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It is a well-established fact that gold has many economic functions
including hedging against inflation and providing economic and physical
safety. For this it is very important to know the nature of fluctuations
in gold prices. In this paper, applying the Multifractal Detrended Fluc-
tuation Analysis (MF-DFA) for the world gold price data for over 40-year
period from 1968 to 2010, the multifractal properties and scaling behavior
of gold price time series is numerically investigated. The scaling exponents,
generalized Hurst exponents, generalized fractal dimensions and singularity
spectrum are derived. Furthermore, impact of two major sources of mul-
tifractality, i.e. fat-tailed probability distributions and nonlinear temporal
correlations are also examined. Our findings suggest that multifractality in
gold price is mainly due to the temporal correlation.

DOI:10.5506/APhysPolB.42.159
PACS numbers: 89.65.Gh, 89.75.–k, 89.75.Hc

1. Introduction

It has been a long history that physicists show interests on financial mar-
kets, which can be at least traced back to 1900 when Bachelier modeled stock
prices with Brownian motions [1]. In the middle of last century, Mandelbrot
proposed the concept of “fractal world” which was based on scale-invariant
statistics with power law correlations [2]. This new theory has been progres-
sively developed in recent years and finally it brought a more general concept
of multiscaling. It allows one to study the global and local behavior of a sin-
gular measure or in other words, the mono- and multifractal properties of
a system. In economy, multifractality is a one of the well known stylized
facts which characterize non-trivial properties of financial time series [3].
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In recent years the detrended fluctuation analysis (DFA) method [4] has
become a widely used technique for the determination of (mono-) fractal
scaling properties and the detection of long-range correlations in noisy, non-
stationary time series [5–8]. It has successfully been applied to a variety of
fields such as DNA sequences, heart rate dynamics, neuron spiking, human
gait, long-time weather data, studying the cloud structure, geology, ethnol-
ogy, economics time series, and solid state physics [9–19]. One reason to
employ the DFA method is to avoid spurious detection of correlations that
are artifacts of nonstationarities in the time series. Many records do not
exhibit a simple monofractal scaling behavior, which can be accounted for
by a single scaling exponent.

The simplest type of the multifractal analysis is based upon the standard
partition function multifractal formalism, which has been developed for the
multifractal characterization of normalized, stationary measurements. Un-
fortunately, this standard formalism does not give correct results for nonsta-
tionary time series that are affected by trends or that cannot be normalized.
Thus, in the early 1990s an improved multifractal formalism has been devel-
oped, the wavelet transform modulus maxima (WTMM) method [20], which
is based on the wavelet analysis and involves tracing the maxima lines in
the continuous wavelet transform over all scales. The other method, the
multifractal detrended fluctuation analysis, is based on the identification
of scaling of the qth-order moments depending on the signal length and is
generalization of the standard DFA using only the second moment q = 2.

The MF-DFA does not require the modulus maxima procedure in con-
trast to the WTMM method, and hence does not require more effort in pro-
gramming and computing than the conventional DFA. On the other hand,
experimental data are often affected by non-stationarities like trends, which
have to be well distinguished from the intrinsic fluctuations of the system
in order to find the correct scaling behavior of the fluctuations. In addition,
very often we do not know the reasons for underlying trends in collected
data and even worse, we do not know the scales of the underlying trends,
also, usually the available record data is small. For the reliable detection
of correlations, it is essential to distinguish trends from the fluctuations in-
trinsic in the data. Hurst rescaled-range analysis and other non-detrending
methods work well if the records are long and do not involve trends. But
if trends are present in the data, they might give wrong results. DFA is a
well-established method for determining the scaling behavior of noisy data
in the presence of trends without knowing their origin and shape [21].

Since the introduction of MF-DFA method there has been a vigorous
continuing investigation aimed at discovering multifractal nature of finan-
cial markets [22–24]. But to best of our knowledge there are very rare work
studying the multifractal nature of gold price fluctuations. In recent years
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gold has been controversial because of sharp increase in its prices. Price
of gold exceeded 1092 per ounce in New York Stock Exchange in Novem-
ber 2009. Recent global economic crisis has given rise to uncertainty in
the global economy including developed and developing countries. Gold is
not only used in jewelery but also in industrial and medical applications.
Moreover, gold is used for investment purposes by governments, households,
institutional and private equity investors. If there is an economic uncertainty
then gold becomes an insurance. In such cases, gold can protect us against
the inflation and deflation. In addition, according to the World Gold Coun-
cil (2006) Central Banks hold gold reserves because gold provides economic
and physical safety, sustains world wide confidence and offers diversification
benefits.

The main purpose of this paper is to characterize the complex behavior
of gold price time series through the computation of the signal parameters
— scaling exponents — which quantifies the correlation exponents and mul-
tifractality of the signal.

