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An investigation of heavy and superheavy nuclei requires a proper
model to reproduce masses and rotational energies. We obtain a very good
agreement with experimental data with the Yukawa-folded (YF) single par-
ticle potential and the Lublin Strasbourg Drop (LSD). Using the Strutinsky
method we add shell and pairing energy corrections to the macroscopic en-
ergy. The pairing corrections are evaluated within the BCS theory. The
equilibrium deformations of Fm isotopes are determined. Ground-state
masses and rotational states obtained using the cranking moments of iner-
tia are compared to the experimental data.
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1. Introduction

The agreement of the experimental and theoretical rotational states of
nuclei is a good test of the model giving equilibrium deformations, masses
and moments of inertia of nuclei. Since years several papers have been
devoted to calculate these quantities [1,2,3,4,5,7,6] giving quite satisfactory
results for many nuclei. The aim of present paper is to find the optimal
pairing strengths reproducing masses and rotational states of nuclei. The
present work concerns the even–even Fm isotopes and quotes the results of [6]
for 254No. Here the potential energies were evaluated using the macroscopic–
microscopic [8] method with the LSD model [10], the YF mean field [9], the
Strutinsky shell correction [11] and the BCS pairing theory [12] in order to
calculate the rotational states with cranking moments of inertia [13].

The calculations were performed for the following fermium isotopes:
248Fm–256Fm on a two-dimensional deformation “Modified Funny Hills”
(MFH) [14] grid on the elongation (c) and neck (h) parameters plane. The
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equilibrium deformations were found by minimising the total energy on the
(c, h) plane and the theoretical ground-state masses were compared to the
experimental ones. The rotational energies of Fm isotopes for L/~ = 2, 4, 6, 8
agree well with the experimental data when a pairing strengths [15]
G = G0/N

2/3
q ~ω0 (Nq = N,Z) is fitted to the energies of 2+ states. In

our calculations we have used the pairing window consisting of 2
√

15Nq lev-
els closest to the Fermi energy [16]. The pairing strength influences not only
the moments of inertia, but also the potential energy and its minimum. The
calculation demands many steps to get:

I. Single particle levels on the deformation grid.

II. Total potential energy with the starting pairing strength on the same
grid.

III. Equilibrium deformation by minimisation of this energy.

IV. Moments of inertia in the ground state.

V. Rotational energies.

If the rotational energies do not agree with the data we change the pairing
strength and come back to point II repeating the calculation up to the best
reproduction of the known rotational bands. We were changing G0 value
around the starting one, diminishing the step to the 0.0001 MeV to get the
experimental E2+ states with the accuracy 0.1 keV. For the last pairing
strengths a prediction of the EL+ rotational states for all of the investigated
nuclei is calculated and the masses are compared to the experimental ones.

2. Nuclear energy

In the macroscopic–microscopic method [8] the total energy of a nucleus
at a given deformation can be calculated as a sum of the macroscopic energy
and the corrections due to shell and pairing effects for protons and neutrons

E = ELSD + Eshell + Epair . (1)

The shell corrections are obtained by subtracting the average single-
particle (s.p.) energy sum from the corresponding quantum result

Eshell =
∑
k

ek − Ẽ , (2)

where ek are the s.p. levels and Ẽ is the average energy smoothed by Struti-
nsky procedure [11].
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Ẽ = 2

λ̃∫
−∞

eρ̄(e)de , (3)

where the smoothed density distribution is

ρ̄(e) =
1
γ

∑
k

j6

(
e− ek
γ

)
, (4)

where the smearing function with the 6th order correctional polynomial is

j6(u) =
1√
π
e−u

2

(
35
16
− 35

8
u2 +

7
4
u4 − 1

6
u6

)
. (5)

The Fermi level λ̃ in the smoothed system is found from the condition

N = 2

λ̃∫
−∞

ρ(e)de . (6)

The pairing corrections are determined as the difference between the
BCS [12] energy and the single-particle energy sum minus the average pairing
energy [17]

Epair = EBCS −
∑
k

ek − 〈Epair〉 . (7)

In the BCS approximation the ground-state energy of a system with even
number of particles and the monopole pairing forces is given by

EBCS =
∑
k>0

2ekv2
k −

∆2

G
−G

∑
k>0

v4
k , (8)

where vk are the occupation factors and∆ the pairing gap of BCS theory [17].
As the macroscopic part of energy the LSD model was used [10]

ELSD = − bvol

(
1−κvolI

2
)
A+bsurf

(
1−κsurfI

2
)
A2/3+bcur

(
1−κcurI

2
)
A1/3

+
3
5
e2

Z2

rch0 A
1/3
− C4

Z2

A
− 10 exp (−42|I|/10) ,

where the parameters are

bvol = 15.4920 MeV, κvol = 1.8601,
bsurf = 16.9707 MeV, κsurf = 2.2938,
bcur = 3.8602 MeV, κcur = −2.3764,
rch0 = 1.21725 fm,
C4 = 0.91810 MeV, I = (N − Z)/A .



