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We identify two alternative Lagrangian representations for the damped
harmonic oscillator characterised by a frictional coefficient γ. The first one
is explicitly time independent while the second one involves time parame-
ter explicitly. With separate attention to both Lagrangians we make use
of the Noether theorem to compute the variational symmetries and con-
servation laws in order to study how association between them changes
as one goes from one representation to the other. In the case of time-
independent representation squeezing symmetry leads to conservation of
angular momentum for γ = 0, while for the time-dependent Lagrangian
the same conserved quantity results from rotational invariance. The Lie
algebra (g) of the symmetry vectors that leaves the action corresponding
to the time-independent Lagrangian invariant is semi-simple. On the other
hand, g is only a simple Lie algebra for the action characterised by the
time-dependent Lagrangian.
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1. Introduction

It is well known that the formal description for the connection between
symmetry properties and conserved quantities of a dynamical system is pro-
vided by Noether’s theorem [1]. This theorem states that if a given differen-
tial equation representing the time evolution of some physical system follows
from the variational principle, then a continuous symmetry transformation
(point, contract or higher-order) that leaves the action functional invariant
yields a conservation law. Thus studies in symmetries and conservation laws
of a physical system using this theorem require that the equation of motion
must follow from the action principle [2]. The object of the present work is
to apply Noether’s theorem to study the symmetries and conservation laws

(139)
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of dissipative systems. One of the simplest examples of dissipative systems
is provided by a one-dimensional harmonic oscillator of natural frequency ω
embedded in a viscous medium characterised by frictional coefficient γ. In
this case the equation of motion is given by

ẍ+ γẋ+ ω2x = 0 , x = x(t) . (1)

Lanczos [3] observed that the frictional forces which are not derivable from a
scalar quantity known as the work function or potential are outside the realm
of variational principle although the Newtonian scheme has no difficulty to
accommodate them. From this viewpoint it appears that the time reversal
symmetry violating equation in (1) does not have a Lagrangian representa-
tion to follow from the action principle. Fortunately, it is possible to proceed
in two different directions to derive Lagrangians for (1). For instance, one
can double the phase-space dimension to include the environment [4], or
one may use an explicitly time-dependent Lagrangian [5] to account for ir-
reversibility in time. The Lagrangians thus obtained will permit us to study
symmetries of (1) by the use of Noether’s theorem.

As early as 1931, Bateman [6] appending an additional degree of freedom,
could bring (1) within the framework of action principle. The Bateman
Lagrangian

LB = ẋẏ +
γ

2
(xẏ − yẋ)− ω2xy (2)

has a ‘mirror image’ equation

ÿ − γẏ + ω2y = 0 (3)

in the associated generalised coordinate y(t). Understandably, the comple-
mentary equation in (3) represents a physical system which absorbs energy
dissipated in the first. Thus the oscillators in (1) and (3) taken together
represent a conservative system such that LB in (2) is time independent.
The equation in (1) together with its mirror image (3) goes by the name
Bateman dual system.

Both (1) and (3) are non self-adjoint. As a result neither of them satisfy
the Helmholtz criterion [7] to have a Lagrangian representation. However,
multiplying (1) by eγt and (3) by e−γt we can arrive at a system of self-
adjoint differential equations such that

LS = eγt
(

1
2 ẋ

2 − 1
2ω

2x2
)

+ e−γt
(

1
2 ẏ

2 − 1
2ω

2y2
)

(4)

is an admissible Lagrangian for the damped harmonic oscillator and its mir-
ror image. The superscripts B and S on L are used to indicate that the
Lagrangian in (2) is due to Bateman and that in (4) has been obtained after
converting (1) and (3) into self-adjoint forms.
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As opposed to LB, LS is an explicitly time-dependent Lagrangian. More-
over, these two Lagrangians are not connected by a gauge term. This implies
that LS and LB represent alternative Lagrangian representations for the
damped harmonic oscillator. Description of a physical system using alterna-
tive Lagrangians can have deep consequences on the further development of
the theory. For example, one can come across ambiguities in the association
of symmetries with constants of the motion [8]. We shall make use of the
Lagrangians in (2) and (4) separately to study the Noether’s symmetries of
(1) and (3). This will give us an opportunity to demonstrate explicitly the
ambiguities that arise for the association between symmetries and conserva-
tion laws in the presence of alternative Lagrangian representations for the
damped harmonic oscillator.

In the next section we provide two slightly different formulations for the
use of Noether’s theorem to investigate the association between symmetries
and conservation laws using LB and LS. In Section 3 we use results for our
symmetry analysis. Finally, in Section 4 we summarise our outlook on the
present work.

2. Noether’s theorem

It is well known that the number of symmetries of a Lagrangian is fewer
than the number of symmetries of the equation of motion. However, it is
possible to identify the Lagrangian or variational symmetries from the Lie
symmetries of the Newtonian equation [9]. This identification provides a
useful route for the use of Noether’s theorem to construct conserved quanti-
ties associated with the variational symmetries. On the other hand, one can
perform an ab initio calculation for the Noetherian conserved quantities by
dealing with the infinitesimal criterion for invariance of a variational prob-
lem under a group of transformation that map points in configuration space
into their infinitesimal neighbourhood [10]. In this section, we give a brief
outline of these approaches for the use of Noether’s theorem.