The rest of paper is organized as follows. In Sec. 2, MF-DFA method
is described and other related theoretical concepts are reviewed. Data are
provided in Sec. 3. In Sec. 4 numerical results are presented and finally,
conclusions are given in Sec. 5.

2. Method description

The generalized Multifractal Detrended Fluctuation Analysis (MF-DFA)
procedure consists of five steps [21]. The first three steps are essentially iden-
tical to the conventional DFA Procedure. Let assume that xk is a series of
length N and this series is of compact support, i.e. xk = 0 for an insignifi-
cant fraction of values only:

Step 1: Determine the “profile”

Y (i) ≡
i∑

k=1

[xk − 〈x〉] . (1)

Subtraction of 〈x〉 is not compulsory because it would be eliminated by
the later detrending in the third step.

Step 2: Divide the profile Y (i) into Ns ≡ N/s non-overlapping segments
of equal length s. Since the length N of the series is not often a multiple of
considered time scale s, short part at the end of profile may remain. In order
to disregard this part of the series, the same procedure is repeated starting
from the end of series. Thus, 2Ns segments are obtained eventually.
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Step 3: calculate the local trend for each of the 2Ns segments by a least-
square fit of the series. Then determine the variance

F 2(s, ν) ≡ 1
s

s∑
i=1

{Y [(ν − 1)s+ i]− yν(i)}2 (2)

for each segment ν, ν = 1, 2, . . . , Ns and

F 2(s, ν) ≡ 1
s

s∑
i=1

{Y [N − (ν −Ns)s+ i]− yν(i)}2 (3)

for ν = Ns, . . . , 2Ns. Here yν(i) is the fitting polynomial in segment ν.
Linear, quadratic, cubic or higher order polynomials can be used for fitting.

Step 4: Average over all segments to obtain the qth order fluctuation
function

Fq(s) ≡

{
1

2Ns

2Ns∑
ν=1

[
F 2(s, ν)

]q/2}1/q

, (4)

where in general, the index variable q can take any real value except zero.
For q = 2, the standard DFA procedure is retrieved. We are interested in
how the generalized q dependent fluctuation function Fq(s) depends on the
time scale s for different values of q. Hence we must repeat steps 2 to 4 for
several time scales s. It is apparent that Fq(s) will increase with increasing s.

Step 5: Determine the scaling behavior of the fluctuation functions by
analyzing log–log plots of Fq(s) versus s for each value of q. If the series xi
are long range power-law correlated, Fq(s) increases, for large values of s, as
a power-law

Fq(s) ∼ sh(q) . (5)

In general, the exponent h(q) may depend on q. For stationary time
series, h(2) is identical to the well-known Hurst exponent H. Thus we call
the function h(q) generalized Hurst exponent. For monofractal times series
with compact support, h(q) is independent of q, since the scaling behavior
of the variances F 2(s, ν) is identical for all segments ν, and the averaging
procedure in Eq. (4) will give just this identical scaling behavior for all
values of q. The family of the exponents h(q) describe the scaling of the qth
order fluctuation function. For positive values of q, h(q) exponents describe
the scaling behavior of boxes with large fluctuations while those of negative
values of q, describe scaling behavior of boxes with small fluctuations [21].
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However, the MF-DFA method can only determine positive generalized
Hurst exponents h(q), and it already becomes inaccurate for strongly anti-
correlated signals when h(q) is close to zero. In such cases, a modified
(MF-)DFA technique has to be used. The most simple way to analyze such
data is to integrate the time series before the MF-DFA procedure. Hence,
we replace the single summation in Eq. (1), which is describing the profile
from the original data xk, by a double summation [21]

Ỹ (i) ≡
i∑

k=1

[Yk − 〈Y 〉] . (6)

The h(q) obtained fromMF-DFA is related to the Renyi exponent τ(q)by

qh(q) = τ(q) + 1 . (7)

Therefore, another way to characterize a multifractal series is the singularity
spectrum f(α) defined by [25]

α = h(q) + qh′(q) (8)

and

f(α) = q[α− h(q)] + 1 , (9)

where h′(q) stands for the derivative of h(q) with respect to q. α is the Holder
exponent or singularity strength which characterizes the singularities in a
time series. The singularity spectrum f(α) describes the singularity content
of the time series. Finally, it must be noted that h(q) is different from the
generalized multifractal dimensions

D(q) ≡ τ(q)
q − 1

=
qh(q)− 1
q − 1

, (10)

that are used instead of τ(q) in some papers. While h(q) is independent of
q for a monofractal time series with compact support, D(q) depends on q in
that case [26].