108 A. Dobrowolski, B. Nerlo-Pomorska, K. Pomorski

The mass formula reads

Mth = ZMH +NMn − 0.00001433Z2.39 + ELSD , (9)

where MH is the hydrogen atom mass, Mn neutron mass and the third term
stays for the electron interactions.

3. Moment of inertia

For low angular velocities ω the eigenproblem of rotating single-particle
Hamiltonian can be solved in the second order perturbation theory (equiva-
lent to the cranking approximation [13]) and one obtains for the rotational
energy the following equation

EL =
L(L+ 1)

2J
~2 , (10)

where

J = 2~2
∑
µ

∑
ν

|〈ν|ĵx|µ〉|2

Eµ + Eν
(uµvν − uνvµ)2 (11)

is the cranking moment of inertia. Eµ are the quasiparticle energies uν
unoccupation factors of BCS theory, ĵx is the intrinsic spin operator.

4. Results

The calculations were performed for the series of nuclei: 248Fm–256Fm on
the MFH [14] deformation grid with c = 0.8 up to 1.6 with step length 0.05
and h = −0.4 to 0.4 with step length 0.1. The plateau condition of the shell
corrections is well fulfilled with γ = 1.2~ω0, where ~ω0 = 41/A1/3 MeV.

256
Fm

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6

c

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

h

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

E
s
h

e
ll 

 [
M

e
V

]

Fig. 1. Shell correction Eshell obtained with the Yukawa-folded mean field for 256Fm
as function of elongation c and neck parameter h.
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We show in Fig. 1 the map of the shell-correction energy (Eshell) for
256Fm. A deep minimum at ceq = 1.15, heq = 0 is observed. The defor-
mation energy Edef = E(c, h) − E(1, 0) of 256Fm is plotted in Fig. 2. Two
pronounced minima corresponding to the ground and the shape-isomeric
states are visible.

256
Fm

ceq=1.15, heq=0 g0=11.5505 MeV

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6

c

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

h

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

E
to

t
d
e
f   

[M
e

V
]

Fig. 2. Deformation energy Edef for 256Fm as function of elongation c and neck
parameter h obtained with the Yukawa-folded mean field.

In Fig. 3 we present the differences of theoretical and experimental [19]
masses for Fm and No isotopes. Except of 256Fm this deviation never exceeds
0.3 MeV.
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Fig. 3. Difference between theoretical and experimental masses Mth −Mexp for Fm
and No isotopes as function of the neutron number N. The dotted lines represent
the 0.3 MeV limits.
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To obtain the rotational energies EL+ the moments of inertia J were
calculated microscopically within the cranking model [13] using the YF s.p.
potential. In Fig. 4 the cranking moment of inertia of 256Fm is plotted in
the (c, h) plane.
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Fig. 4. Cranking moment of inertia J of 256Fm as function of elongation c and
neck parameter h.

The theoretical estimates of the rotational energies EL+ of 256Fm isotopes
for L/~ = 2, 4, 6, 8 are compared with the experimental data [20] in Fig. 5.
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Fig. 5. Theoretical and experimental rotational energies EL for 256Fm as functions
of angular momentum L.
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One obtains an almost perfect agreement when the pairing strengths
g0 = G0~ω = 11.5505 MeV. The rotational energies EL+ of 254Fm isotopes
for L/~ = 2, 4 are compared with the experimental data [20] in Fig. 6. The
pairing strengths g0 = 12.2752 MeV was found here.
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Fig. 6. Theoretical and experimental rotational energies EL+ for 254Fm as functions
of angular momentum L.

In Fig. 7 the rotational levels scheme for 250Fm is shown. The theoretical
results are obtained with the pairing strength g0 = 12.6064 MeV. The levels
up to L/~ = 14 are well reproduced. The higher spins demand more accurate
calculations which should take into account the change with rotation of the
equilibrium deformation and the pairing field. The experimental data are
taken from Ref. [21].
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Fig. 7. Theoretical and experimental rotational energies EL+ for 250Fm.
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Fig. 8 gives E2+ rotational states for Fm isotopes. Below the pair-
ing strengths found for corresponding nuclei are drawn. Unfortunately,
because of the shortage of points, no satisfactory isospin dependent func-
tion, reproducing this line was found. The more detailed calculations are in
progress now.
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Fig. 8. Rotational energies E2+ for Fm isotopes as functions of neutron number N.
The corresponding pairing strengths parameters g0 are denoted below.

5. Conclusions

The following conclusions can be drawn from our calculation:

— Yukawa-folded mean field potential describes well the shell structure
of heavy nuclei.

— Strutinsky shell correction and BCS pairing energy with pairing
strength adjusted to the rotational states give the proper equilibrium
deformations and masses of nuclei.

— Rotational model with the cranking moments of inertia reproduces
very well the ground-state rotational band in the even–even isotopes.

More results would be required for finding the isotopic dependence of pairing
strength in this region of nuclei. Such calculations are in progress now.
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