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Multiplicity distributions in the form of superposition of Poisson distri-
butions which are observed in multiparticle production are interpreted as
reflection of a two-step nature of this process: the creation and evolution
of the strongly interacting fluid, followed by its uncorrelated decay into
observed hadrons. A method to uncover the density of the fluid from the
observed multiplicity distribution is described.

PACS numbers: 13.85.Hd, 13.87.Fh

1. Introduction

In the commonly discussed pictures, multiple particle production is con-
sidered as a two-step process. In the first step the matter in created in the
form of elementary constituents (i.e. quarks and gluons). At this stage it is
treated as a continuous medium undergoing a complicated evolution, sub-
ject to intense investigations1. In the second step (“freeze-out”) the medium
changes into the observed hadrons.

It is clear that any information one may obtain about the density of
matter just before “freeze-out” is of primary importance for understanding
the operating mechanisms. This information is, however, inaccessible to
direct measurement since one can measure only the final hadrons which are
characterized by the discrete multiplicity distribution P (n). Although it is
intuitively clear that large amount of matter should produce large hadronic
multiplicities, this relation is not straightforward.

1 Such a picture is particularly well established in heavy ion collisions. For a recent
review see, e.g. [1].
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In the present note we propose a simple idea which allows to relate these
two quantities. It is based on the observation that, as shown in many phe-
nomenological analyses of multiparticle production [2], the measured multi-
plicity distributions can be described as a superposition of Poisson distribu-
tions in the form

P (n) =
∫
dtF (t) e−n̄t

(tn̄)n

n!
, (1)

where F (t) is a non-negative function satisfying the normalization conditions∫
dtF (t) = 1 ,

∫
dttF (t) = 1 . (2)

This formula shows that the function F (t) can be interpreted as the distri-
bution of the amount of matter produced in the collision, the Poisson factor
being responsible for a random (uncorrelated) emission of particles resulting
from its decay.

Once this point of view is accepted, we obtain the direct link between
the matter density and multiplicity. Clearly, from the known distribution
of the matter density t one can evaluate the multiplicity distribution P (n).
A more difficult (and more interesting) question is: what kind of information
one can obtain about t from the observed multiplicity distribution P (n).

This problem was solved already many years ago in the limit of very
large multiplicities n̄→∞ and fixed t̄ ≡ n/n̄ [3]. This is the so-called KNO
limit:

t→ n

n̄
, F

(n
n̄

)
→ n̄P (n) . (3)

In this large multiplicity limit there is one-to-one correspondence between
n and t.

It is clear that such a simple result cannot hold at finite multiplicities.
Indeed, as is seen from (1), each multiplicity n receives contribution from a
certain region of t. It is also seen, however, that this region is limited and
therefore some information is nevertheless available.

To define more precisely the problem we observe that it separates natu-
rally into two parts:
(i) For any fixed multiplicity n, the maximum ts = ts(n) of the integrand

in (1) points out to the value of the density t which contributes dom-
inantly to this n. It can thus be identified with the effective value of
the density t corresponding to the given multiplicity n.

(ii) The uncertainty of this identification is given by the width of the region
in t contributing to a given n, i.e. the width ∆s(n) of the maximum
of the integrand at t = ts(n). As is well-known, it is related to the
second derivative of the integrand at this point.
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One sees from these arguments that to uncover the information on the
density t which is hidden in the multiplicity distribution P (n), we have to
solve the saddle-point problem of the integral in (1).

In the present paper we discuss a method which can be used for this
purpose. It allows to estimate ts(n),∆s(n) and F (t) from a given (measured)
multiplicity distribution. As is natural for the saddle-point approximation,
the result represents an asymptotic expansion in 1/n̄.

In the next section we discuss the KNO approximation and its limita-
tions. A method to improve the KNO approximation is shown in Section 3.
A specific example is presented in Section 4. Some tests of the procedure
are described in Section 5. Our results are summarized in the last section.

2. The KNO approximation

2.1. The saddle-point method

We collect here, for later use, the basic formulae of the saddle-point
approximation. Writing

P (n) =
n̄n

n!

∞∫
0

dteΦ(t)dt (4)

we have

Φ(t) = logF (t)− n̄t+ n log t (5)

and the saddle-point condition

Φ′(ts) =
F ′(ts)
F (ts)

− n̄+
n

ts
= 0 . (6)

Furthermore,

Φ′′(ts) =
F ′′(ts)
F (ts)

−
(
F ′(ts)
F (ts)

)2

− n

t2s
, ∆s = 1/

√
Φ′′(ts) (7)

and the saddle-point formula

P (n) ≈ F (ts)e−n̄ts
(n̄ts)n

n!

