
Vol. 41 (2010) ACTA PHYSICA POLONICA B No 9

NUCLEAR SYMMETRY ENERGY
IN RELATIVISTIC HADRONIC MODELS

S. Haddad

Physics Department, Atomic Energy Commission of Syria
P.O. Box 6091, Damascus, Syria

(Received June 17, 2010)

The density dependence of the symmetry energy and the correlation
between parameters of the symmetry energy and the neutron skin thickness
in the nucleus 208Pb are investigated in relativistic hadronic models. The
dependency of the symmetry energy on density is linear around saturation
density. The existence of correlation between the neutron skin thickness
in the nucleus 208Pb and the value and the slope of the nuclear symmetry
energy at saturation density is found to be dependent on the model used.
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1. Introduction

The nuclear symmetry energy plays a central role in a variety of nuclear
phenomena. The stability and ground-state properties of neutron-rich nu-
clei depend sensitively on the nuclear symmetry energy [1,2]. The symmetry
energy has a strong influence on the isoscaling properties of the fragments
produced in heavy-ion reactions [3]. The nuclear symmetry energy is an
important issue in astrophysics. It is a key quantity in the stability con-
sideration in neutron star matter [4]. The proton fraction inside a neutron
star depends on the nuclear symmetry energy, which has a crucial role in
the thermal evolution of neutron stars [5].

Unfortunately, the density dependence of the symmetry energy and even
the symmetry energy at saturation density a4 are poorly known. An em-
pirical determination by Green yields 23.5 MeV for a4 [6]. The symme-
try energy at normal nuclear matter density is found to lay in between
27–36 MeV in mass formula calculations, 28–38 MeV in nonrelativistic mod-
els, and 35–42 MeV in relativistic models [7]. The experimentally observed
scaling parameters of fragments produced in multifragmentation reactions
can be explained by a symmetry energy significantly lower than these val-
ues [3].
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Analysis of the isotopic composition of particles emitted during an en-
ergetic nucleus–nucleus collision suggests preference for a stiff density de-
pendence of the symmetry energy [8]. While heavy-ion studies favor a de-
pendence on ργ , with γ = 0.6–1.05 [9] and γ = 0.69 at low densities [10].
Calculations within the nonrelativistic Brueckner–Hartree–Fock approach
based on a large set of modern nucleon–nucleon potentials yield symmetry
energies increasing roughly linearly with density [11].

A study of neutron radii in nonrelativistic and covariant mean-field mod-
els revealed a linear correlation between the neutron skin thickness t in 208Pb
and parameters determining the symmetry energy, which are the value of
the symmetry energy at nuclear matter saturation density a4 and the slope
of the symmetry energy at saturation density p0 [12]. A theoretical spread
of about 0.3 fm in the neutron radius of 208Pb was estimated in Ref. [12],
which is attributed to the poorly known density dependence of the symme-
try energy. A summary of some recent experimental results on the neutron
skin thickness in 208Pb is given in Ref. [13], where the value of t is spread
between 0.08 and 0.51 fm. More precise information on the neutron radius
of 208Pb might become available via a parity-violating electron scattering
experiment at the Jefferson Laboratory, that promises a 1% accuracy [14].

This work calculates the nuclear symmetry energy in relativistic hadronic
models, and investigates the correlation between the neutron skin thickness
in 208Pb on one side, and the value a4 and the slope p0 of the symmetry
energy at saturation density on the other. Section 2 reviews the three pa-
rameter sets used, Section 3 defines the symmetry energy in nuclear matter
and its parameters a4 and p0, Section 4 discusses the results for the value of
the symmetry energy at saturation density and the density dependence of
the symmetry energy, and investigates the correlation between the neutron
skin thickness in 208Pb and a4 and p0, and the final Section 5 summarizes
the main conclusions.