2.1. Lie symmetries and conserved quantities

Let the differential equations in (1) and (3) admit a continuous group G
with a generator

U = ξ
∂

∂t
+ η1

∂

∂x
+ η2

∂

∂y
, (5)

where ξ and ηi (i = 1, 2) are differentiable functions of x, y and t. For the
present case the statement of Noether’s theorem will be as follows.
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If the variational integral
∫
L(x, y, ẋ, ẏ, t)dt is invariant under the groupG

then

I = ξL+ (η1 − ξẋ)
∂L

∂ẋ
+ (η2 − ξẏ)

∂L

∂ẏ
(6)

provides a conserved quantity for the Euler–Lagrange equations as repre-
sented by the Bateman dual system. To apply this theorem one requires to
make useful checks on the infinitesimal criterion

ξ̇L+ U (1)L = 0 (7)

for the invariance of the variational integral. Here

U (1) = U +
(
η̇1 − ξ̇ẋ

) ∂

∂ẋ
+
(
η̇2 − ξ̇ẏ

) ∂

∂ẏ
(8)

stands for the first prolongation of U . The invariance condition in (7) can
be replaced by a divergence condition

ξ̇L+ U (1)L = ḟ , f = f(x, y, t) . (9)

In this case, the Bateman dual system following from the action principle
have, instead of the result given in (6), a conserved quantity [9]

I = ξL+ (η1 − ξẋ)
∂L

∂ẋ
+ (η2 − ξẏ)

∂L

∂ẏ
− f . (10)

Symmetries associated with the invariant quantities in (6) are often called
(pure) variational symmetries while those corresponding to I in (10) are
referred to as divergence symmetries.

2.2. Infinitesimal criterion for invariance and conserved quantities

The key element for the Noether symmetry analysis consists in studying
the infinitesimal criterion for the invariance of a variational problem under a
group of transformations that map ‘points’ in configuration space (~q, t) into
their infinitesimal neighbourhood (~q ′, t′). Here ~q = {qi}, i = 1, . . . n, stands
for the set of generalised coordinates representing the dynamical system
under consideration and, as usual, t is the time parameter. Formally, such
point transformations are represented as

t′ = t+ δt , δt = εξ(~q, t) , (11a)
qi
′ = qi + δqi , δqi = εηi(~q, t) (11b)
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with ε, an infinitesimal parameter. Given the transformation rule for qi, the
corresponding results for q̇i and q̈i are given by [10]

δq̇i = ε
[
η̇i(~q, t)− ξ̇(~q, t)q̇i

]
(12)

and
δq̈i = ε

[
η̈i (~q, t)− 2ξ̇ (~q, t) q̈i − ξ̈ (~q, t) q̇i

]
. (13)

Considering the variation of an arbitrary analytic function u(~q, t) it is easy
to prove that

δu = εUu(~q, t) (14)

with

U = ξ (~q, t)
∂

∂t
+

n∑
i=1

ηi (~q, t)
∂

∂qi
. (15)

The operator U is the generator of the infinitesimal point transformations in
(11) and represents a vector field on (~q, t) since it assigns a tangent vector to
each points within (~q, t). A similar consideration when applied to v(~q, ~̇q, t)
gives

δv = εU (1)v
(
~q, ~̇q, t

)
(16)

with

U (1) = U +
n∑
i=1

(
η̇i (~q, t)− ξ̇ (~q, t) q̇i

) ∂

∂q̇i
. (17)

To write the Noether’s theorem we consider, among the general set of
point transformations defined by (11), only those that leave the action

∫
Ldt

invariant. In other words, we demand that

L
(
~qi, ~̇qi , t

)
!= L′

(
~q ′i , ~̇qi

′
, t′
)
. (18)

In order to satisfy the condition in (18), we allow the Lagrangian to change
its functional form (L→ L′). The functional relation between L′ and L may
be expressed by introducing a gauge function f(~q, t) [10] such that

L′
(
~q ′i , ~̇qi

′
, t′
)

= L
(
~q ′i , ~̇qi

′
, t′
)
− ε df (~q, t)

dt
. (19)

From (18) and (19) we have

L
(
~q ′i , ~̇qi

′
, t′
)
dt′ = L

(
~qi, ~̇qi , t

)
dt+ ε

df (~q, t)
dt

dt . (20)
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On the other hand, using L for v in (16) we have

L
(
~q ′i , ~̇q

′
i , t
′
)

= L
(
~qi, ~̇qi , t

)
+ ε U (1)L

(
~qi, ~̇qi , t

)
. (21)

From (20) and (21) it is easy to see that

df (~q, t)
dt

= ξ̇L+ ξ
∂L

∂t
+

n∑
i=1

(
ηi
∂L

∂qi
+
(
η̇i − ξ̇q̇i

) ∂L
∂q̇i

)
. (22)

In writing (22) we have made use of the results in (15) and (17). We, there-
fore, infer that the action is invariant under those point transformations
whose constituents ξ and ηi satisfy (22). The terms of (22) can be rear-
ranged to write

dI

dt
+

n∑
i=1

(ξq̇i − ηi)
(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
= 0 (23)

with

I =
n∑
i=1

(ξq̇i − ηi)
∂L

∂q̇i
− ξL+ f (~q, t) . (24)

Along the trajectory of the system, the Euler–Lagrange equations hold good
such that the second term in (23) is zero. Thus I given in (24) is a conserved
quantity or a constant of the motion. The invariant given by (24) and the
differential equations for the gauge function in (22) are commonly stated as
the Noether’s theorem.

3. Conserved quantities using Noether’s theorem

Here we shall calculate the conserved quantities corresponding to vari-
ational symmetries implied by actions written in terms of LB and LS. For
the time-independent Lagrangian LB we shall work directly with the Lie
symmetries of the Bateman dual system. On the other hand, we shall use
the results of Subsection 2.2. to calculate the conserved densities that follow
from the invariance of the action associated with LS.

