
(6.61)

is the Einstein–Hilbert part of the action, and δR is given by (6.38). Varying
(6.60) with respect to Φ, ψ,ΥA and ΥC , and setting δR = 0 yields the low en-
ergy form of the gauge invariant linear response equations (6.49) and (6.53).
The δR terms in (6.60) cannot be set to zero until after the variations of S(2)

dS
are performed since they generate the coupling between the u, v and met-
ric variables ΥA,ΥC . Note that the variations of (6.60) must be performed
with respect to the original set of gauge invariant variables Φ, ψ,ΥA,ΥC ,
in order to obtain Eqs. (6.46)–(6.49) and (6.53). The linearized equations
for the anomaly scalar fields so obtained are equivalent to (6.39), when it is
recognized that

∆4ψ =
(
− + 2H2

)
(− )ψ = H4D2(D0ψ) , (6.62)

i.e. that the fourth order conformal differential operator ∆4 associated with
the Euler–Gauss–Bonnet invariant of the trace anomaly factorizes into two
second order differential operators in two different ways in de Sitter space. As
a practical matter this means that any solution of the fourth order equation
(5.19), for which D0ψ 6= 0, automatically is a solution of (6.49) for u or v.
The disappearance from the action (6.60) of any solution of the scalar field
Eqs. (6.35) that is in the kernel of D0 is again noteworthy.

6.4. Cosmological horizon modes

The solutions (6.53), (6.54) corresponds to a linearized stress tensor per-
turbation of the form

δ〈T ττ 〉R =
H2 q

16πGa2
∝ H2k2

a4
e∓ikη+i~k·~x . (6.63)

Thus each mode of fixed ~k redshifts like a−4, as a mode of a classical con-
formal radiation field.

Not apparent from this form of this stress tensor perturbation for a given
~k mode in FLRW coordinates is their possible relevance to the vacuum po-
larization effects near the horizon discussed in previous sections. To address
this we need the other components of the stress tensor perturbation, and
the behavior in the static coordinates of de Sitter space (3.27).
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The other components of the stress tensor perturbation (6.63) in FLRW
coordinates can be found by a general tensor decomposition for scalar per-
turbations analogous to Eqs. (6.40) for the metric. That is, the general
perturbation of the stress tensor δ〈T ab〉R in the scalar sector can be ex-
pressed in terms of δ〈T ττ 〉R plus three additional functions. These three
functions are determined by the conditions of covariant conservation

∇b δ〈T ab〉R = 0 (6.64)

for a = τ and a = i (two conditions), plus the tracefree condition

δ〈T aa〉R = 0 (6.65)

imposed as a result of the δR = 0 condition. Choosing the arbitrary propor-
tionality constant in (6.63) to be unity, a straightforward calculation using
these conditions and the Christoffel coefficients in the flat FLRW coordinates
gives [140]

δ〈T ττ 〉R = H2k
2

a4
e∓ikη+i~k·~x = −H

2

a4
~∇2 e∓ikη+i~k·~x , (6.66a)

δ〈T τi〉R = ±H2 k
ik

a5
e∓ikη+i~k·~x =

H2

a4

∂2

∂xi∂τ
e∓ikη+i~k·~x , (6.66b)

δ〈T ij〉R = H2 k
ikj

a6
e∓ikη+i~k·~x = −H

2

a6

∂2

∂xi∂xj
e∓ikη+i~k·~x (6.66c)

for the other components of the stress tensor variation for these modes in
the flat FLRW coordinates of de Sitter space. If one averages this form over
the spatial direction of ~k, a spatially homogeneous, isotropic stress tensor
is obtained with pressure p = ρ/3. In FLRW coordinates this averaging
describes incoherent or mixed state thermal perturbations of the stress tensor
which are just those of massless radiation.

Next, we use (3.21) and (3.26) to read off the coordinate transformation
from FLRW flat coordinates τ and % = |~x| to static t and r coordinates,
given by

r = a |~x| ≡ a% = % eHτ , (6.67a)

t = τ − 1
2H

ln
(
1−H2%2e2Hτ

)
. (6.67b)

The inverse transformations are

% ≡ |~x| = r e−Ht√
1−H2r2

, (6.68a)

τ = t+
1

2H
ln(1−H2r2) . (6.68b)
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The Jacobian matrix of this 2× 2 transformation of bases is

∂(t, r)
∂(τ, %)

≡

(
∂t
∂τ

∂t
∂%

∂r
∂τ

∂r
∂%

)
=

(
1

1−H2r2
Hr2

%(1−H2r2)

Hr r
%

)
. (6.69)

Using these relations, one may express the action of the differential operators
in Eq. (6.49) in terms of the static coordinates (3.27) instead. Since

−
~∇2

a2
=

1
a2

[
− 1
%2

∂

∂%

(
%2 ∂

∂%

)
+
L2

%2

]
, (6.70)

where −L2 is the scalar Laplacian on the sphere S2, a straightforward cal-
culation using (6.69) shows that

−
~∇2

a2
v = − 1

(1−H2r2)2

[
H2r2 ∂

2

∂t2
+H(3−H2r2)