√
2π

−Φ′′(ts)
. (8)
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2.2. Large n̄, fixed n/n̄ limit

When both n̄ and n are very large, the first term in the saddle-point
equation (6) can be neglected in the first approximation (because F (t) is
independent of n and n̄)2. Then we have

ts0 = ts0(n) =
n

n̄
≡ t̄ , Φ′′(ts0) = − n̄

2

n
. (9)

Introducing (9) into (8) we obtain

P (n) = F (ts0)ts0
√
−2π/Φ′′(ts0)

n̄n

n!
tns0e

−n̄ts0 → F (n/n̄)
n̄

(10)

the well-known KNO formula [3].
It should be emphasized that this formula is valid only in the limit

n̄ →∞, n/n̄ fixed. Indeed, to justify the derivation, both n̄ and n must
be much larger than F ′/F .

To illustrate this point we consider the example of Negative Binomial
Distribution (known to be not too far from real data [2]):

F (t; k) =
kk

Γ (k)
tk−1e−kt , (11)

P (n) = (1 + n̄/k)−k
Γ (k + n)
Γ (k)n!

(1 + k/n̄)−n , (12)

where k is a parameter (1/k measures the deviation of (12) from the Poisson
distribution).

In Figs. 1 and 2 ts(n) and F [ts(n)] obtained from (9) and (10) are plotted
versus t̄ = n/n̄ and compared to the exact values given by

ts(n) =
n+ k − 1
n̄+ k

, F (n) ≡ F [ts(n)] =
kk

Γ (k)
[ts(n)]k−1e−kts(n) . (13)

One sees that even for n̄ = 25 the KNO approximation to the function
ts = ts(n) obtained from the Negative Binomial Distribution is far from
perfect. Also the KNO function itself is not well reproduced. The situation
gets worse as k increases since the term F ′/F in (6) increases linearly with k.

2 The values of n̄ and n at which this approximation is acceptable depends, of course,
on the rate of change of F (t). For each F (t) one can, however, find n and n̄ large
enough to satisfy this requirement.
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Fig. 1. Saddle-point of the Negative Binomial Distribution versus t̄ = n̄/n̄. Full
line: KNO approximation, ts = t̄; other lines: exact values of ts evaluated from
(13), for various n̄ (as indicated in the figure). One sees a substantial difference
between the KNO approximation and the exact result even at n̄ = 25.
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Fig. 2. KNO approximation for the Negative Binomial Distribution. Full line: the
function F [ts(n)] evaluated from (13); other lines: F [ts(n)] obtained from KNO
approximation (10) for various n̄ (as indicated in the figure). One sees an apparent
violation of the KNO scaling even at n̄ = 25.

3. Improving KNO

It is clear from the discussion in the previous section that to improve the
approximation, it is necessary to reduce, as much as possible, the unknown
part of the term F ′/F in the saddle-point equation (6). To achieve this goal
we propose to write

F (t) = F0(t)G(t) , (14)

where F0(t) is a known function, possibly close to F (t) itself. The saddle-
point equation reads

G′(t)
G(t)

+
F ′0(t)
F0(t)

+
n

t
− n̄ = 0 . (15)
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If the function F0(t) is sufficiently close to F (t), the first term of (15) can
be neglected in the first approximation and one obtains

F ′0(t)
F0(t)

+
n

t
− n̄ = 0 . (16)

Since the function F0(t) is known, solution of (16) is only question of
computer time. This allows to construct an improved approximation as
follows.

Once the approximate saddle-point t = t0 is determined from (16) one
can evaluate G(n) = G[t0(n)] from the saddle-point formula (8). In this way
one obtains the first order approximation to our problem.

This procedure can be iterated as described below.

3.1. Iteration

From the known values of G(n) we can construct the approximate first
and second logarithmic derivatives of G:

G′[t0(n)]
G(t0(n)]

≈ 2
G(t0(n+ 1)] +G(t0(n)]

G[t0(n+ 1)]−G[t0(n)]
t0(n+ 1)− t0(n)

(17)

and [
G′′

G

]
0

=
2

[t0(n+ 2)− t0(n)]G(n+ 1)

×
[
G(n+ 2)−G(n+ 1)
t0(n+ 2)− t0(n+ 1)

− G(n+ 1)−G(n)
t0(n+ 1)− t0(n)

]
. (18)

Introducing (17) into (15) we find the saddle-point in the next approxima-
tion:

t1 = t1(n) = t0(n)
[
1− G′[t0(n)]