3.1. Time-independent Lagrangian LB

The symmetry Lie algebra of the systems (1) and (3) is spanned by [11]

U1 = eγtx
∂

∂y
, (25a)
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U2 = e−γty
∂

∂x
, (25b)

U3 = e
γ
2
tx cos ω̄t

∂

∂t
− 1

2
e
γ
2
tx2 (γ cos ω̄t+ 2ω̄ sin ω̄t)

∂

∂x

+
1
2
e
γ
2
txy (γ cos ω̄t+ 2ω̄ sin ω̄t)

∂

∂y
, (25c)

U4 = e
γ
2
tx sin ω̄t

∂

∂t
− 1

2
e
γ
2
tx2 (γ sin ω̄t− 2ω̄ cos ω̄t)

∂

∂x

+
1
2
e
γ
2
txy (γ sin ω̄t+ 2ω̄ cos ω̄t)

∂

∂y
, (25d)

U5 = e
γ
2
t cos ω̄t

∂

∂y
, (25e)

U6 = e
γ
2
t sin ω̄t

∂

∂y
, (25f)

U7 =
1

2ω2
e−

γ
2
ty (γ cos ω̄t+ 2ω̄ sin ω̄t)

∂

∂t
− 1

2ω2
e−

γ
2
txy

×
{(
γ2−2ω2

)
cos ω̄t+2γω̄ sin ω̄t

} ∂

∂x
+e−

γ
2
ty2 cos ω̄t

∂

∂y
, (25g)

U8 =
1

2ω2
e−

γ
2
ty (γ sin ω̄t− 2ω̄ cos ω̄t)

∂

∂t
− 1

2ω2
e−

γ
2
txy

×
{(
γ2−2ω2

)
sin ω̄t−2γω̄ cos ω̄t

} ∂

∂x
+e−

γ
2
ty2 cos ω̄t

∂

∂y
, (25h)

U9 = e−
γ
2
t cos ω̄t

∂

∂x
, (25i)

U10 = e−
γ
2
t sin ω̄t

∂

∂x
, (25j)

U11 = − 1
4ω̄2

(
γ
∂

∂t
− 2ω2x

∂

∂x
+ 2ω2y

∂

∂y

)
, (25k)

U12 =
1

4ω̄2

(
−2

∂

∂t
+ γx

∂

∂x
− γy ∂

∂y

)
, (25l)

U13 =
1

2ω2
(γ cos 2ω̄t+2ω̄ sin 2ω̄t)

∂

∂t
− x

2ω2

{(
γ2−2ω2

)
cos 2ω̄t

+ 2γω̄ sin 2ω̄t
} ∂

∂x
+ y cos 2ω̄t

∂

∂y
(25m)

and

U14 =
1

2ω2
(−γ sin 2ω̄t+2ω̄ cos 2ω̄t)

∂

∂t
+

x

2ω2

{(
γ2−2ω2

)
sin 2ω̄t

− 2γω̄ sin 2ω̄t
} ∂

∂x
− y sin 2ω̄t

∂

∂y
. (25n)
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Here ω̄ = (ω2 − γ2

4 )
1
2 . By evaluating the expression (ξ̇L + U (1)L) with the

time-independent Lagrangian in (2) we have found that U1–U4, U7, and U8

do satisfy neither the invariance test in (7) nor the divergence condition
in (9). Thus we are left with only eight vector fields, namely, U5, U6 and
U9–U14 of which U5, U6, U9, U10, U13 and U14 stand for divergence symme-
tries while U11 and U12 are pure variational symmetries. In the following we
present results for conserved quantities associated with these symmetries.
We have

I0
U5

= e
γ
2
t
(
ẋ cos ω̄t+

γ

2
x cos ω̄t+ ω̄x sin ω̄t

)
, (26a)

I0
U6

= e
γ
2
t
(
ẋ sin ω̄t+

γ

2
x sin ω̄t− ω̄x cos ω̄t

)
, (26b)

I0
U9

= e−
γ
2
t
(
ẏ cos ω̄t− γ

2
y cos ω̄t+ ω̄y sin ω̄t

)
, (26c)

I0
U10

= e−
γ
2
t
(
ẏ sin ω̄t− γ

2
y sin ω̄t− ω̄y cos ω̄t

)
, (26d)

I0
U11

= − 1
4ω̄2

[
γẋẏ + 2ω2 (xẏ − yẋ)− γω2xy

]
, (26e)

I0
U12

=
1

4ω̄2

[
2ẋẏ − 1

2
γ2 (xẏ − yẋ) + 2ω2xy

]
, (26f)

I0
U13

= − ω̄

ω2

(
ẋẏ + γxẏ − ω2xy

)
sin 2ω̄t

−
[ γ

2ω2

(
ẋẏ + γxẏ − ω2xy

)
+ ẋy + xẏ

]
cos 2ω̄t (26g)

and

I0
U14

= − ω̄

ω2

(
ẋẏ + γxẏ − ω2xy

)
cos 2ω̄t

+
[ γ

2ω2

(
ẋẏ + γxẏ − ω2xy

)
− ẋy − xẏ

]
sin 2ω̄t . (26h)

Here we have used the superscript 0 to denote conserved quantities related to
the time-independent Lagrangian. Understandably, the subscripts Ui refer
to the corresponding symmetries. It is of interest to note that the symmetry
vector U11 becomes a squeezing operator for γ = 0 and corresponding con-
served quantity in this limit is the angular momentum. For γ = 0, U12 gives
the time translation operator, the corresponding conserved quantity being
the total energy of the two uncoupled harmonic oscillators. In view of this,
I0
U12

in (26f) may be called the Jacobi integral of the system represented by
(1) and (3).