∂

∂t

]
v

− 2Hr
1−H2r2

∂2v

∂t∂r
− 1
r2

∂

∂r

(
r2∂v

∂r

)
+
L2

r2
v , (6.71)

while

H2v =

(
∂2

∂τ2
+H

∂

∂τ
−
~∇2

a2

)
ψ = H2D0ψ

=
1

1−H2r2

(
∂2ψ

∂t2
− 2H

∂ψ

∂t

)
−(1−H2r2)

1
r2

∂

∂r

(
r2∂ψ

∂r

)
+
L2

r2
ψ , (6.72)

and

D2v = 0 =

(
∂2

∂τ2
+ 5H

∂

∂τ
+ 6H2 −

~∇2

a2

)
v

=
1

1−H2r2

(
∂2v

∂t2
+ 2H

∂v

∂t

)
−
(
1−H2r2

) ∂2v

∂r2

+2
(

3H2r − 1
r

)
∂v

∂r
+ 6H2v +

L2

r2
v , (6.73)

thus converting these differential operators from flat FLRW to de Sitter
static coordinates (3.27).
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In (5.16) and (5.20) the general solutions of the homogeneous equation
(5.19) as functions of the static r in de Sitter space are given. Of the four,

1
Hr

ln
(

1−Hr
1 +Hr

)
, ln

(
1−Hr
1 +Hr

)
, 1 ,

1
r
, (6.74)

the second and third solutions are solutions of the second order equation
for a minimally coupled scalar field, i.e. they satisfy ψ = 0, while the
first and last solution satisfy the second order equation, for a conformally
coupled scalar field, i.e. they satisfy (− +2H2)ψ = 0. The fourth solution
1/r is singular at the origin and so was not considered in Sec. 5. In any case
this solution and the constant solution in (6.74) give vanishing contribution
to v in (6.72) while the first and second solutions give for v

4
1−H2r2

,
4
Hr

1 +H2r2

1−H2r2
, (6.75)

respectively. The second gives a singular contribution to v and the stress
tensor at r = 0, so we consider only the first solution. Note that if we
allow also for a term linear in t in the list (6.74) of homogeneous solutions
to (5.19), then from (6.72) it would also produce the identical form for v as
the first member of (6.75). Thus the general spherically symmetric static
solution to the homogeneous equation (5.19), which because of (6.62) is also
a solution of (6.73), which is non-singular at the origin, is

2
3

(b′u+ bv) ∝ 1
1−H2r2

. (6.76)

Choosing the arbitrary normalization constant of proportionality to be unity,
then from (6.53), (6.71) and (6.76), we obtain

δ〈T ττ 〉R = −H2∇2

a2

(
1

1−H2r2

)
= − H4

(1−H2r2)2

(
3
2

+
2H2r2

1−H2r2

)
.

(6.77)
This shows that a linear superposition of solutions (6.54) of the linear re-
sponse equations in static coordinates can lead to gauge invariant perturba-
tions which diverge on the de Sitter horizon.

To see what stress tensor (6.77) corresponds to in the static (t, r) co-
ordinates, we use the form of the other components in (6.66) in FLRW
coordinates, (6.69), and the transformation relation for tensors

T tt =
(
∂t

∂τ

)2

T ττ + 2
(
∂t

∂τ

)(
∂t

∂xi

)
T τi +

(
∂t

∂xi

)(
∂t

∂xj

)
T ij (6.78)
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with (6.69), (6.71), to obtain

δ〈T tt〉R = −
(
1−H2r2

)
δ
〈
T tt
〉
R

=
6H4

(1−H2r2)2
. (6.79)

Here use has also been made of the identities

∂t

∂xi
=
∂t

∂%

∂%

∂xi
=
∂t

∂%

xi
%
, (6.80)

and

∂

∂τ
=

∂r

∂τ

∂

∂r
+
∂t

∂τ

∂

∂t
= Hr

d

dr
, (6.81a)

xi∂
i = xi∂i = %

∂

∂%
= %

(
∂r

∂%

∂

∂r
+
∂t

∂%

∂

∂t

)
= r

d

dr
, (6.81b)

xixj∂
i∂j = (xi∂i)(xj∂j)− xi∂i = r

d

dr

(
r
d

dr

)
− r d

dr
(6.81c)

valid when operating on functions of r only. Likewise we find

δ〈T rr〉R = δ〈T θθ〉R = δ〈T φφ〉R = − 2H4

(1−H2r2)2
= −1

3
δ〈T tt〉R , (6.82)

corresponding to a perfect fluid with p = ρ/3, but now in static coordinates.
As we know from the conservation Eq. (2.56) in static coordinates, and
(3.43), this equation of state leads to a quadratic divergence in the metric
factor (1−H2r2)−2 as r → rH. This is the exact analog of the large blueshift
factor discussed previously for the Schwarzschild case, (2.41). Because of the
buildup of the effects of the anomaly scalar fields on the cosmological horizon
in de Sitter space, they may be called cosmological horizon modes.

