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Linear dynamical systems, driven by a non-white noise which has the
Lévy distribution, are analysed. Noise is modelled by a specific stochastic
process which is defined by the Langevin equation with a linear force and
the Lévy distributed symmetric white noise. Correlation properties of the
process are discussed. The Fokker–Planck equation driven by that noise
is solved. Distributions have the Lévy shape and their width, for a given
time, is smaller than for processes in the white noise limit. Applicability
of the adiabatic approximation in the case of the linear force is discussed.
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1. Introduction

Stochastic dynamical equation (the Langevin equation) describes motion
of a particle which is subjected to both deterministic and stochastic force.
The latter one can be understood either as a result of elimination of inter-
nal degrees of freedom or as some external physical process. The external
noise possesses its own time scale and relaxation properties. If relaxation
time of processes in the environment is relatively short, the white noise
may be a good approximation: the noise variables change rapidly, compared
to the particle variables. Otherwise the Langevin description must involve
the correlated (‘coloured’) noise. This problem was widely discussed for
the Gaussially distributed noise. Well-known physical examples involve a
phenomenon of narrowing of magnetic resonance lines due to the thermal
fluctuations [1] and the fluctuations of dye laser light [2]. The problem
of correlated noise also emerges when one eliminates some variables in a
multi-dimensional dynamical system; then the effective low-dimensional de-
scription involves correlations even if the original many-dimensional system

(3)
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is Markovian [3]. The Langevin equation with the correlated Gaussian noise,
both additive and multiplicative, corresponds to a non-Markovian process
and it resolves itself to an integro-differential Fokker–Planck equation which
can be solved exactly for simple potentials; otherwise approximate methods
may be applied [3, 4].

Recently, the Lévy processes — which constitute a general class of the
stable processes with the Gaussian process as a special case — attract a
considerable interest. They are characterised by long tails, which make
the variance divergent, and can be observed in many systems from various
fields: biology [5], hydrology [6], sociology [7] and finance [8]. As a result,
long jumps may appear and the standard central limit theorem is no longer
valid. Realistic problems are usually characterised by high complexity and
they exhibit collective phenomena; they involve long-range correlations, non-
local interactions and a complicated, nonhomogeneous (in particular fractal
or multifractal) structure of the medium. For example, diffusion in the
porous media, which display the fractal structure, can be described by a
stochastic equation driven by the Lévy process [9].

It is natural to expect that processes which are driven by a noise with
long jumps are correlated. As an example can serve an experimental study on
spontaneous electrical activity of neuronal networks with different sizes [10].
It was found that all networks exhibited scale-invariant Lévy distributions.
The authors conclude that different-size networks self-organise to adjust
their activities over many time scales. The power spectrum, calculated from
the experimental time series, indicates correlations: it obeys a power-law
decay at low frequencies for all network sizes.

The non-Markovian master equation governs probability distributions in
the framework of the decoupled continuous time random walk theory [11].
If jumps are Lévy distributed and the waiting time distribution is algebraic,
the Fokker–Planck equation is fractional both in time and position. The
integral operators introduce a competition between subdiffusion and accel-
erated diffusion; the latter one results from the infinite variance. Integral
Fokker–Planck equations were solved for both fast and slowly decaying mem-
ory kernels [12]. They can be generalised to the fractional orders and to the
case of a variable diffusion coefficient [13].

In this paper, we consider a linear dynamical system which is defined
by the Langevin equation with the Lévy distributed non-white noise. That
problem was solved by Hänggi and Jung [3] (and references therein) for an
arbitrary autocorrelation function C(t) in the case of the Gaussian noise.
However, a method which directly deals with the autocorrelation function
cannot be applied for α < 2 since then C(t) does not exist; we will discuss
that difficulty in Section 2. Therefore, we introduce a specific model of
the correlated noise; we require that the model process should have the
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Lévy distribution and be correlated (in a sense which will be explained in
Section 2). Moreover, it should be as simple as possible. We define that
process in Section 2 by an additional Langevin equation which corresponds
to the Ornstein–Uhlenbeck process with the white symmetric Lévy noise.
We discuss its correlation properties. The Langevin equation, driven by that
process, is analysed in Section 3 for simple forms of the potential: the free
Lévy motion, the constant force and the linear force. The problem resolves
itself to solving a set of two Langevin equations. Results are summarised in
Section 4.