G(t0(n)](n̄+ k0)

]−1

. (19)

Using now (8) we find the next approximation for the function G:

G(t1)F0(t1) =
P (n)n!
(n̄t1)n

en̄t1

√
−Φ′′(t1)

2π
, (20)

where Φ′′(t1) is approximated by

Φ′′(t1) ≈ G′′(t0)
G(t0)

−
[
G′(t0)
G(t0)

]2

+
F ′′0 (t1)
F0(t1)

−
[
F ′0(t1)
F0(t1)

]2

− n

t21
. (21)

These formulae allow to evaluate t1 = t1(n) and G[t1(n)] and thus rep-
resent the second order approximation to our problem. They can serve as a
starting point for the next approximation.
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4. Negative Binomial Distribution as the first approximation

Selection of the form of F0(t) is to large extent arbitrary except that it
should be possibly close to the real data. The best choice can be obtained
by simply fitting (1) to data. To obtain ts(n) it is then enough to solve the
saddle-point equation (6). Since the fit is never ideal, however, it may be
worth to evaluate the next approximation, using the formulae of the previous
section. As the function G(t) is close to one, the corrections are expected to
be small. Nevertheless they may be non-negligible in some regions of n.

As an illustration, we shall now discuss a simple and instructive possi-
bility taking F0 = F0(t, k0) to be that of the Negative Binomial Distribution
(11), where the parameter k0 is chosen in such a way as to minimize the
difference between the experimental multiplicity distribution and the distri-
bution (12).

There are two attractive features of this choice. First, it is known that
the Negative Binomial Distribution is not very far from the distributions ob-
served hitherto in experiments [2]. This gives a chance to obtain already a
reasonable first approximation. Second, the approximate saddle-point equa-
tion (16)

k0 − 1
t
− k0 +

n

t
− n̄ = 0 (22)

is easy to solve. Using the notation introduced in the previous section we
thus obtain

t0 =
n+k0−1
n̄+k0

, Φ′′0(t0)=−n+k−1
t20

, F (t0)=
P (n)n!en̄t0

(n̄t0)n
√
−Φ′′(t0)

2π

(23)

and

G(t0) =
P (n)n!(n̄+ k0)n+k0Γ (k0)en+k0−1

n̄nkk00 (n+ k0 − 1)n+k0−1
√

2π(n+ k0 − 1)
. (24)

Eqs. (23) and (24) give the lowest order estimate of ts(n) and F [ts(n)] =
F0[ts(n)]G[ts(n)].

Note that consistency requires that if P (n) is itself a Negative Binomial
Distribution with the parameter k = k0, we should have G(t) ≈ 1. To verify
this condition we substitute P (n) given by (12) into (24) to obtain

G(t0) =
Γ (n+ k0)en+k0−1

(n+ k0 − 1)n+k0−1
√

2π(n+ k0 − 1)
. (25)

From the Stirling formula one sees that this expression is indeed close to 1
for n+ k0 − 1 ≥ 2.
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Higher order approximations can be obtained starting from (23) and (24)
along the lines described in the previous section. In the next section we check
how effective is this procedure.

5. Testing the method

To see how the procedure works we applied it to two distributions.

5.1. Derivative Negative Binomial

The first one is defined by the function F (t) in the form3

F (t) = Ctk−1e−λt[λt− log λt] , (26)

where k is a parameter, λ = k k+1−ψ(k+1)
k−ψ(k) and C = λk

Γ (k)[k−ψ(k)] [these for-
mulae follow from normalization conditions (2)]. For P (n) one obtains

P (n) = C
Γ (n+ k)

(λ+ n̄)n+k

n̄n

n!
[k + n− ψ(k + n)] . (27)

The saddle-point equation is

k + n− 1
t

− (λ+ n̄) +
λt− 1

t[λt− log λt]
= 0 . (28)

KNO

n/ ná n
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Fig. 3. Derivative Negative Binomial Distribution (27). ts(n) plotted versus t̄ =
n/n̄. One sees that already the first order approximation and the exact value (two
lines below the KNO approximation) are almost identical.

3 Note that − d
dk

[tk−1e−kt] = (t− log t)tk−1e−kt. Hence the name.
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The ratio of (26) to the auxiliary function (11) is G(t) ∼ [λt− log λt]. It
varies rather strongly close to t = 0 and is fairly gentle at large t. Therefore
we expect our approximation to be best at large multiplicities.

In Fig. 3 ts(n) is plotted versus n/n̄ for n̄ = 10. One sees that, already
first approximation is pretty close to the exact value, derived (numerically)
from (28). The KNO approximation is again very bad.