2. Relativistic hadronic models

A standard one-boson-exchange OBE Lagrangian with electromagnetic
field between protons and four mesons: the isoscalar scalar meson σ, the
isoscalar vector meson ω, the isovector scalar meson δ, and the isovector
vector meson ρ, is given by

L = ψ
[
iγµ∂µ −mN − gσσ − gωγµωµ − gδ ~τ · ~δ

− gρ ~τ · γµ~ρµ −
e

2
(1 + τ3) γµAµ

]
ψ

−U(σ) + 1
2 ∂

µσ ∂µσ

+ 1
2 m

2
ω ω

µωµ − 1
4 Ω

µνΩµν
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− 1
2 m

2
δ δ

2 + 1
2 ∂
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2 m
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ρ ~ρ

µ · ~ρµ − 1
4
~R µν · ~Rµν − 1

4 F
µνFµν , (1)

with

U(σ) = 1
2 m

2
σ σ

2 + 1
3 g2 σ

3 + 1
4 g3 σ

4 , (2)
Ωµν = ∂µων − ∂νωµ , (3)
~R µν = ∂µ~ρ ν − ∂ν~ρ µ , (4)
Fµν = ∂µAν − ∂νAµ . (5)

The baryons, protons and neutrons, are represented by Dirac spinors
ψ = (ψp, ψn). σ, ωµ, ~δ, and ~ρµ are the fields of the different mesons. e is the
proton charge and Aµ the electromagnetic field, mN is the nucleon mass,
mi and gi (i = σ, ω, δ, ρ) are the mass and the coupling parameter of the
i-meson, γµ are the Dirac γ matrices, ~τ is the isospin vector, and τ3 its third
component, equal to +1 for protons and −1 for neutrons, g2 and g3 are the
parameters of the non-linear self-interaction terms of the σ field.

The first parameter set used in this work is NL3 of Ref. [15], and its pa-
rameters are given in Table I. The NL3 set includes non-linear self-interaction
terms of the σ field and no isovector scalar meson δ. The NL3 set is obtained
by fitting the charge radii, the binding energies, and the available neutron
radii of 10 spherical nuclei: 16O, 40Ca, 48Ca, 58Ni, 90Zr, 116Sn, 124Sn, 132Sn,
208Pb, and 214Pb.

TABLE I

Parameters of the NL3 set. mi and gi are the mass and coupling constant of the
i-meson. g2 and g3 are the parameters of the non-linear self-interaction terms of
the σ field. mN = 939 MeV is the nucleon mass.

Meson i mi (MeV) gi g2 (fm−1) g3

σ 508.194 10.217 −10.431 −28.885
ω 782.501 12.868 — —
ρ 763 4.474 — —

The second parameter set used in this work is DD-ME2 of Ref. [16]. It
does not include non-linear self-interaction terms of the σ field, i.e., g2 =
g3 = 0 in equation (2), and also no δ meson, but the coupling parameters
of the three mesons σ, ω, and ρ depend on the density. Density dependent
coupling parameters for the isoscalar mesons are introduced by

gi(ρ) = gi(ρ0) fi(x) , i = σ, ω , (6)
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where ρ0 is the nuclear matter saturation density and

x = ρ/ρ0 , (7)

fi(x) = ai
1 + bi (x+ di)

2

1 + ci (x+ di)
2 . (8)

For the ρ meson coupling the density dependence has the functional form

gρ(ρ) = gρ(ρ0) exp [−aρ(x− 1)] . (9)

gi(ρ0), ai, bi, ci, and di are the coefficients of the density dependent func-
tion gi(ρ) (i = σ, ω), and gρ(ρ0) and aρ are the coefficients of the density
dependent function gρ(ρ). The coefficients of the DD-ME2 set are given in
Table II, and are obtained by fitting the properties of symmetric and asym-
metric nuclear matter, binding energies, charge radii, and available neutron
skin thicknesses of 12 spherical nuclei, which are the same 10 nuclei used in
NL3, 204Pb, and 210Po.

TABLE II

The DD-ME2 set. mN = 939 MeV and ρ0 = 0.152 fm−3.