2. Ornstein–Uhlenbeck process with Lévy noise

Motion of a particle, which is subjected to the linear force and the Lévy
noise, is described by the following linear Langevin equation

ξ̇(t) = −γξ(t) + L̇(t) , (1)

where the uncorrelated and symmetric noise L(t) is the α-stable Lévy process
and γ = const. > 0. Eq. (1), with the initial condition ξ(0) = 0, can be
formally solved [14]

ξ(t) =

t∫
0

K(t− τ)L(dτ) , (2)

where K(t) = exp(−γt). Eq. (2) transforms an uncorrelated input noise into
a correlated output process. The well-known theory of the Brownian motion
corresponds to the case of α = 2. Generalisation to the non-Gaussian stable
cases, which are defined by Eq. (1), constitutes the Ornstein–Uhlenbeck–
Lévy process (OULP). If α = 2, trajectories are continuous and Eq. (1)
corresponds to the standard Fokker–Planck equation. Otherwise jumps —
in a sense of violation of the Lindeberg condition — emerge [4, 15] and
their presence requires introducing integral operators. The Fokker–Planck
equation, which is suited for problems with jumps, contains the fractional
operator

∂

∂t
p(ξ, t) = γ

∂

∂ξ
[ξp(ξ, t)] +D

∂α

∂|ξ|α
p(ξ, t) , (3)

where 0 < α ≤ 2 denotes the stability index of the Lévy distribution and
D ≥ 0 is a constant noise intensity. The Lévy distribution itself is given by
the following Fourier transform

P (L) =
1
π

∞∫
0

exp (−Dkα) cos(kL)dk . (4)
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Distribution p(ξ, t) can be evaluated either directly from Eq. (2) [16] or by
solving Eq. (3) [17]. The characteristic function reads

p̃(k, t) ≡ 1
2π

∞∫
−∞

p(ξ, t) e−ikξdξ = exp
[
− D

αγ
|k|α

(
1− e−γαt

)]
. (5)

Expression (5) corresponds to the Lévy stable and symmetric process and
the width converges with time to a constant, producing a stationary distri-
bution. The second moment is divergent, unless α = 2, and also the mean
is divergent if α < 1.

The Langevin equation driven by the white non-Gaussian noise was stud-
ied by several authors, both for linear and nonlinear systems [17,18,19,20]. It
was generalised to the asymmetric Lévy noise [16] and to the multiplicative
noise [21,22]. OULP was also discussed in Ref. [23] where several fractional
generalisations were presented.

Dynamical relation (1) introduces a dependence among process values ξ
at different times: the process ξ(t) possesses memory. For the Gaussian case,
the autocorrelation function serves as a measure of the memory loss. It is
defined [4] as the average along a stochastic trajectory

G(τ) = lim
T→∞

1
T

T∫
0

ξ(t)ξ(t+ τ) dt . (6)

G(τ) can be evaluated as the inverse Fourier transform from the spectral
function

S(ω) = lim
T→∞

1
2πT

∣∣∣ξ̃(ω)
∣∣∣2 , (7)

where ξ̃(ω) stands for the Fourier transform from ξ(t), by means of the
Wiener–Khinchin theorem

G(τ) = F−1[S(ω)] . (8)

For the ordinary Ornstein–Uhlenbeck process, which is given by Eq. (1)
with α = 2, the stationary autocovariance function G(τ) follows directly
from Eq. (2). It assumes the exponential form [4]