5.2. Beta distribution

Another distribution considered was the beta distribution, for which the
function F (t) is given by

F (t) =
C

T k
tk−1

(
1− t

T

)q−1

Θ(T − t) . (29)

The normalization conditions (2) imply T = 1 + q/k; Cβ(k, q) = 1.
The multiplicity distribution following from (29) is

P (n)n! = C(T n̄)n
q−1∑
s=0

(q − 1)!
s!(q − 1− s)!

(−1)s

p
Φ (p− 1; p;−T n̄) (30)

with p ≡ k + n+ s and Φ(a; b; z) is the confluent hypergeometric function.
The saddle-point equation

n+ k − 1
t

− q − 1
T − t

− n̄ = 0 (31)

can be explicitely solved, giving

ts = t̄+
k + q − 2

n̄

−1
2

[√
(t̄−T+(k+q−2)/n̄)2+4T (q−1)/n̄+ t̄−T+(k+qv −2)/n̄

]
. (32)

One sees that ts is a nonlinear function of t̄ = n/n̄ (except for q = 1). At
large n̄ and fixed t̄, however, we recover — in accord with the general KNO
formula — ts → t̄.

The β distribution is very close to Negative Binomial at t ≈ 0 and differs
drastically at large t. Therefore, this time we expect that the approximation
scheme should be more effective at small multiplicities.

In Fig. 4 the results for ts(n) are plotted versus n/n̄ for k = 5, q = 2 and
n̄ = 15. One sees a great improvement with respect to KNO approximation
already in the second approximation (first step of iteration). The agreement
is very good at low multiplicities. Some discrepancies remain, however, for
multiplicities exceeding n̄. Adding more iterations does not improve the
situation (which is not surprising for the asymptotic expansion).
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Fig. 4. β distribution (30). ts(n) is plotted versus t̄ = n/n̄. One sees that the first
order approximation (being linear) cannot reproduce the exact result. The second
order approximation gives good agreement at n < n̄. The discrepancy persists,
however, at larger n.

6. Summary and comments

It is proposed that the observed multiplicity distributions which sat-
isfy (1) are interpreted as indication of the two-step character of multipar-
ticle processes: a strongly interacting fluid produced in the first step decays
— in the second step — into the observed particles. In this interpretation
the parameter t of (1) acquires the physical meaning of the amount of mat-
ter in the produced fluid. Thus (1) gives the relation between the observed
multiplicity and the density of the fluid. This opens the possibility to in-
vestigate various regions of the fluid density by selecting observed particle
multiplicities.

Carrying such a program is not straigthforward, however, since (1) does
not give a one-to-one correspondence between the particle multiplicity n and
the fluid density t. To find t for a given n, the saddle-point problem for the
integrand in (1) must be solved. It is shown that the KNO limit does not give
good approximation even at moderately high multiplicities. A procedure for
improvement is suggested and tested on some simple distributions.

Several comments are in order.

(i) One sees from the arguments given in Section 2 that investigations of
KNO scaling [3] must be interpreted with some care. This is illustrated
in Fig. 2, where the apparent violation of scaling reflects simply the
variation of n̄ and is not related to dynamics of the process (which
obeys the KNO scaling exactly).
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(ii) It is important to remember that the units of the density t in (1) are
essentially arbitrary. Therefore, as long as the relation t = ts(n) for a
given distribution is close to the linear one, the KNO approximation
may be useful even at relatively small n̄.

(iii) It was observed by Praszalowicz [4] that one can improve the method
suggested in Section 4 by taking F0(t) in the form

F0(t) =
(λk)k

Γ (k)
tk−1e−λkt . (33)

The approximate saddle-point equation is as easy to solve as (22), and
one obtains two parameters to be adjusted for the first approximation,
which makes the procedure more flexible.

(iv) The idea to connect multiplicity with the amount of the produced
fluid is rather old [5]. It was recently explored by Mc Lerran and
Praszalowicz [6] with encouraging results.

(v) It should be emphasized that the procedure advocated in this paper
does not rely on a global fit of (1) to the multiplicity distribution
(although such a fit may be helpful to obtain a good first approxi-
mation). It uses only local information from the neighbourhood of a
given n. This is of importance if in some regions of n the multiplicity
distribution cannot be accurately measured.

(vi) One should remember that the proposed method is based on asymp-
totic expansion at large n̄. Therefore in practice only first and second
approximations are really useful: at small n̄ higher orders do not im-
prove the result (and may actually spoil it) and at high n̄ they are not
really necessary.
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