Meson i mi (MeV) gi(ρ0) ai bi ci di

σ 550.1238 10.5396 1.3881 1.0943 1.7057 0.4421
ω 783 13.0189 1.3892 0.9240 1.4620 0.4775
ρ 763 3.6836 0.5647 — — —

The last parameter set used in this work is D(A) of Ref. [17]. It does not
include non-linear self-interaction terms of the σ field, but a δ meson, and
the coupling parameters of the four mesons depend on the density. Density
dependent coupling parameters for the isoscalar mesons are introduced by

gi(ρ)
gi(ρ0)

− 1 = ai

(
exp

[
bi

(
1−

(
ρ

ρ0

)1/3
)]
− 1

)
, i = σ, ω , (10)

where ρ0 is the nuclear matter saturation density and ai, bi, and gi(ρ0) are
the coefficients of the density dependent function gi(ρ). Density dependent
coupling parameters for the isovector mesons are introduced by

gi(ρ) = gi(ρ0) exp
[
bi

(
1− ρ

ρ0

)]
, i = δ, ρ , (11)

where bi and gi(ρ0) are the coefficients of the density dependent function
gi(ρ). The coefficients ai, bi, and gi(ρ0) (i = σ, ω) and bi and gi(ρ0)
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(i = δ, ρ) are adjusted to the outcome of the relativistic Brueckner–Hartree–
Fock (RBHF) calculations of the nucleon self-energy in nuclear matter. The
resulting parametrization of the RBHF potential Bonn A is called D(A) and
is given in Table III.

TABLE III

The D(A) set. mN = 938.926 MeV and ρ0 = 0.185 fm−3.

Meson i mi (MeV) gi(ρ0) ai bi

σ 550 9.297 0.2941 2.217
ω 782.6 11.269 0.3451 2.113
δ 983 4.701 — 1.223
ρ 769 2.370 — 1.634

The three parameter sets NL3, DD-ME2, and D(A) are representatives
of a huge variety of parameter sets used in relativistic models, but almost
all follow one of the concepts introduced by these three sets, which has been
successfully applied in the calculation of nuclear matter and properties of
nuclei.

3. Nuclear symmetry energy

The nuclear matter equation of state EOS gives the nucleon energy e as
a function of the baryon density ρ and the asymmetry parameter β

e = e (ρ, β) , (12)

where the baryon density is the sum of the neutron and proton densities

ρ = ρn + ρp , (13)

and the asymmetry parameter is defined by

β =
ρn − ρp

ρ
. (14)

The nuclear symmetry energy esym(ρ) is the quantity characterizing the
isospin dependence of the EOS, and is obtained by expanding the EOS in
terms of the asymmetry parameter β

e (ρ, β) = e (ρ, 0) + esym(ρ) β2 +O
(
β4
)
, (15)

i.e., the nuclear symmetry energy is given by

esym(ρ) =
1
2
∂2e (ρ, β)
∂β2

∣∣∣∣
β=0

. (16)
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The value of the symmetry energy at nuclear matter saturation density ρ0

is denoted by
a4 = esym(ρ0) , (17)

and the parameter describing the slope of the symmetry energy at saturation
density is

p0 = ρ2
0

desym(ρ)
dρ

∣∣∣∣
ρ=ρ0

. (18)

4. Results and discussion

Figure 1 displays the symmetry energy as a function of the density for the
three sets reviewed in Section 2. In all cases the dependency of the symmetry
energy on density is linear around saturation density. If one describes the
functional dependence on the density by ργ , the value of γ will be equal
to 1 around saturation density for all sets. For the NL3 set, the value of γ
changes from 1 at small densities and densities around ρ0, to 0.84 at large
densities (0.3–0.5 fm−3). For the DD-ME2 set, γ changes from 0.64 at small
densities to 1 at densities around ρ0 and 0.47 at large densities. And for
the D(A) set γ changes from 1.37 at small densities to 1 at densities around
ρ0 and 0.98 at large densities. The difference between NL3 and DD-ME2
results for the symmetry energy increases with density, since the ρ meson
exchange contribution to the symmetry energy is proportional to g2

ρ/m
2
ρ

Fig. 1. Symmetry energy as a function of the density for the sets NL3, DD-ME2,
and D(A).