G(τ) =
D

γ
e−γ|τ | (9)

which corresponds to the Lorentzian shape of S(ω). The correlation time
τc = 1/γ measures the decay rate of G(τ).
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Applying the above formalism to the case of α < 2 is problematic since
the variance σ2 = G(0) becomes infinite. To overcome that difficulty, some
modifications of the standard covariance definition were introduced. One
can define [24, 25] the ‘codifference’ τX,Y = σαX + σαY − σαX−Y , where X,Y
are stable and symmetric processes. For independent X and Y , τX,Y = 0;
codifference resolves itself to the standard covariance if α = 2. On the
other hand, one can utilise the Poissonian structure of the Lévy process
to introduce an infinite cascade of Poissonian correlation functions which
correspond to the autocorrelation function [26, 14]. That function depends
exponentially on time for OULP, Eq. (1). Standard correlation formalism of
the general Lévy case may be applied if Lévy measure in the Lévy–Khinchine
formula [15] possesses a cut-off [27]; all moments are then finite. Solutions
of the Langevin equation, which is driven by noise with such a truncated
distribution, are identical with those for the stable noise up to arbitrarily
large distances [28].

The usual definition of the autocorrelation function, Eq. (6), may still
be applicable to the general stable Lévy case, despite divergent variance.
The characteristic function of the increment ξ(t2) − ξ(t1) can be formally
derived [17]; that function contains all information about two-point correla-
tions. Special methods of spectral analysis were developed to handle experi-
mental time series which involve long jumps, e.g. calculating the count-based
periodogram [29]. That method allows one to calculate the autocorrelation
function and power spectrum for long signals, also containing nonstation-
ary trends [10]. We will demonstrate, by means of numerical simulation of
stochastic trajectories, that speed of memory loss for the process (1) can
be determined by means of the ordinary spectral analysis. Let us calculate
the power spectrum, Eq. (7), from a trajectory which follows from Eq. (1)
and has a given length T ; the Fourier transform is simultaneously evaluated.
The relative normalisation of S(ω), S0 = S(0)γ2, is finite in any calculation
since T is always finite. However, it depends on T and then cannot be deter-
mined, as expected. The analysis shows that the quantity S(ω)/S0 is well
determined in the limit T →∞, it obeys the Lorentz function

lim
T→∞

S(ω)
S0

=
1

γ2 + ω2
. (10)

The renormalised S(ω) is presented in Fig. 1 for T = 104 and some values
of α and γ. All curves follow the Lorentzian shape. The value of S0, which
emerges from that calculation, may be large, it ranges from 1 (α = 2) to 103

(α = 1.2).
On the other hand, the covariance can be evaluated by averaging over

the ensemble if one introduces a cut-off in the distribution (4). We define
the ensemble-averaged autocorrelation function
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C(τ) =
〈ξ(0)ξ(τ)〉
〈ξ(0)2〉

(11)

on the assumption that P (L) = 0 for L > Lc. Figure 1 presents that
quantity; it demonstrates that also C(τ) obeys the exponential dependence
(9). Equivalence of the expression (6) with the ensemble averaged covariance
is not obvious for α < 1 since then the system may exhibit the weakly non-
ergodic behaviour [30].
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Fig. 1. Renormalised spectral function for OULP, Eq. (1), calculated from evolution
of a trajectory up to t = 104, for the following cases: α = 1.2 (dashed line),
α = 1.5 ((green) dots) and α = 2 ((blue) dash-dotted line). Red solid line denotes
the Lorentz function (10). Upper and lower curves correspond to γ = 1 and 2,
respectively. Inset: C(τ), calculated from an ensemble of 106 trajectories with
Lc = 104, for γ = 1 and 2 (solid lines). Dashed lines (red) represent the function
e−γτ .