The form of the stress tensor (6.79), (6.82) is the form of a finite temper-
ature fluctuation away from the Hawking–de Sitter temperature TH = H/2π
of the Bunch–Davies state in static coordinates [45]. Since the equation the
solutions (6.74) satisfy is the same as (5.19), it follows that there exist linear
combinations of the solutions (6.54) found in Sec. 6.3 which give (6.76) and
the diverging behavior of the linearized stress tensor on the horizon, corre-
sponding to this global fluctuation in temperature over the volume enclosed
by the de Sitter horizon. Since the solution ψ = pt also generates a solution
of (6.49) for v of the same form as the first member of (6.75), we can ex-
pect that perturbations of the quantum state described by a non-zero time
derivative (in static time coordinates) within one causal horizon volume at
some initial time t = 0 will give rise to very large stress tensors of the form
of (6.79) and (6.82) on the horizon of that causal region at later times.
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Note that in static coordinates the stress tensor p = ρ/3 does not involve
averaging over directions of ~k, but a particular coherent linear superposition
over modes (6.54) with different ~k in order to obtain a particular isotropic but
spatially inhomogeneous solution of (6.76). This selects a preferred origin
and corresponding horizon in static coordinates (3.27). The fluctuations
in Hawking–de Sitter temperature thus preserve an O(3) subgroup of the
de Sitter isometry group O(4,1). Clearly the origin chosen at r = 0 is
completely arbitrary, and a particular O(3) subgroup is chosen at random
by the perturbation. This is similar to a bubble nucleation process in a
homogeneous thermal ensemble: no origin for the bubble nucleation center
is preferred over any other, but some definite particular origin around which
the bubble nucleates is selected by the fluctuations. In other words, the
de Sitter group O(4,1) is spontaneously broken to O(3) by any random
fluctuation of temperature away from its Hawking–de Sitter value, centered
on some arbitrary but definite point of de Sitter space at an initial time
t = 0.

The free energy functional relevant to this spontaneous symmetry break-
ing of de Sitter symmetry is the quadratic effective action (6.60), in which
the last ln a term acts as a the negative of a potential term (for b > 0 and
ln a > 0) favoring a non-zero and spatially inhomogeneous ∇2(ΥA − ΥC)
perturbation away from de Sitter space. The −b′u2 term behaves similarly
(for b′ < 0). In FLRW coordinates the action is time dependent. However,
in static coordinates the volume measure is time independent and it is clear
that a solution for u of the form (6.76) makes the Euclidean continued action
under t → it arbitrarily negative from its divergent behavior (6.76) at the
horizon. Thus perturbations of this kind should be energetically favored,
and destabilize global de Sitter space in favor of a finite patch up to the
horizon, centered on a fixed origin. To understand what becomes of the
near horizon region clearly requires going beyond the linearized expansion
around the de Sitter background.

Referring back to the full anomalous effective action (4.89)–(4.64), one
observes that the CαβµνCαβµνϕ term acts as a negative potential term in
general as well, favoring the breaking of Weyl invariance unless ϕ vanishes,
which is impossible in de Sitter space because of the non-vanishing source
term for ϕ in (4.62). Note also that the Euler–Gauss–Bonnet source term
E is non-vanishing for any solution of the vacuum Einstein’s equations with
Λ 6= 0. Only Λeff = 0 (and R = 0) can give a vanishing source for ϕ, and
eliminate the C2ϕ term in the effective action. Thus the effective action of
the trace anomaly provides a possible way to distinguish vacua with different
values of the vacuum energy in gravity, and in the absence of any boundary
terms, selecting Λeff = 0.
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To follow the diverging behavior (6.79), (6.82) all the way to the horizon
one would clearly require a linear combination of the solutions (6.54) with
large Fourier components. However, once 8πG times the perturbed stress
tensor in (6.79) becomes of the same order as the classical background Ricci
tensor H2, the linear response theory breaks down and non-linear backreac-
tion effects must be taken into account. The perturbation becomes of the
same order as the background at r = rH −∆r near the horizon, where

∆r ∼ LPl , (6.83)

or because of the line element (3.27), at the proper distance from the horizon
of

` ∼
√
rHLPl � LPl . (6.84)

This corresponds to a maximum kphys ∼ 1/`�MPl, where the semi-classical
description may still be trusted. At the distance (6.84) from the horizon, the
state dependent contribution to the stress-energy tensor becomes compara-
ble to the classical de Sitter background curvature, the linear approximation
breaks down, and non-linear backreaction effects may be expected.

7. Gravitational condensate stars

The paradoxes of black hole physics and the possibility of large backre-
action effects on the Schwarzschild horizon were discussed in Sec. 2. The
problem of dark energy and corresponding possible large backreaction effects
on the de Sitter horizon were discussed in Secs. 3 and 6. A considerable tech-
nical machinery and intuition associated with quantum effects near horizons
has been elaborated. The effective action of the trace anomaly contains
massless degrees of freedom which can become significant and potentially
lead to large backreaction effects on the classical geometry close to horizons.
In addition, the fluctuations of the massless scalar degrees of freedom as-
sociated with the conformal factor of the metric described by the anomaly
action allow the vacuum energy to become dynamical in which case it may
vary in both, space and time, unlike in the classical Einstein theory.