We shall now study the group properties of Ui. Since the vector fields
Ui are the generators of symmetries (variational) we shall, for clarity of
presentation, use G1 = U5, G2 = U6, G3 = U9, G4 = U10, G5 = U11, G6 =
U12, G7 = U13, and G8 = U14. To satisfy the requirement of Lie algebra the
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generators Gi will be expected to obey the closure relation [Gi, Gj ] = CkijGk
which defines the algebra. Here Ckijs are the structure constants and [Gi, Gj ]
stands for the commutation relations of the symmetry generators. In the
following table we display the results for the closure relations.

TABLE I

Commutation relation for the generators in (25). Each element Gij in the table
being represented by Gij = [Gi , Gj ].

G1 G2 G3 G4 G5 G6 G7 G8

G1 0 0 0 0 − 1
2G1 − cG2 − 1

2ω̄G2 aG1 − bG2 −aG2 − bG1

G2 0 0 0 0 − 1
2G2 + cG1

1
2ω̄G2 −aG2 − bG1 −aG1 + bG2

G3 0 0 0 0 1
2G3 − cG4

1
2ω̄G4 aG3 − bG4 −aG4 − bG3

G4 0 0 0 0 1
2G4 + cG3

1
2ω̄G3 −aG4 − bG3 −aG3 + bG4

G5
1
2G1 + cG2

1
2G2 − cG1 − 1

2G3 + cG4 − 1
2G4 − cG3 0 0 −2cG8 2cG7

G6
1

2ω̄G2 − 1
2ω̄G1 − 1

2ω̄G4 − 1
2ω̄G3 0 0 − 1

ω̄
G8

1
ω̄
G7

G7 −aG1 + bG2 aG2 + bG1 −aG3 + bG4 aG4 + bG3 2cG8
1
ω̄
G8 0 4ω̄aG8

G8 aG2 + bG1 aG1 − bG2 aG4 + bG3 aG3 − bG4 −2cG7 − 1
ω̄
G7 −4ω̄aG8 0

In Table I, a = ω̄2

ω2 , b = γω̄
ω2 and c = γ

4ω̄ . From this table it is clear
that the algebra is closed. To classify the algebra we construct the metric
tensor (Killing form) gij = CmikC

k
jm and find that the determinant of gij is

non-vanishing. Thus according to Cartan’s criterion, Lie algebra is semi-
simple [12].

Interestingly, using the conserved quantities I0
U5
, I0

U6
, I0

U9
and I0

U10
asso-

ciated with linearly independent vector fields we can get the solutions of the
damped oscillators

x =
e−

γ
2
t

ω̄

(
I0
U5

sin ω̄t− I0
U6

cos ω̄t
)

(27a)

and

y =
e
γ
2
t

ω̄

(
I0
U9

sin ω̄t− I0
U10

cos ω̄t
)
. (27b)

Since x and y represents the general solution of the damped harmonic oscilla-
tors in (1) and (3), the system is completely specified by the four-parameter
Abelian symmetry group generated by G1, G2, G3 and G4.
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3.2. Time-dependent alternative Lagrangian LS

We shall make use of (15) and (24) to derive the symmetries and conser-
vation laws that follow from the invariance of the action written in terms of
the time-dependent Lagrangian in (4). In this case ~q ≡ (x, y) so that

I = f(x, y, t)− ξ
[
eγt
(

1
2 ẋ

2 − 1
2ω

2x2
)

+ e−γt
(

1
2 ẏ

2 − 1
2ω

2y2
)

+ (ξẋ− η1) ẋeγt

+ (ξẏ − η2) ẏe−γt
]
. (28)

In (28)
ξ = ξ(x, y, t) and ηi = ηi(x, y, t) . (29)

From dI
dt = 0, we get

ft + ẋfx + ẏfy − 1
2 ẋ

2eγtξt + 1
2ω

2x2eγtξt

−1
2 ẏ

2e−γtξt + 1
2ω

2y2e−γtξt − 1
2 ẋ

3eγtξx

+1
2ω

2x2ẋeγtξx − 1
2 ẋẏ

2e−γtξx + 1
2ω

2ẋy2e−γtξx

−1
2 ẋ

2ẏeγtξy + 1
2ω

2x2ẏeγtξy − 1
2 ẏ

3e−γtξy

+1
2ω

2y2ẏe−γtξy −
γ

2
ẋ2eγtξ +

γ

2
ω2x2eγtξ

+
γ

2
ẏ2e−γtξ − γ

2
ω2y2e−γtξ + γẋ2eγtξ + ω2xẋeγtξ

+ω2xẋeγtξ − γẏ2eγtξ + ω2yẏe−γtξ + ω2yẏe−γtξ

+ẋ2eγtξt + ẋ3eγtξx + ẋ2ẏeγtξy − γẋ2eγtξ

−ω2xẋeγtξ − ẋeγtη1t − ẋ2eγtη1x − ẋẏeγtη1y

−γẋ2eγtξ − ω2xẋeγtξ + γẋeγtη1 + ω2xeγtη1

+γẋ2eγtξ − γẋeγtη1 + ẏ2e−γtξt + ẋẏ2e−γtξx

+ẏ3e−γtξy + γẏ2e−γtξ + ω2yẏe−γtξ − ẏe−γtη2t

−ẋẏe−γtη2x − ẏ2e−γtη2y + γẏ2e−γtξ − ω2yẏe−γtξ

−γẏe−γtη2 + ω2ye−γtη2 − γẏ2e−γtξ

+γẏe−γtη2 = 0 . (30)

In writing (30), we have used the equations of the Bateman dual system.
Equation (30) can be globally satisfied for any particular choice of the ve-
locities provided the sum of velocity-independent terms, the coefficients of
linear, quadratic and cubic terms in ẋ and ẏ vanish separately. Following
this viewpoint we write
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ẋ0 , ẏ0 : ft +
ω2