3. Langevin equation with coloured noise

In this section, we study the stochastic dynamics of a particle which is
subjected to the Lévy correlated noise and the linear deterministic force.
The noise ξ(t) is represented by OULP, Eq. (1). Then we have to solve a
set of two Langevin equations

ẋ(t) = f0 − λx(t) + γξ(t) ,

ξ̇(t) = −γξ(t) + L̇(t) , (12)

where γ ≥ 0, λ ≥ 0 and f0 are constants. In the presence of jumps, the
system remains far from the thermal equilibrium and the detailed balance is
violated. Then ξ(t) can be regarded as an external noise which has its own



Correlated Lévy Noise in Linear Dynamical Systems 9

time scale, determined by the parameter γ. In general, processes which obey
Langevin equation with the correlated noise are non-Markovian since the
process values are evaluated from mutually dependent noise increments [3].
For large γ (short correlation time), ξ is a fast, rapidly relaxing variable and
the process can be approximated by a corresponding white-noise problem,
by using the methods of adiabatic elimination of fast variables [3, 4].

3.1. The case without deterministic force and with a constant force

The force-free motion, with the white Lévy noise, is a generalisation of
the Wiener process; it describes simple diffusion if α = 2. Generalisation
to the coloured noise is defined by Eq. (12) with f0 = λ = 0. We assume
the initial conditions x(0) = ξ(0) = 0. Our aim is to find the probability
distribution of the variable x. One can solve Eq. (12) and utilise the fact
that x(t) — as a superposition of the Lévy distributions — is still a process
with independent increments, though multiplied by some function of time;
then convolution of densities can be performed. That method was applied in
Ref. [18] to the second order Langevin equation for the case α = 1. We apply
van Kampen’s method of compound master equations [20] which consists in
solving the joint fractional Fokker–Planck equation for the two-dimensional
system, (x, ξ), and integrating over the internal noise ξ. That method is
relatively simple in the case without potential and formally applicable also
to nonlinear systems with a multiplicative noise. In the linear case, the
existence, uniqueness and positiveness of the solution is ensured [21].

The Langevin equations (12) correspond to the fractional Fokker–Planck
equation for a joint probability distribution p(x, ξ, t) [31, 21]

∂

∂t
p (x, ξ, t) =

[
−γ ∂

∂x
ξ + γ

∂

∂ξ
ξ +D

∂α

∂|ξ|α

]
p (x, ξ, t) . (13)

Knowing the solution of Eq. (13), the probability distribution of the vari-
able x can be obtained by integration over all possible realisations of the
noise ξ

p(x, t) =

∞∫
−∞

p (x, ξ, t) dξ . (14)

Fourier transformation of Eq. (13), in respect to both x and ξ, produces the
equation for the characteristic function p̃(k, κ, t)

∂

∂t
p̃− γ (k − κ) ∂

∂κ
p̃ = −D|κ|αp̃ , (15)

which can be solved exactly by the method of characteristics; details are
presented in Appendix. The Fourier transform of the solution, Eq. (14),
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follows from Eq. (A.6)

p̃ (k, t) = p̃ (k, 0, t) = e−Dσ(t)|k|α , (16)

where

σ(t) =
1
γ

g∫
0

κα

1− κ
dκ (17)

and g = 1 − e−γt. Eq. (16) predicts the Lévy shape with the stability
index α. The width parameter σ(t) can be estimated in the limit γt � 1,
when the main contribution to the integral comes from the vicinity of the
upper integration limit, since then the denominator is close to zero

σ(t) ≈ 1
γ

(
1− e−γt

)α g∫
0

dκ

1− κ
= t
(
1− e−γt

)α
. (18)

In the limit γt→∞, σ rises linearly with time and p(x, t) coincides with the
solution of the uncorrelated problem. Convergence to that solution depends
on α: it is faster for smaller α.

The integral (17) can be exactly evaluated if α is a rational number. In
particular, for α = 3/2 it yields

σ(t) =
2
γ

[
−
(
1− e−γt

)1/2 − (1− e−γt)3/2 + arctanh
√

1− e−γt
]
. (19)

In the limit γt � 1, the expression (19) predicts a time shift, in respect to
the white noise case, since it can be approximated by σ ≈ t−(8/3−2 ln 2)/γ.