To bring all these ideas and results together it is attractive to consider the
possibility of a resolution of both the black hole and cosmological dark energy
problems at one stroke, by matching an interior de Sitter geometry with one
positive value of the vacuum energy to an exterior Schwarzschild geometry
with another smaller value of the vacuum energy (which we can take to be
zero). The matching should take place in a small but finite region at the
position of the common de Sitter and Schwarzschild boundary rH ' rS. A
spherically symmetric vacuum “bubble” of this kind was suggested several
years ago, and called a gravitational condensate star or gravastar [28,29,145].
Similar ideas in which the black hole event horizon is replaced by a quantum
critical surface were proposed in Refs. [146,147].
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In the gravastar model, we replace the effective action and the stress
tensor it generates by, an easier to treat, effective fluid description, and re-
consider the Einstein equations with a perfect fluid source as a simplified
model of the quantum effects to be described finally in the full EFT. In
an effective mean field treatment for a perfect fluid at rest in the coordi-
nates (2.1), any static, spherically symmetric collapsed object must satisfy
the Einstein equations (2.54), together with the conservation equation (2.56)
which ensures that the other components of the Einstein equations are satis-
fied. In the general spherically symmetric situation the tangential pressure,
p⊥ ≡ T θθ = T φφ is not necessarily equal to the radial normal pressure p = T rr.
However, the simplest possibility which illustrates the main idea is to take
p⊥ = p, (except possibly at the boundaries between layers). In that case, we
have three first order equations for four unknown functions of r, viz. f, h, ρ,
and p. The system becomes closed when an equation of state for the fluid,
relating p and ρ is specified. If we define the mass function m(r) by

h(r) = 1− 2Gm(r)
r

, (7.1)

so that (2.54a) becomes
dm

dr
= 4πr2ρ , (7.2)

and eliminate f between (2.54b) and (2.56), we obtain

dp

dr
= −

G(ρ+ p)
(
m+ 4πr3p

)
r(r − 2Gm)

, (7.3)

which is the TOV equation of hydrostatic equilibrium [3].
Because of the considerations of the previous sections, we allow for three

different regions with the three different equations of state:

I. Interior : 0 ≤ r < r1 , ρ = −p ,
II. Thin Shell : r1 < r < r2 , ρ = +p ,

III. Exterior : r2 < r , ρ = p = 0 . (7.4)

In the interior region ρ = −p is a constant from (2.56). This is an ef-
fective cosmological “constant” in the interior. Let us call the constant
ρV = 3H2

0/8πG. If we require that the origin is free of any mass singu-
larity then the interior is determined to be a region of de Sitter spacetime
in static coordinates, i.e.

I. f(r) = Ch(r) = C
(
1−H2

0 r
2
)
, 0 ≤ r ≤ r1 , (7.5)

where C is an arbitrary constant, corresponding to the freedom to redefine
the interior time coordinate.



2146 E. Mottola

The unique solution in the exterior vacuum region which approaches flat
spacetime as r →∞ is a region of Schwarzschild spacetime (2.2), viz.

III. f(r) = h(r) = 1− 2GM
r

, r2 ≤ r . (7.6)

The integration constant M is the total mass of the object.
The only non-vacuum region is region II. Let us define the dimensionless

variable w in this section by w ≡ 8πGr2p, so that Eqs. (2.54), (2.56) with
ρ = p may be recast in the form

dr

r
=

dh

1− w − h
, (7.7)

dh

h
= − 1− w − h

1 + w − 3h
dw

w
, (7.8)

together with pf ∝ wf/r2 a constant. Eq. (7.7) is equivalent to the def-
inition of the (rescaled) Tolman mass function by h = 1 − 2m(r)/r and
dm(r) = 4πGρr2 dr = w dr/2 within the shell. Eq. (7.8) can be solved only
numerically in general. However, it is possible to obtain an analytic solution
in the thin shell limit, 0 < h� 1, for in this limit we can set h to zero on the
right side of (7.8) to leading order, and integrate it immediately to obtain

h ≡ 1− 2Gm
r
' ε (1 + w)2

w
� 1 (7.9)

in region II, where ε is an integration constant. Because of the condition
h � 1, we require ε � 1, with w of the order of unity. Making use of
Eqs. (7.7)–(7.9) we have

dr

r
' −ε dw (1 + w)

w2
. (7.10)

Because of the approximation ε � 1, the radius r hardly changes within
region II, and dr is of the order of ε dw. The final unknown function f is
given by f = (r/r1)2(w1/w)f(r1) ' (w1/w)f(r1) for small ε, showing that
f is also of order ε everywhere within region II and its boundaries.

At each of the two interfaces at r = r1 and r = r2 the induced three
dimensional metric must be continuous. Hence r and f(r) are continuous at
the interfaces, and

f(r2) ' w1

w2
f(r1) =

Cw1

w2

(
1−H2

0r
2
1

)
= 1− 2GM

r2
. (7.11)

To leading order in ε� 1 this relation implies that

r1 '
1
H0
' 2GM ' r2 . (7.12)
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Thus the interfaces describing the phase boundaries at r1 and r2 are very
close to the classical event horizons of the interior de Sitter and exterior
Schwarzschild geometries, while the full solution has no horizon at all.