2
(
x2eγt + y2e−γt

)
ξt +

γω2

2
×
(
x2eγt − y2e−γt

)
ξ + ω2η1xe

γt + ω2η2xe
−γt = 0 , (31a)

ẋ : fx + 1
2

(
ω2x2eγt + ω2y2e−γt

)
ξx − eγtη1t = 0 , (31b)

ẏ : fy + 1
2

(
ω2x2eγt + ω2y2e−γt

)
ξy − e−γtη2t = 0 , (31c)

ẋ2 : 1
2 e

γtξt −
γ

2
eγtξ − eγtη1x = 0 , (31d)

ẏ2 : 1
2 e
−γtξt −

γ

2
e−γtξ − e−γtη2y = 0 , (31e)

ẋẏ : eγtη1y + e−γtη2x = 0 , (31f)
ẋẏ2 : 1

2 e
−γtξx = 0 , (31g)

ẋ2ẏ : 1
2 e

γtξy = 0 , (31h)

ẋ3 : 1
2 e

γtξx = 0 (31i)
and

ẏ3 : 1
2 e
−γtξy = 0 . (31j)

Equation in (31a) signifies that we have equated the sum of ẋ or ẏ-indepen-
dent terms to zero while (31b)–(31j) have been obtained by equating the
sum of the coefficients of ẋ, ẏ, ẋ2 etc. to zero. From (31g)–(31j) we see
that ξ is not a function of x and y. Thus e.g.,

ξ(x, y, t) ≡ ξ(t) = β(t) . (32)

Sum of (31d), (31e) and (31f) can be written in a compact form

2∑
i=1

2∑
j=1

[
1
2e

(−1)iγt
(
β̇ + (−1)iγβ

)
δij − e(−1)jγt ∂ηi

∂xj

]
= 0

with x1 = x , x2 = y . (33)

Equation (33) will be globally satisfied provided e(−1)jγt ∂ηi
∂xj

cancels the other
term in the squared bracket up to a constant element aij of an antisymmetric
matrix (aij) . Thus we write

∂ηi
∂xj

= 1
2e

((−1)i−(−1)j)γt
[
β̇ + (−1)iγβ

]
δij + aije

(−1)jγt . (34)

On integration (34) reads

ηi = 1
2

(
β̇ + (−1)iγβ

)
xi +

2∑
i=1

aije
−(−1)jγtxj + ψi(t) , (35)
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where ψi(t) is a constant of integration. In view of (32), we can write (31a),
(31b) and (31c) as

∂f

∂t
+
ω2

2
(
x2eγt + y2e−γt

)
β̇ +

γω2

2
(
x2eγt − y2e−γt

)
β

+ω2η1xe
γt + ω2η2ye

−γt = 0 , (36)

e−γt
∂f

∂x
− ∂η1

∂t
= 0 (37)

and

eγt
∂f

∂y
− ∂η2

∂t
= 0 . (38)

For ηi in (35), we see that

f = 1
4

(
β̈ − γβ̇

)
x2eγt + 1

4

(
β̈ + γβ̇

)
y2e−γt − γa12xy

+ψ̇1e
γtx+ ψ̇2e

−γty (39)

represents a general solution of (37) and (38). Using the expressions for ηi
and f from (35) and (39) in (24) we obtain the invariant I in the form

I = Iβ + Iψ1 + Iψ2 + Ia , (40)

where

Iβ = 1
4

(
x2eγt+y2e−γt

)
β̈− γ

4
(
x2eγt−y2e−γt

)
β̇ − 1

2

(
xẋeγt + yẏe−γt

)
β̇

+1
2

{
eγt
(
ẋ2+ω2x2

)
+e−γt

(
ẏ2+ω2

)}
β+γ

(
xẋeγt−yẏe−γt

)
β , (41a)

Iψi = ψ̇ie
γtxi − ψieγtxi , i = 1, 2 (41b)

and
Ia = −a12ẋy − a21xẏ − a12γxy . (41c)

In writing (40) we also used (4) and (32). Each of the Is in (40) is expected
to form a separate constant. This can be seen as follows.

Substituting the values of ηi and f in (36) we get

Jβ + Jψ1 + Jψ2 + Ja = 0 , (42)

where

Jβ = 1
4

(
x2eγt + y2e−γt

) (...
β +

(
4ω2 − γ2

)
β̇
)
, (43a)

Jψi =
(
ψ̈i − (−1)iγψ̇i + ω2ψi

)
xie
−(−1)iγt , i = 1, 2 (43b)

and
Ja = ω2 (a12xy + a21xy) . (43c)



Ambiguities in the Association Between Symmetries and Conservation . . . 151

It is easy to verify that ∫
Jβdt = Iβ (44a)

and ∫
Jψidt = Iψi , i = 1, 2 . (44b)

Equations (44a) and (44b) verify our conjecture. The matrix (aij) is anti-
symmetric. Therefore, a11 = a22 = 0 and a12 = −a21. Thus for the two
dimensional case under consideration (aij) cannot contain more than one
independent element. In view of this (43c) becomes identically equal to zero
and (41c) gives

Ia = xẏ − ẋy − γxy for a12 = 1 . (45)

The generator of the infinitesimal transformations leading to the conserved
quantity in (45) as obtained from (15) reads

Ua = e−γty
∂

∂x
− eγtx ∂

∂y
. (46)

Clearly, in the case of no damping (γ = 0), Ua becomes the well known
rotation operator of two uncoupled harmonic oscillators with the angular
momentum xẏ − ẋy as the conserved quantity.