Nuclear Symmetry Energy in Relativistic Hadronic Models 2181

and gρ decreases exponentially with the density in the case of DD-ME2,
see equation (9), while gρ is a constant in the case of NL3. The δ meson
exchange contribution to the symmetry energy is negative and proportional
to −g2

δ/m
2
δ . Therefore, the inclusion of the δ meson in the D(A) set leads

to an even smaller value for the symmetry energy than in the DD-ME2 case
at all densities.

Table IV lists the results for the parameters of the symmetry energy a4

and p0 for the three sets. It includes also the results for the value of the neu-
tron skin thickness t in the nucleus 208Pb. The results presented in Table IV
confirm the existence of a correlation between the neutron skin thickness in
208Pb and the value of the nuclear symmetry energy at saturation density a4,
but not with the slope of the symmetry energy at saturation density p0. The
value of p0 obtained for the D(A) set, which produces the smallest values
for a4 and t, is not the smallest. This is due to the large value of ρ0 in the
case of D(A), which enters in the definition of p0, see equation (18), and to
the decrease of the net value of the negative δ meson contribution to the
symmetry energy with increasing density, since gδ decreases with increasing
density, see equation (11), leading to a larger net value for p0.

TABLE IV

Nuclear matter saturation density ρ0, the parameters of the symmetry energy a4

and p0, and the neutron skin thickness t in the nucleus 208Pb.

NL3 DD-ME2 D(A)

ρ0 (1/fm3) 0.148 0.152 0.185
a4 (MeV) 37.4 32.3 12.9
p0 (MeV/fm3) 5.84 2.61 4.64
t (fm) 0.279 0.19 0.129

5. Summary

The nuclear symmetry energy is calculated using three relativistic had-
ronic models NL3, DD-ME2, and D(A). The dependency of the symmetry
energy on the density is found to be linear around saturation density. The
existence of correlation between the neutron skin thickness in the nucleus
208Pb and the value and the slope of the nuclear symmetry energy at satura-
tion density is found to be dependent on the model used in the investigation.
Results are explained by the density dependence of the coupling parameters
and the inclusion of the δ meson.

The author acknowledges support by the Atomic Energy Commission of
Syria.



2182 S. Haddad

REFERENCES

[1] S. Haddad, Europhys. Lett. 48, 505 (1999).
[2] K. Sumiyoshi, D. Hirata, H. Toki, H. Sagawa, Nucl. Phys. A552, 437 (1993).
[3] J. Iglio et al., Phys. Rev. C76, 025801 (2007).
[4] S. Kubis, Phys. Rev. C76, 025801 (2007).
[5] E.N.E. van Dalen, A.E.L. Dieperink, A. Sedrakian, R.G.E. Timmermans,

Astron. Astrophys. 360, 549 (2000).
[6] A.E.S. Green, Rev. Mod. Phys. 30, 569 (1958).
[7] B.A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E7, 147 (1998).
[8] W.P. Tan et al., Phys. Rev. C64, 051901 (2001).
[9] L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005).
[10] D.V. Shetty, S.J. Yennello, G.A. Souliotis, Phys. Rev. C75, 034602 (2007).
[11] Z.H. Li et al., Phys. Rev. C74, 047304 (2006).
[12] R.J. Furnstahl, Nucl. Phys. A706, 85 (2002).
[13] A.E.L. Dieperink et al., Phys. Rev. C68, 064307 (2003).
[14] R. Michaels, P.A. Souder, G.M. Urciuoli, Spokespersons, Jefferson Laboratory

Experiment E-00-003.
[15] G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C55, 540 (1997).
[16] G.A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C71, 024312

(2005).
[17] S. Haddad, Acta Phys. Pol. B 38, 2121 (2007).