The significance of 0 < ε� 1 is that both f and h are of the order of ε in
region II, but are nowhere vanishing. Hence there is no event horizon, and t
is a global time. A photon experiences a very large, O(ε−1/2) but finite blue
shift in falling into the shell from infinity. The proper thickness of the shell
between these interface boundaries is

` =

r2∫
r1

dr h−1/2 ' rSε
1/2

w1∫
w2

dww−3/2 ∼ ε1/2rS (7.13)

and very small for ε → 0. Because of (7.12) the constant vacuum energy
density in the interior is just the total mass M divided by the volume, i.e.
ρV ' 3M/4πr3

S, to leading order in ε. The energy within the shell itself,

EII = 4π

r2∫
r1

ρ r2dr ' εM
w1∫
w2

dw

w
(1 + w) ∼ εM , (7.14)

is extremely small.
We can estimate the size of ε and ` by consideration of the expectation

value of the quantum stress tensor in the static exterior Schwarzschild space-
time. In the static vacuum state corresponding to no incoming or outgoing
quanta at large distances from the object, i.e. the Boulware vacuum [35],
the stress tensor near r = rS is the negative of the stress tensor of massless
radiation at the blue shifted temperature, Tloc = TH/

√
f(r) and diverges as

T 4
loc ∼ f−2(r) as r → rS. The location of the outer interface occurs at an
r where this local stress-energy ∝ M−4ε−2, becomes large enough to affect
the classical Schwarzschild curvature ∼M−2, i.e. when

ε ∼ MPl

M
' 10−38

(
M�
M

)
, (7.15)

where MPl is the Planck mass
√

~c/G ' 2× 10−5 g. Thus ε is indeed very
small for a stellar mass object, justifying the approximation a posteriori.
With this semi-classical estimate for ε we find

` ∼
√
LPl rS ' 3× 10−14

(
M

M�

)1/2

cm . (7.16)

This is the same estimate that was obtained in (6.84), for which the vacuum
polarization effects described by the stress tensor of the anomaly scalar fields
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become of the same order as the interior de Sitter curvature. Although still
microscopic, the thickness of the shell is very much larger than the Planck
scale LPl ' 2× 10−33 cm. The energy density and pressure in the shell are
of the order of M−2 and far below Planckian for M � MPl, so that the
geometry can be described reliably by Einstein’s equations in both regions
I and II.

One may think of ` as the analog of the skin depth of a metal arising
from its finite conductivity that cuts off the divergence in the Casimir stress
tensor near a curved boundary [56, 57], or of the healing length of an in-
homogeneous Bose–Einstein condensate [148], or finally as the thickness of
a boundary layer or stationary shock front in hydrodynamics [149]. In all
of these examples from other areas of physics, a lowest order macroscopic
description of a bulk medium must be supplemented with some first order
information about microscopic interactions in order to describe a rapid spa-
tial crossover between two regions in which the bulk macroscopic description
is completely adequate. In an EFT language this means that certain higher
derivative interaction terms in the mean field equations related to fluctua-
tions about the mean which are negligible in the bulk medium must be taken
into account in the surface crossover layer. Although these higher derivative
terms are present only because of some underlying microscopic degrees of
freedom, the scale at which they become important is typically much larger
than the fundamental microscopic or atomic scale (here LPl), so that an
EFT approach is still possible.

Although f(r) is continuous across the interfaces at r1 and r2, in our
simple model the discontinuity in the equations of state does lead to dis-
continuities in h(r) and the first derivative of f(r) in general. Defining the
outwardly directed unit normal vector to the interfaces, nb = δ b

r

√
h(r), and

the extrinsic curvature Ka
b = ∇anb, the Israel junction conditions [150] de-

termine the surface stress energy η and surface tension σ on the interfaces
to be given by the discontinuities in the extrinsic curvature through [150]

[K t
t ] =

[√
h

2f
df

dr

]
= 4πG(η − 2σ) , (7.17a)

[
K θ
θ

]
= [K φ

φ ] =

[√
h

r

]
= −4πGη . (7.17b)

Since h and its discontinuities are of the order of ε, the energy density in the
surfaces η ∼ ε1/2, while the surface tensions are of order ε−1/2. The simplest
possibility for matching the regions is to require that the surface energy
densities on each interface vanish. From (7.17b) this condition implies that
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h(r) is also continuous across the interfaces, which yields the relations

h(r1) = 1−H2
0r

2
1 ' ε

(1 + w1)2

w1
, (7.18a)

h(r2) = 1− 2GM
r2

' ε (1 + w2)2

w2
, (7.18b)

f(r2)
h(r2)

= 1 ' w1

w2

f(r1)
h(r2)

= C

(
1 + w1

1 + w2

)2

. (7.18c)

From (7.10) dw/dr < 0, so that w2 < w1 and C < 1. In this case of vanishing
surface energies η = 0 the surface tensions are determined by (7.17) to be

σ1 ' −
1

32πG2M

(3 + w1)
(1 + w1)

(w1

ε

)1/2
, (7.19a)

σ2 '
1

32πG2M

w2

(1 + w2)

(w2

ε

)1/2
(7.19b)

to leading order in ε at r1 and r2, respectively. The negative surface tension
at the inner interface is equivalent to a positive tangential pressure, which
implies an outwardly directed force on the thin shell from the repulsive vac-
uum within. The positive surface tension on the outer interfacial boundary
corresponds to the more familiar case of an inwardly directed force exerted
on the thin shell from without.

The entropy of the configuration may be obtained from the Gibbs rela-
tion, p+ρ = sT +nµ, if the chemical potential µ is known in each region. In
the interior region I, p+ ρ = 0 and the excitations are the usual transverse
gravitational waves of the Einstein theory in de Sitter space. Hence the
chemical potential µ may be taken to vanish and the interior has zero en-
tropy density s = 0, consistent with a single macroscopic condensate state,
S = kB lnW (E) = 0 for W (E) = 1. In region II there are several alterna-
tives depending upon the nature of the fundamental excitations there. The
p = ρ equation of state may come from thermal excitations with negligible µ
or it may come from a conserved number density n of gravitational quanta
at zero temperature. Let us consider the limiting case of vanishing µ first.