A similar treatment also applies for Iβ and Iψi . We first need to calculate
the special values of β(t) and ψi(t) from

Jβ = 0 (47a)
and

Jψi = 0 . (47b)

Equations (47a) and (47b) give

β = 1 and β± = e±2iω̄t , ω̄ =

√
ω2 − γ2

4
, (48a)

and
ψ±i = e(−1)i γ

2
±iω̄t , i = 1, 2 . (48b)

Equation (48) clearly shows that we are interested in the underdamped os-
cillator. For β = 1 the conserved quantity

Iβ=1 = 1
2

{
eγt
(
ẋ2 + ω2x2

)
+ e−γt

(
ẏ2 + ω2y2

)}
+ γ

(
xẋeγt − yẏe−γt

)
(49)
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has the associated generator

Uβ=1 =
∂

∂t
− γ

2

(
x
∂

∂x
− y ∂

∂y

)
. (50)

The generator Uβ in (50) consists of two parts. The first one is the usual time
translation operator. The second part arises due to damping and tends to re-
duce the temporal operator by the action of a squeezing operator x ∂

∂x−y
∂
∂y .

For γ = 0, Iβ=1 represents the total energy of two uncoupled harmonic os-
cillators. For finite values of γ, however, Iβ=1 stands for the energy function
of the system plus γ times a conserved quantity arising from squeezing. For
brevity, we shall call this a Jacobi’s integral [13]. Results similar to (45),
(46) and (49), (50) for β±, ψ±i are given bellow.

For β+ = e+2iω̄t, the invariant Iβ gives rise to two real invariants

Iβ1 = Re Iβ+=e+2iω̄t

= 1
2

{
eγt
(
ẋ2 − ω2x2

)
+ e−γt

(
ẏ2 − ω2y2

)}
cos 2ω̄t

+1
2

(
γ2x2eγt − γ2y2e−γt + γxẋeγt − γyẏe−γt

)
cos 2ω̄t

+ω̄
(γ

2
x2eγt − γ

2
y2e−γt + xẋeγt − yẏe−γt

)
sin 2ω̄t (51)

and

Iβ2 = Im Iβ+=e+2iω̄t

= 1
2

{
eγt
(
ẋ2 − ω2x2

)
+ e−γt

(
ẏ2 − ω2y2

)}
sin 2ω̄t

+1
2

(
γ2x2eγt − γ2y2e−γt + γxẋeγt − γyẏe−γt

)
sin 2ω̄t

−ω̄
(γ

2
x2eγt − γ

2
y2e−γt + xẋeγt − yẏe−γt

)
cos 2ω̄t . (52)

The generators of Iβ1 and Iβ2 as found from (15) are given by

Uβ1 = ReUβ+= e+2iω̄t

= cos 2ω̄t
{
∂

∂t
− γ

2

(
x
∂

∂x
−y ∂

∂y

)}
−ω̄ sin 2ω̄t

(
x
∂

∂x
+y

∂

∂y

)
(53)

and

Uβ2 = ImUβ+=e+2iω̄t

= sin 2ω̄t
{
∂

∂t
− γ

2

(
x
∂

∂x
−y ∂

∂y

)}
+ω̄ cos 2ω̄t

(
x
∂

∂x
+y

∂

∂y

)
. (54)
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For β− =−2iω̄t, the results similar to those in (51), (52) and (53), (54) read

Iβ3 = Re Iβ−=e−2iω̄t = Iβ1 , (55)
Iβ4 = Im Iβ−=e−2iω̄t = −Iβ2 (56)

and

Uβ3 = ReUβ−=e−2iω̄t = Uβ1 , (57)
Uβ4 = ImUβ−=e−2iω̄t = −Uβ2 . (58)

From (15), (41b) and (48b) we get the following invariants and generators.

IΨ1
1

= Re Iψ+
1

= e(−
γ
2

+iω̄)t

= −
(γ

2
xe

γ
2
t + ẋe

γ
2
t
)

cosω̄t− ω̄xe
γ
2
t sinω̄t , (59)

IΨ2
1

= Im Iψ+
1

= e(−
γ
2

+iω̄)t

= −
(γ

2
xe

γ
2
t + ẋe

γ
2
t
)

sinω̄t+ ω̄xe
γ
2
t cosω̄t , (60)

UΨ1
1

= ReU
ψ+

1 =e(−
γ
2 +iω̄)t = e−

γ
2
t cosω̄t

∂

∂x
, (61)

UΨ2
1

= ImU
ψ+

1 =e(−
γ
2 +iω̄)t = e−

γ
2
t sinω̄t

∂

∂x
, (62)

IΨ3
1

= Re I
ψ−1 =e(−

γ
2−iω̄)t = IΨ1

1
, (63)

IΨ4
1

= Im I
ψ−1 =e(−

γ
2−iω̄)t = −IΨ2

1
, (64)

UΨ3
1

= ReU
ψ−1 =e(−

γ
2−iω̄)t = UΨ1

1
, (65)

UΨ4
1

= ImU
ψ−1 =e(−

γ
2−iω̄)t = −UΨ2

1
, (66)

IΨ1
2

= Re I
ψ+

2 =e(
γ
2 +iω̄)t

=
(γ

2
ye−

γ
2
t − ẏe−

γ
2
t
)

cosω̄t− ω̄ye−
γ
2
t sinω̄t , (67)

IΨ2
2

= Im I
ψ+

2 =e(
γ
2 +iω̄)t

=
(γ

2
ye−

γ
2
t − ẏe−

γ
2
t
)

sin ω̄t+ ω̄ye−
γ
2
t cos ω̄t , (68)