Numerical values of the probability distribution p(x, t), which result from
inversion of the characteristic function (16), can be obtained from the series
expansion [32],

p(x, t) =
1

πσ1/αα

∞∑
n=0

Γ [1 + (2n+ 1)/α]
(2n+ 1)!!

(−1)n
( x

σ1/α

)2n
, (20)

if |x| is not too large. Figure 2 presents those distributions for the case
α = 1.5 at t = 1, σ(t) was calculated from Eq. (19). Figure shows that the
memory affects the rate of spreading of the distribution: p(x, t) is broadest
for the white noise case, γ = ∞, and it contracts to the delta function in
the limit γ → 0. Results are compared with the Monte Carlo simulations of
individual trajectories, according to the stochastic equations (12). For that
purpose, a simple Euler algorithm was applied. The white noise value at
ith integration step, Li, was represented by the term τ1/αLi, where τ was
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the step size [33]. Probability distributions were obtained by averaging over
an statistical ensemble of the individual trajectories. Since the analytical
result does not contain any approximation, agreement with the simulations
is exact.
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Fig. 2. Probability distributions at t = 1 for the force-free case calculated by the
Monte Carlo simulations (points) for γ = 1, 2, 5, 20 (from top to bottom); the most
diffused case corresponds to the white noise limit (γ = ∞). Analytical results,
calculated from Eq. (20) with σ from Eq. (19), are presented as solid lines. The
stability index α = 1.5. Numerical simulations were performed with the time step
τ = 0.005 and averaged over 107 events.

Problem of the linear potential, −f0x, where f0 = const., can be reduced
to the force-free case which was discussed above. The first equation in
Eq. (12) takes the form ẋ(t) = f0 +γξ(t). From the corresponding fractional
Fokker–Planck equation,

∂

∂t
p(x, ξ, t) =

[
− ∂

∂x
(f0 + γξ) + γ

∂

∂ξ
ξ +D

∂α

∂|ξ|α

]
p(x, ξ, t) , (21)

we derive equation for the characteristic function

∂

∂t
p̃− γ(k − κ) ∂

∂κ
p̃ = − (if0k +D|κ|α) p̃ . (22)

Its solution, p̃(k, κ, t) = e−if0ktp̃0, where p̃0 is given by Eq. (A.6), follows
from the general theory [21]. It can be also obtained by separation of real
and imaginary parts of p̃(k, κ, t) and by solving the resulting set of two
equations. Integration over the variable ξ produces the final result

p̃(k, t) = e−if0ktp̃0 , (23)
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where p̃0(k, t) follows from Eq. (16). The distribution p(x, t) has the same
shape, for any time, as that for the case f0 = 0 but it is shifted by f0t. That
means that the average rises linearly with time, 〈x〉 = f0t (if α > 1), and
the distribution widens with time according to the function σ(t), Eq. (17).
In the limit γ → 0, p0(x, t) = δ(x) which corresponds to a deterministic
motion with velocity f0. Probability distributions which follow from the
Monte Carlo simulations (not presented) agree with the solution (23).

In the limit γt → ∞, Eq. (23) coincides with the solution of fractional
Fokker–Planck equation with the constant force for the white noise case [17].
The problem of transport in an effective constant force field emerges in the
framework of the continuous time random walk theory when one considers a
biased walk [34]. It resolves itself to the fractional Fokker–Planck equation
with a drift term.

3.2. Linear force

The system is defined by Eq. (12) with f0 = 0, where λ > 0 measures
intensity of the deterministic force. The aim of this section is a comparison
of exact probability distributions, obtained by numerical simulation of two-
dimensional stochastic trajectories from Eq. (12), with predictions of the
adiabatic approximation.