If the chemical potential can be neglected in region II, then the entropy of
the shell is obtained from the equation of state, p = ρ = (a2/8πG)(kBT/~)2.
The T 2 temperature dependence follows from the Gibbs relation with µ = 0,
together with the local form of the first law dρ = Tds. The Newtonian con-
stant G has been introduced for dimensional reasons and a is a dimensionless
constant. Using the Gibbs relation again the local specific entropy density
s(r) = a2k2

BT (r)/4π~2G = a(kB/~)(p/2πG)1/2 for local temperature T (r).
Converting to our previous variable w, we find s = (akB/4π~Gr)w1/2 and
the entropy of the fluid within the shell is
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S = 4π

r2∫
r1

s r2 dr h−1/2 '
akBr

2
S

~G
ε1/2 ln

(
w1

w2

)
, (7.20)

to leading order in ε. Using (7.13) and (7.16), this is

S ∼ a kB
M`

~
∼ 1057 a kB

(
M

M�

)3/2

� SBH . (7.21)

The maximum entropy of the shell and therefore of the entire configuration is
some 20 orders of magnitude smaller than the Bekenstein–Hawking entropy
(2.24) for a solar mass object, and of the same order of magnitude as a typical
progenitor of a few solar masses. The scaling of (7.21) with M3/2 is also in
agreement with our general estimate (2.26) for a relativistic star, and of the
same order of magnitude as that for a supermassive star with M > 50M�,
whose pressure is dominated by radiation pressure [25]. Thus the formation
of the gravastar from either a solar mass or supermassive stellar progenitor
does not require an enormous generation or removal of entropy. Since the
entropy is of the same order as that of a typical stellar progenitor, there is no
information paradox and no significant entropy shedding needed to produce
a cold gravitational vacuum or ‘grava(c)star’ remnant. Due to the absence
of an event horizon, the gravastar does not emit Hawking radiation. Since
w is of the order of unity in the shell, while r ' rS, the local temperature
of the fluid within the shell is of the order of TH ∼ ~/kBGM . The strongly
redshifted temperature observed at infinity is of order

√
ε TH, which is very

small indeed. Hence the rate of any thermal emission from the shell is
negligible. There is no negative specific heat and no instability since the
total bulk rest mass energy of the configuration remains essentially constant
as the thin shell cools.

If we do allow for a positive chemical potential within the shell, µ > 0,
then the temperature and entropy estimates just given become upper bounds,
and it is possible to approach a zero temperature ground state with zero en-
tropy. As the shell does cool, the entropy decreases very slowly from its
initial value (7.21) and equation of state of the shell must be replaced by
a more accurate quantum stress tensor, not accounted for in this simple
model. The non-singular final state of ultimate gravitational collapse is
then a cold, completely dark object sustained against any further collapse
solely by quantum zero point pressure of the interior.

Realizing this alternative requires that a quantum gravitational vacuum
phase transition intervene before the classical event horizon can form. This is
exactly what the fluctuations of the anomaly scalar fields ϕ and ψ described
in Sec. 5 can provide. In a more realistic model based on the EFT with
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the anomaly (4.89), with (5.1)–(5.3), the rapid change of these fields near
the horizon and their stress tensor can provide the suitable boundary layer
which replaces the phenomenological equation of state p = ρ in region II, and
the somewhat artificial sharp interface boundaries with the surface stresses
(7.19). The entire surface layer will still be of the order of ` in (7.16) in
physical thickness, and if treated as very thin, be completely consistent with
the classical formula (2.15) with an actual surface tension carried by the
physical interface boundary. This is now under investigation.

Incidentally, because of the necessarily non-vanishing surface tensions
at the interface, p⊥ 6= p there and the gravastar solution also explicitly
evades the Buchdahl lower bound on the radius of a compact object R >
9GM/4, since this bound is derived under the assumption that the radial and
tangential pressures are everywhere equal (and positive) inside the object
[7, 151,152].

Since the exterior spacetime is Schwarzschild until distances of the order
of the diameter of an atomic nucleus from r = rS, a gravastar cannot be dis-
tinguished from a black hole by present observations of X-ray bursts [153].
However, the shell with its maximally stiff equation of state p = ρ, where the
speed of sound is equal to the speed of light, could be expected to produce
explosive outgoing shock fronts in the process of formation. Active dynam-
ics of the shell may produce other effects that would distinguish gravastars
from black holes observationally, possibly providing a more efficient particle
accelerator and central engine for energetic astrophysical sources. The spec-
trum of gravitational radiation from a gravastar should bear the imprint of
its fundamental frequencies of vibration, and hence also be quite different
from a classical black hole.

The interior of de Sitter region with p = −ρ may be interpreted also
as a cosmological spacetime, with the horizon of the expanding universe
replaced by a quantum phase interface. The possibility that the value of
the vacuum energy density in the effective low energy theory can depend
dynamically on the state of a gravitational condensate may provide a new
paradigm for cosmological dark energy in the Universe. The proposal that
other parameters in the standard model of particle physics may depend
on the vacuum energy density within a gravastar has been discussed by
Bjorken [154]. A stable bubble of positive vacuum zero point energy also
realizes Dirac’s idea for an extensible model of the electron [155,156], but in
the case of the attractive gravitational force instead (so that the repulsive
quantum zero point force can be balanced by, rather than added to the
classical self-force of the extended body). Similar suggestions for removing
the singularity in gravitational collapse were also made by Sakharov and
Gliner [157].