3. Data analysis

The data which is analyzed in this study include the time series of the
Gold price in London Metal Exchange (LME) logarithmic variations (i.e.
ln(P (t+ 1)/P (t)) from the time period 1968–2010. In Fig. 1 gold price, log-
arithmic return as a function of time and also Cumulative Distribution Func-
tion (CDF) of its normalized returns in log–log plot are presented. Power-law
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Fig. 1. (a) Gold price, (b) returns and (c) cumulative distribution function (CDF) of
its normalized returns with the scaling exponent α ' −3 for the period 1968–2010.

regression fit yields estimate of the tail exponent α ' −3. This scaling in-
dex is consistent with the inverse cubic power law identified for many other
markets [27–31]. By putting our result in the context of previous studies,
one can see that all of these markets share the same scaling functions and
characteristic exponents and therefore belong to one universality class. As
we see significant increase in the price of gold in the end of period is clear
which is unprecedented in the whole period.
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4. Results

The fluctuation functions Fq(s) for gold price time series with the scal-
ing parameter ranging from s = 50 to s = N/5 are calculated, where N
is the total length of the time series. Since the tail scaling exponent de-
termines the range of q-parameter, q varies between −4 and 4, with a step
of 1. It also must be mentioned that q values larger than 4 would lead to
the divergent moments. Fig. 2(a) shows the MF-DFA2 fluctuations Fq(s)
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Fig. 2. The MF-DFA2 functions Fq(s) of gold price time series versus the time scale
s in log–log plot for (a) original, (b) shuffled and (c) surrogate data.
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for various qs for the time series of gold price time series logarithmic vari-
ations. One can clearly observe that above the crossover region, the Fq(s)
functions are straight lines and the slopes increase slightly when going from
high positive moments towards high negative moments.

For better understanding of the source of multifractality in time series
we have analyzed the modified times series including shuffled and surro-
gated times series. This is because, generally, two different types of sources
for multifractality in time series are identified: (i) multifractality due to
different long-range temporal correlations for small and large fluctuations,
and (ii) multifractality related to the fat-tailed probability distributions of
variations. Shuffling, and phase randomization (surrogated data) are main
procedure to find the contributions of two sources of multifractality and to
indicate the multifractality strength. Shuffling preserves the distribution
of the variations but destroys any temporal correlations. In fact, one can
destroy the temporal correlations by randomly shuffling the corresponding
time series of variations. What then remains are data with exactly the same
fluctuation distributions but without any correlation. On the other hand,
surrogate data is a method for testing the Gaussianity and one can eliminate
the any sort of nonlinearity. In Fig. 2(b), 2(c) the MF-DFA2 fluctuations
Fq(s) for various qs for the shuffled and surrogated time series are shown
respectively. It can be seen that in each case the slope of straight lines af-
ter the crossover area have significantly increased in comparison with the
original time series.

The h(q) spectra have been shown for original, reshuffled and surrogate
series in Fig. 3. One can see that the q dependence of h(q) for the original
time series is higher than the two other randomized time series. But main
feature of these two plots is that for the shuffled time series q dependence
of h(q) is lowest. These findings suggest that multifractality nature of gold
price is due to the long-range correlation.
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Fig. 3. Generalized Hurst exponent, h(q) as a function of q for gold price time
series.
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In order to better analyzing the strength of multifractality for original,
reshuffled and surrogate data, the singularity spectra are shown in Fig. 4.
There is a clear difference between spectra for the original and the modified
time series. The width of the singularity spectrum for the original data
is ∆αorg ' 0.293 while for shuffled and surrogate time series this value
is ∆αshuf ' 0.018 and ∆αsurr ' 0.1778, respectively. This also indicates
that the main multifractality source in gold price fluctuations is long-rang
correlations.
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Fig. 4. Singularity spectrum f(α) for gold price time series.

In order to study the scaling character of the data, in Fig. 5, the mul-
tifractal scaling spectra τ(q) for gold price time series are shown. It is the
well-established fact that monofractal time series are associated with a lin-
ear plot τ(q) while multifractal ones possess the spectra nonlinear in q. The
more the nonlinearity of the spectrum, the stronger the multifractality na-
ture in time series. It can be seen nonlinearity of τ(q) is much stronger for
the original time series in comparison with two other modified time series.
Again interestingly, the lowest nonlinearity of τ(q) is for the shuffled data.
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Fig. 5. Renyi exponent τ(q) for gold price time series.
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5. Conclusion

We applied the MF-DFA technique to gold price time series in order to
examine the fractal properties of the gold price fluctuations. By relating
the singularity spectra of the original gold price series and of their shuffled
counterparts one can conclude that the main source of multifractality in the
gold price dynamics are the temporal correlations. Even more, based on
the recent paper [32] one may expect that for sufficiently longer gold price
time series (of the order of 105–106) the shuffled data singularity spectrum
shrinks to a point (monofractal) which would provide an indication that the
gold price multifractality originates entirely from temporal correlations.
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