Figure 3 presents examples of stochastic trajectories for two cases: the
Lévy distribution with α = 1.5 and for the normal distribution. In the
former case, large jumps, typical for the Lévy processes, are visible along
the horizontal direction which represents OULP (Eq. (1)). The process x(t),
in turn, is stronger localised for both values of α. The plot shrinks in the
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Fig. 3. Exemplary stochastic trajectories in the space (ξ, x), calculated from
Eq. (12) with time step τ = 5 × 10−4 up to t = 3, for λ = 1 and γ = 1. The
trajectory for the case α = 1.5 is positioned in upper-right quarter of the figure.
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horizontal direction with increasing γ (not shown) which reflects the fact
that ξ becomes the fast variable: it relaxes rapidly to ξ = 0. Averaging
over a large number of trajectories produces the probability distribution
p(x, t). Figure 4 demonstrates that it converges with time to the stationary
distribution, as in the white noise case. Comparison of the distribution
for consecutive times shows that the time which is needed to reach the
steady state equals 5 for the case presented in the figure; for larger times
the distribution remains unchanged. The shape of p(x, t) coincides with the
Lévy distribution for any γ and its stability index α corresponds to that of
the driving noise L(t). The apparent width rises with γ and, for large γ, the
white-noise limit is reached.
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Fig. 4. Time evolution of the probability distribution for the system with linear
force, Eq. (12), calculated for the following times: 1, 2, 3, 5 (black solid lines from
top to bottom). The case t = 10, which corresponds to the stationary solution,
is marked by (red) solid line. The stationary solution which is predicted by the
adiabatic approximation, Eq. (25), is shown as (blue) dashed line. The other
parameters: α = 1.5, λ = 1 and γ = 1.

To estimate the dependence σ(γ) the characteristic function
exp(−σ(t)|k|α) was evaluated. Results are presented in Fig. 5. The dis-
tribution very slowly converges with γ to the white-noise value whereas it
shrinks to the delta function for γ → 0.

The adiabatic approximation in the case of the normally distributed noise
was discussed in Ref. [35]; we apply a similar procedure. Combination of
equations (12) yields a single second order stochastic equation

ẍ(t) = −(λ+ γ)ẋ(t)− λγx(t) + γL̇(t) . (24)

One can demonstrate, by introducing a new time variable t′ =
√
γt, that

the term ẍ is small both for γ → 0 and ∞. Therefore, Eq. (24) can be
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approximated by the following equation

ẋ(t) = −λcγx(t) + cγL̇(t) , (25)

where cγ = 1/(1 + λ/γ). The corresponding fractional Fokker–Planck equa-
tion is analogous to Eq. (3) and it can be easily solved. Fourier transform
of the solution is p̃a(k, t) = exp(−σa(t)|k|α), where the apparent width

σa(t) =
cαγD

αλ

(
1− e−αλt

)
. (26)

The adiabatic solution, pa(x, t), converges with time to the steady state and
it coincides with the uncorrelated process in the limit γ → ∞; Eq. (26)
implies that σa rises with γ. Eq. (25) is exact both for γ → 0 — when the
delta function is the solution — and in the limit γ →∞ (the Smoluchowski
limit). For intermediate values of γ, one can expect that Eq. (25) is a good
approximation on time scales t > 1/(λ+γ) and at distances� D−1/2/(γ1/2+
λγ−1/2) [3].
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Fig. 5. Width parameter σ, evaluated from the characteristic function for t = 1, as a
function of memory parameter γ (points). Results of the adiabatic approximation,
Eq. (26), are marked by stars. The parameters are: α = 1.5 and λ = 1. Horizontal
line marks the white noise limit.