2152 E. Mottola

In the original paper on gravastars [28], the stability of the configuration
was studied in the same hydrodynamic approximation used to construct it.
In each of the three regions (7.4), fluctuations are completely stable, for the
clear physical reasons that the de Sitter and Schwarzschild geometries are
stable to fluctuations and the fluid making up this shell also has a physical
equation of state. In this hydrodynamic model the positions of the interfaces
at r1 and r2 are fixed by the externally provided information from the esti-
mate (6.84). Thus the exact positions of r1 and r2 are not fixed dynamically,
and there are zero modes of neutral stability corresponding to shifts of r1

and r2 [28, 29]. This can only be remedied by a fully dynamical theory in
which the gravastar solution is obtained by the variation of a well-defined
action functional. This we did not possess in 2001, but do have now in the
effective theory of the Einstein–Hilbert term plus the covariant action func-
tional (4.63) with (4.64) generated by the anomaly. The subsequent studies
of the solutions of the equations of motion of the anomaly scalar field ϕ
and ψ in both the Schwarzschild and de Sitter geometries [115], reviewed in
Sec. 4, show that the stress tensor of the anomaly scalars (5.2), (5.3) can
become large near both the black hole and cosmological horizons and pro-
vide exactly the dynamical stresses that were hypothesized in [28,29]. Work
is now currently in progress to find a gravastar solution to the effective field
equations including the anomaly terms. As an extremum of a well-defined
action principle, the dynamical stability of the solution can then be studied
without any additional assumptions.

Since the appearance of the papers [28, 29], a number of other authors
have addressed the issue of gravastar stability in a number of different
ways [158–166], all requiring some phenomenological assumptions and pa-
rameters. Not surprisingly, the results obtained depend upon the values of
these parameters, although generally a wide class of stable gravastar-like
solutions have been found. The authors of Ref. [164] claimed to have found
a more generic instability of the ergoregion of rotating non-black hole com-
pact objects. However it was shown in Ref. [165] that this conclusion can be
avoided by making somewhat less restrictive assumptions than those of [164].

More to the point, it is by no means certain that a rotating gravastar
possesses an ergoregion at all. Our discussion of the stress tensor dependence
upon the norm of the timelike Killing field (KaK

a)1/2 in Sec. 2 and the global
aspects of the trace anomaly in Secs. 4 and 5 lead to the expectation that
large effects in the expectation value of the stress tensor are to be expected
where Ka first becomes null. In the non-rotating Schwarzschild geometry
this is the horizon at r = rS. However, in the Kerr geometry the unique
timelike Killing vector at large r first becomes null at the outer boundary
of the ergosphere. Hence, if the region of large quantum effects is here,
the interior ergosphere region will be changed and likely not exist at all,
removing the question of stability of this region.
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Clearly this question and the entire subject of rotating gravastars, their
possible magnetic fields and detailed interactions with matter, relevant for
realistic collapsed stars and astrophysical observations require further study
before definite answers can be given or predictions made. It has been
pointed out in Ref. [153] that astrophysical observations or non-observations
of X-ray bursts or other emissions from compact objects are not definitive
for or against the existence of a physical surface. The interpretations of this
data also depend heavily upon models of any surface and its possible inter-
actions with matter. An interesting possibility for detecting emission from
the surface based on a model of these interactions has been given in [167].
A more model-independent prediction of a physical surface for a compact
object is that it will have normal modes of vibration, and a characteristic
discrete energy spectrum which should be discernible in gravitational wave
observations. For this reason it is important to develop both the theory and
the observational techniques for detecting a gravitational wave spectrum
that may differ from that expected from pure classical GR [168].

8. Summary and outlook

Although quantum effects can often be quite subtle, and it is often as-
sumed that in gravity they play a role only at the Planck scale, the challenges
presented to current theory by quantum effects in black hole and cosmologi-
cal spacetimes suggest otherwise. There are two macroscopic systems where
quantum effects may in fact be crucial, namely the final state of gravitational
collapse and in accounting for cosmological dark energy of the universe itself.
These are the principal challenges presented to the reconciliation of General
Relativity with quantum mechanics on macroscopic scales.