UΨ1
2

= ReU
ψ+

2 =e(
γ
2 +iω̄) = e

γ
2
t cosω̄t

∂

∂y
, (69)

UΨ2
2

= ImU
ψ+

2 =e(
γ
2 +iω̄) = e

γ
2
t sinω̄t

∂

∂y
, (70)

IΨ3
2

= Re I
ψ−2 =e(

γ
2−iω̄)t = IΨ1

2
, (71)
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IΨ4
2

= Im I
ψ−2 =e(

γ
2−iω̄)t = −IΨ2

2
, (72)

UΨ3
2

= ReU
ψ−2 =e(

γ
2−iω̄)t = UΨ1

2
(73)

and
UΨ4

2
= ImU

ψ−2 =e(
γ
2−iω̄)t = −UΨ2

2
. (74)

In the above, the odd and even superscripts on β and ψi refer to real and
imaginary part of the invariants and the generators as the case may be.
Looking closely into equations in (49)–(74) we find that there are only eight
vector fields given by G1 = UΨ1

2
, G2 = UΨ2

2
, G3 = UΨ1

1
, G4 = UΨ2

1
, G5 = Ua,

G6 = Uβ=1, G7 = Uβ2 , and G8 = Uβ1 , as the variational symmetries of the
alternative Lagrangian LS.

We have already pointed out that G6 represents the generator of the
symmetry transformation that conserves the Jacobi’s integral of the system.
We further note that for γ = 0, G5 is a generator of the rotation in the (x , y)
plane. The system is rotationally invariant and the corresponding conserved
quantity is the angular momentum. For x = y and γ = 0, equations in (1)
and (3) reduce to the equation for a single oscillator. In this case, the gen-
erators G1 and G2 coalesce with G3 and G4, respectively. The generator G5

vanishes altogether. This leaves us with only five linearly independent group
generators of the one dimensional harmonic oscillator [14]. The algebra of
our eight parameter Lie group is given in Table II.

TABLE II

Commutation relation for the generators in (75). Each element Gij in the table
being represented by Gij = [Gi , Gj ].

G1 G2 G3 G4 G5 G6 G7 G8

G1 0 0 0 0 G3 ω̄G2 ω̄G1 −ω̄G2

G2 0 0 0 0 G4 −ω̄G1 −ω̄G2 −ω̄G1

G3 0 0 0 0 −G1 ω̄G4 ω̄G3 −ω̄G4

G4 0 0 0 0 −G2 −ω̄G3 −ω̄G4 −ω̄G3

G5 −G3 −G4 G1 G2 0 0 0 0
G6 −ω̄G2 ω̄G1 −ω̄G4 ω̄G3 0 0 2ω̄G5 −2ω̄G7

G7 −ω̄G1 ω̄G2 −ω̄G3 ω̄G4 0 2ω̄G5 0 −2ω̄G6

G8 ω̄G2 ω̄G1 ω̄G4 ω̄G3 0 2ω̄G7 2ω̄G6 0
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To each of the one parameter subgroups in Table II there corresponds
a constant of the motion as represented above by Iψ, Iβ etc. As in the
case of time-independent Lagrangian the solutions of the damped harmonic
oscillators can be obtained as

x =
e−

γ
2
t

ω̄

(
IΨ2

1
cosω̄t− IΨ1

1
sinω̄t

)
(75a)

and

y =
e
γ
2
t

ω̄

(
IΨ2

2
cosω̄t− IΨ1

2
sinω̄t

)
. (75b)

4. Summary and concluding remarks

Our objective in this work was to demonstrate how the association be-
tween symmetries and conservation laws differs in the presence of alternative
Lagrangian representations for the damped harmonic oscillator. To clearly
visualise the ambiguities we display, in Tables III and IV, results for sym-
metry vectors and conserved quantities corresponding to the invariance of
the action functionals for LB and LS, respectively.

TABLE III

Symmetries and conserved quantities for LB.