The width parameter σ(t) for the exact solution is compared with σa,
predicted by Eq. (26), in Fig. 5. Some differences are visible but qualita-
tive agreement of the functions σ(γ) for both cases is good in the entire
range of presented γ values. In general, however, discrepancies may be more
pronounced. For example, the adiabatic approximation underestimates the
width of the steady-state distribution for γ = 1, which is shown in Fig. 4,
by a factor of two (0.24 versus 0.48).
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4. Summary and conclusions

We have studied the linear dynamical systems which are driven by the
additive, non-white Lévy noise. That noise is modelled by a concrete, sim-
ple stochastic process, OULP. Then the system is defined in terms of two
Langevin equations. OULP reveals the memory effects, as for the ordinary
Ornstein–Uhlenbeck process, but their quantitative description is more dif-
ficult because of the divergent variance. We have presented a numerical
example which demonstrates that the renormalised autocorrelation function
G(t) can be useful as a measure of the memory loss; it falls exponentially
with time for any stability index α. The same result was obtained for the
ensemble-averaged autocorrelation function on the assumption that the Lévy
distribution is truncated.

In the absence of any deterministic force, the non-Markovian problem
resolves itself to the Wiener–Lévy process (correlated Lévy motion). The
resulting probability distribution has the Lévy shape, with parameter α, and
it converges with time to that for the uncorrelated case. Correlation time
τc = 1/γ determines the distribution width: the larger τc, the narrower the
distribution. The case of the constant force f0 is similar; shape and width
of the distribution is the same but the time-dependent shift f0t emerges.

Solution for the case of the linear force converges with time to the steady
state, as for the white-noise problem, and its shape is Lévy with parameter α.
Inclusion of the finite correlation time narrows the distribution, analogously
to the case without a force. The above observations agree with the adiabatic
approximation approach. That method deals with a corresponding, effective
white-noise process and resolves itself to the Langevin equation of the first
order. It is supposed to be accurate if γ is sufficiently large or if γ → 0. For
intermediate values of γ, overall predictions of the adiabatic approximation
in respect to the distribution shape and its dependence on γ are still correct,
nevertheless some quantitative discrepancies have been found.

Appendix

In Appendix, we solve the fractional Fokker–Planck equation, Eq. (15),
by means of the method of characteristics.

First, we put the equation into the form

|κ|−α ∂
∂t
p̃(k, κ, t)− γ(k − κ)|κ|−α ∂

∂κ
p̃(k, κ, t) = −Dp̃(k, κ, t) . (A.1)

Eq. (A.1) is the linear partial differential equation of the first order with only
two variables, t and κ, since k can be regarded as a constant parameter.
The equation can be handled by the method of characteristics [36]. The
method consists in reducing the problem to solution of a system of ordinary
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differential equations (characteristic equations). Those equations determine
variables t, ξ and z, as functions of parameters s and r, on a characteristic
curve. They are of the form

dt(r, s)
ds

= |κ|−α ,

dκ(r, s)
ds

= −γ(k − κ)|κ|−α ,

dz(r, s)
ds

= −Dz (A.2)

with the initial conditions

t(r, 0) = 0 ,
κ(r, 0) = r ,

z(r, 0) = 1 ; (A.3)

the third condition reflects the requirement that p(x, ξ, 0) is to be the delta
function in the variable ξ. We must solve the system (A.2) and then elim-
inate the parameters r(t, κ) and s(t, κ). The final solution of Eq. (A.1)
is given by p̃(k, κ, t) = z(r, s). Combination of the first and second equa-
tion gives the relation between t and κ on the characteristic curve: t =
ln[(κ − k)/(r − k)]/γ, where the initial conditions (A.3) were taken into
account. The above relation determines the parameter r

r(t, κ) = k − (k − κ)e−γt . (A.4)

Integration of the third equation (A.2) is straightforward, z(r, s) = e−Ds,
and s, as a function of the variables κ and t, follows from the second equation

s(t, κ) =
1
γ

κ∫
r

|κ′|α

κ′ − k
dκ′ . (A.5)

The final solution reads
p̃(k, κ, t) = e−Ds , (A.6)

where s is given by Eq. (A.5). The solution (A.6) can be verified by a direct
inserting into Eq. (A.1) and applying the Leibniz rule for differentiation of
the integral.
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