In this article we have reviewed the status of the horizons in the classical
Schwarzschild and de Sitter solutions of Einstein’s equations. The para-
doxes of black hole physics in particular argue for a careful analysis of the
possible importance of large backreaction effects of quantum vacuum polar-
ization in the vicinity of the event horizon. Large quantum effects of this
kind do not violate the Principle of Equivalence, but simply serve to em-
phasize that quantum coherence and entanglement effects can depend on
gauge invariant but non-local integrals of gauge potentials such as (2.46) in
electrodynamics or (2.48) and (2.51) in gravity. Physically this is because
quantum matter has wavelike properties and cannot be absolutely localized
to a point. Mathematically, it is expressed by the fact that gauge theories
including gravity are theories of gauge connections with generally non-trivial
fiber bundle structure. Thus singular coordinate frame transformations of
the kind, often considered in classical GR, ignore the possibility of the new
degrees of freedom associated with these improper “gauge” transformations,
and may be unwarranted in quantum theory.
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Based on a number of examples from both flat space QED and QCD,
and gravity in both 2 and 4 dimensions, the central role of anomalies was
discussed. Anomalies play a special role in EFT’s since they provide an
essentially unique way to violate the naive decoupling of ultraviolet from
infrared sectors of a Lorentz invariant or generally covariant theory. This
is because they are at the same time local in the divergence of the classi-
cally conserved current, but also imply a non-local structure in the effective
action. The non-locality is associated with the propagation of massless cor-
related pair states, analogous to Cooper pairs in a superconductor or col-
lective modes in other media. Both the chiral anomalies of QED and QCD
and the trace anomaly in a gravitational background lead generically to
additional propagating degrees of freedom than is apparent from the orig-
inal classical or single particle Lagrangian. The spectral density in these
propagating anomaly channels obey ultraviolet sum rules and hence remain
physical states, even away from the strictly conformal on-shell limit. The
states in the trace anomaly channel couples only to fourth order curvature
invariants and therefore only very weakly to matter, so that they would not
have been detected so far in terrestrial or solar system tests of gravity.

The 0+ states in trace anomaly amplitudes can be described as local
scalar fields in an effective field theory description. The logarithmic scal-
ing with distance of the effective action of the trace anomaly (4.63), (4.64)
implies that it remains a (marginally) relevant operator in the EFT of low
energy gravity, and should be explicitly appended to the classical Einstein–
Hilbert terms to take account of quantum effects of pair correlations due
to the trace anomaly. This has the consequence that General Relativity
receives quantum corrections relevant at macroscopic distances.

Due to the topological character of the Euler–Gauss–Bonnet invariant
in the trace anomaly, the scalar degrees of freedom in the anomaly effective
action are sensitive to non-local or global aspects of the underlying quantum
theory, and this is the fundamental reason why they can play a decisive role
near classical event horizons, where they have macroscopically large effects.
As the horizon is approached, the large blueshift of frequencies overwhelms
all finite mass and energy scales, so that all fields become essentially mass-
less, and the behavior is conformal, accurately described by the conformal
anomaly effective action. This has been shown quantitatively by compari-
son of the stress tensor of the anomaly (5.1)–(5.3) in terms of the two scalar
fields ϕ and ψ to the renormalized expectation value of the stress tensor of
quantum matter fields and their vacuum polarization effects computed by
standard methods. The important qualitative conclusion of the study of the
anomaly stress tensor in the Schwarzschild and de Sitter cases is that the
diverging behavior proportional to (−KaK

a)−2 = (−gtt)−2 is quite generic
and appears in a wide range of states other than the Boulware state. A fine
tuning of the state is necessary to remove all divergences of the stress tensor
on the horizon in each case, which does not seem to be a priori warranted.
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Since the anomaly scalar fields have kinetic terms, they must also be
treated as dynamical fields in their own right. In fact, their fluctuations
induce the running of the classical cosmological term, and provide a mecha-
nism for the vacuum energy to be dynamical, and dependent upon infrared
effects, rather than a constant. The value GΛ = 0 is an infrared fixed point
of the renormalization group flow. Thus a dynamical relaxation of the vac-
uum energy to zero is possible by this mechanism of anomaly scalar field
fluctuations [68,114,169].

The restoration of conformal invariance these fluctuations imply may be
observable in the Cosmic Microwave Background. One form this conformal
invariance could show up is in non-Gaussian correlations of a specific angular
form (6.27), assuming that conformal invariance is realized on the flat spa-
tial sections of a spatially hologeneous, isotropic FLRW cosmology. Another
way of realizing conformal invariance in de Sitter space is associated with the
breakdown of the O(4,1) isometry group to O(3), relevant for cosmological
dark energy in the present epoch. These different realizations lead to differ-
ent cosmological models and different predictions for the non-Gaussianities
which may allow us to differentiate models.

In the de Sitter space the fluctuations of the anomaly scalars imply scalar
degrees of freedom from fundamental theory without the ad hoc introduction
of an inflaton field. Their fluctuations grow large at the de Sitter horizon as
at the Schwarzschild horizon. This suggests that the horizon of a black hole
should be viewed instead as the locus of a quantum phase transition induced
by the anomaly scalar degrees of freedom, where the effective value of the
gravitational vacuum energy density can change. In the EFT including the
trace anomaly terms, Λeff becomes a dynamical condensate whose value de-
pends upon the macroscopic boundary conditions at the horizon. By taking
a positive value in the interior, the effective “repulsive” dark energy core
can remove the black hole singularity of the classical Schwarzschild solution,
replacing it with an horizon volume of de Sitter space. The resulting gravita-
tional condensate star or gravastar model resolves all black hole paradoxes,
and provides a testable non-singular quantum alternative to black holes as
the final state of complete gravitational collapse.

The cosmological dark energy of our Universe may be a macroscopic finite
volume condensate whose value depends not on microphysics but on the
cosmological horizon scale. Finally, both the sensitivity of the trace anomaly
terms to microphysics and the analogies with many-body and condensed
matter systems suggest that further development of the ideas presented here
may lead to an entirely new basis for the microscopic degrees of freedom of
quantum gravity and therefore of the constituents of spacetime itself [170].
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