Symmetry Conserved quantity

G1 = e
γ
2 t cos ω̄t ∂

∂y
I0
U5 = e

γ
2 t

`
ẋ cos ω̄t+ γ

2
x cos ω̄t+ ω̄x sin ω̄t

´
G2 = e

γ
2 t sin ω̄t ∂

∂y
I0
U6 = e

γ
2 t

`
ẋ sin ω̄t+ γ

2
x sin ω̄t− ω̄x cos ω̄t

´
G3 = e−

γ
2 t cos ω̄t ∂

∂x
I0
U9 = e−

γ
2 t

`
ẏ cos ω̄t− γ

2
y cos ω̄t+ ω̄y sin ω̄t

´
G4 = e−

γ
2 t sin ω̄t ∂

∂x
I0
U10 = e−

γ
2 t

`
ẏ sin ω̄t− γ

2
y sin ω̄t− ω̄y cos ω̄t

´
G5 = − 1

4ω̄2

“
γ ∂
∂t
− 2ω2x ∂

∂x
+ 2ω2y ∂

∂y

”
I0
U11 = − 1

4ω̄2

ˆ
γẋẏ + 2ω2 (xẏ − yẋ)− γω2xy

˜
G6 = 1

4ω̄2

“
−2 ∂

∂t
+ γx ∂

∂x
− γy ∂

∂y

”
I0
U12 = 1

4ω̄2

ˆ
2ẋẏ − 1

2
γ2 (xẏ − yẋ) + 2ω2xy

˜
G7 = 1

2ω2 (γ cos 2ω̄t+ 2ω̄ sin 2ω̄t) ∂
∂t
− I0

U13 = − ω̄
ω2

`
ẋẏ + γxẏ − ω2xy

´
sin 2ω̄t−

x
2ω2

˘
(γ2 − 2ω2) cos 2ω̄t+ 2γω̄ sin 2ω̄t

¯
∂
∂x

ˆ
γ

2ω2

`
ẋẏ + γxẏ − ω2xy

´
− ẋy − xẏ

˜
sin 2ω̄t

+y cos 2ω̄t ∂
∂y

G8 = 1
2ω2 (−γ sin 2ω̄t+ 2ω̄ cos 2ω̄t) ∂

∂t
+ I0

U14 = − ω̄
ω2

`
ẋẏ + γxẏ − ω2xy

´
cos 2ω̄t+

x
2ω2

˘
(γ2 − 2ω2) sin 2ω̄t− 2γω̄ sin 2ω̄t

¯
∂
∂x

ˆ
γ

2ω2

`
ẋẏ + γxẏ − ω2xy

´
− ẋy − xẏ

˜
sin 2ω̄t

−y sin 2ω̄t ∂
∂y
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TABLE IV

Symmetries and conserved quantities for LS.

Symmetry Conserved quantity

G1 = e
γ
2 t cos ω̄t ∂

∂y
IΨ1

2
= −e−

γ
2 t
`
ẏ cos ω̄t− γ

2
y cos ω̄t+ ω̄y sin ω̄t

´
G2 = e

γ
2 t sin ω̄t ∂

∂y
IΨ2

2
= −e−

γ
2 t
`
ẏ sin ω̄t− γ

2
y sin ω̄t− ω̄y cos ω̄t

´
G3 = e−

γ
2 t cos ω̄t ∂

∂x
IΨ1

1
= −e

γ
2 t
`
ẋ cos ω̄t+ γ

2
x cos ω̄t+ ω̄x sin ω̄t

´
G4 = e−

γ
2 t sin ω̄t ∂

∂x
IΨ2

1
= −e

γ
2 t
`
ẋ sin ω̄t+ γ

2
x sin ω̄t− ω̄x cos ω̄t

´
G5 = e−γty ∂

∂x
− eγtx ∂

∂y
Ia = xẏ − ẋy − γxy

G6 = ∂
∂t
− γ

2

“
x ∂
∂x
− y ∂

∂y

”
Iβ=1 = 1

2

˘
eγt
`
ẋ2 + ω2x2

´
+ e−γt

`
ẏ2 + ω2y2

´¯
+γ
`
xẋeγt − yẏe−γt

´
G7 = sin 2ω̄t

n
∂
∂t
− γ

2

“
x ∂
∂x
− y ∂

∂y

”o
Iβ2 = 1

2

˘
eγt
`
ẋ2 − ω2x2

´
+ e−γt

`
ẏ2 − ω2y2

´¯
sin 2ω̄t

+ω̄ cos 2ω̄t
“
x ∂
∂x

+ y ∂
∂y

”
+ 1

2

`
γ2x2eγt − γ2y2e−γt + γxẋeγt − γyẏe−γt

´
sin 2ω̄t

−ω̄
` γ

2
x2eγt − γ

2
y2e−γt + xẋeγt − yẏe−γt

´
cos 2ω̄t

G8 = cos 2ω̄t
n
∂
∂t
− γ

2

“
x ∂
∂x
− y ∂

∂y

”o
Iβ1 = 1

2

˘
eγt
`
ẋ2 − ω2x2

´
+ e−γt

`
ẏ2 − ω2y2

´¯
cos 2ω̄t

−ω̄ sin 2ω̄t
“
x ∂
∂x

+ y ∂
∂y

”
+ 1

2

`
γ2x2eγt − γ2y2e−γt + γxẋeγt − γyẏe−γt

´
cos 2ω̄t

+ω̄
` γ

2
x2eγt − γ

2
y2e−γt + xẋeγt − yẏe−γt

´
sin 2ω̄t

From these tables we see that symmetries G1–G4 are the same for the
case of both LB and LS and they form an Abelian subgroup. The correspond-
ing conserved quantities are linearly independent such that the solutions of
the Bateman dual system could be constructed using these conserved quan-
tities only. It is interesting to note that I0

U5
|LB

G1
= −Iψ1

1
|LS

G3
which means that

the conserved quantity I0
U5

corresponding to the symmetry vector G1 for
the Lagrangian LB is related to the conserved quantity Iψ1

1
corresponding

to the symmetry vector G3 for LS. Similarly, we have I0
U6
|LB

G2
= −Iψ2

1
|LS

G4
,

I0
U9
|LB

G3
= −Iψ1

2
|LS

G1
and I0

U10
|LB

G4
= −Iψ2

2
|LS

G2
. Thus we have ambiguities in the

association of symmetries and conservation laws. Except G5, other G values
are the same in the limit of no damping (γ = 0). In this limit both I0

U12
|LB

G6

and Iβ=1|L
S

G6
give the Hamiltonian/energy of the uncoupled harmonic oscilla-

tors with time translation as the symmetry vector. The conserved quantities
I0
U13
|LB

G7
, I0

U14
|LB

G8
, Iβ2 |LS

G7
and Iβ1 |LS

G8
do not admit simple physical realization.

The vector field G5 for LB is a squeezing operator for γ = 0 and the cor-
responding conserved quantity is the angular momentum. A squeezing-like
operator is, however, not at all a symmetry vector of the action implied
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by LS. In contrast, G5 for LS gives a rotation operator for γ = 0 and an-
gular momentum is the corresponding conserved quantity. Once again this
shows that the alternative Lagrangian representations bring in a point of
contrast for the association of symmetries and conservation laws. Further,
the Lie algebra (g) of the symmetry vectors that leaves the action corre-
sponding to LB invariant is semi-simple. On the other hand, g is only a
simple Lie algebra for the action characterised by LS.
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