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In this paper we investigate the dependence structure for Ornstein–
Uhlenbeck process with tempered stable distribution that is natural ex-
tension of the classical Ornstein–Uhlenbeck process with Gaussian and
α-stable behavior. However, for the α-stable models the correlation is
not defined, therefore in order to compare the structure of dependence
for Ornstein–Uhlenbeck process with tempered stable and α-stable distri-
bution, we need another measures of dependence defined for infinitely di-
visible processes such as Lévy correlation cascade or codifference. We show
that for analyzed tempered stable process the rate of decay of the Lévy cor-
relation cascade is different than in the stable case, while the codifference
of the α-stable Ornstein–Uhlenbeck process has the same asymptotic be-
havior as in tempered stable case. As motivation of our study we calibrate
the Ornstein–Uhlenbeck process with tempered stable distribution to real
financial data.
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1. Introduction

In modern finance theorems continuous time models play a crucial role,
because they allow handling unequally spaced data and even high frequency
data, which are realistic for liquid financial markets. Probably the most
famous example is the Ornstein–Uhlenbeck process that was originally in-
troduced by Uhlenbeck and Ornstein [1] as a suitable model for the velocity
process in Brownian diffusion. In other words, this process provides a sta-
tionary solution for the classical Klein–Kramers dynamics [2, 3]. It is an al-
ternative to the classical Brownian motion in the case when some kind of
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mean reverting tendency is observed in the real data. The Ornstein–Uhlen-
beck process has found many applications to the real financial data such as
interest rates, currency exchange rates, and commodity prices. In finance it
is best known in connection with the Vasiček interest rate model [4].

Many asset pricing models (such as classical Vasiček model) assume that
the analyzed data have normal distribution. Unfortunately, the assumption
of normality is unsatisfactory for many observed data. One approach is to
replace the Brownian motion by a heavier tailed Lévy process. Many studies
have shown that heavy-tailed distributions allow for modeling different kind
of phenomena when the assumption of normality for the observations does
not seem to be reasonable. Especially α-stable (stable) distributions have
found many practical applications, for instance in finance [5], physics [6,7,8]
and electrical engineering [9]. The Ornstein–Uhlenbeck process with α-stable
distribution was analyzed in [10, 11] as a suitable model for description of
different financial data.

However, the stable processes have infinite moments of the second or
higher orders, therefore, there appear many problems especially in appli-
cations. In order to overcome this drawback, the processes with tempered
stable distribution (and their modifications) have been introduced. There
are many types of such processes, for example, classical tempered stable and
modified tempered stable models, see [11,12,13]. The classical tempered sta-
ble models are known as Truncated Lévy Flight (see for instance [14,15,16,
17]), KoBol [18] and CGMY processes [19, 20]. They found many applica-
tions especially in finance, see [21,22], biology [23], physics to description of
anomalous diffusion and relaxation phenomena [24,25], turbulence [26] and
in plasma physics [27], see also [28,29].

In this paper we consider the Ornstein–Uhlenbeck process with tempered
stable distribution that is a natural extension of the classical (Gaussian)
and α-stable Ornstein–Uhlenbeck process. However, for the stable models
the correlation is not defined, therefore in order to compare the structure
of dependence of the tempered and α-stable Ornstein–Uhlenbeck process,
we examine another measures of dependence defined for infinitely divisible
processes such as Lévy correlation cascade [30]. This is a useful tool for
studying the ergodic and long-memory properties [31]. We study the asymp-
totic behavior of the mentioned measure for considered process and compare
it to the α-stable case. As a main result, we show that the rate of decay of
the Lévy correlation cascade in the considered case is different than in stable
model. Moreover, for the tempered stable and α-stable Ornstein–Uhlenbeck
process we compare alternative measure called codifference [32, 33, 34, 35],
based on the Fourier transform of the distribution, that can be also useful
for studying the long-range dependence [31]. We prove that for thease two
analyzed processes this measure indicates the same asymptotic behavior.
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The rest of the paper is organized as follows: in Section 2 we give the
definition of Ornstein–Uhlenbeck process with tempered stable distribution.
In order to present the motivation of the paper in Section 3, we calibrate the
tempered stable Ornstein–Uhlenbeck process to the returns of closing price
for Switzerland government bonds. Then, in Section 4, we review the mea-
sures of dependence for infinitely divisible processes: the codifference and
the alternative measure called the Lévy correlation cascade. The measures
of dependence for considered processes are studied in Section 5 and their
asymptotic behavior is examined.

2. Ornstein–Uhlenbeck process with tempered stable distribution

The classical Ornstein–Uhlenbeck process is known as the mean-revert-
ing process (i.e. over time, the process tends to drift towards its long-term
mean) and it is given by the following stochastic differential equation

dY (t) = a(µ− Y (t))dt+ σdB(t) , (1)

where {B(t)}t≥0 denotes the Brownian motion [36]. The parameter µ rep-
resents the long-term mean, a — the speed of mean-reversion, and σ — the
volatility. If we extend the Brownian motion for the set (−∞, 0) and take
the simplistic assumption µ = 0 and σ = 1, then we can write the unique
solution of equation (1)

Y (t) =

t∫
−∞

e−a(t−u)dB∗(u) , (2)

with {B∗(t)}t∈R — the Brownian motion extended to the set (−∞, 0), i.e.

B∗(t) = B(t)I(0,∞)(t)−M(−t)I(−∞,0)(t) , −∞ < t <∞ ,

where {B(t), t ≥ 0} and {M(t), t ≥ 0} are two independent Brownian
motions [37,38].

An extension of the process (2) is an α-stable Ornstein–Uhlenbeck system
defined as follows [10,37]

Y (t) =

t∫
−∞

e−a(t−u)dLα(u) , (3)

where {Lα(t)} is a Lévy process with α-stable increments extended to the set
(−∞, 0). Stable Ornstein–Uhlenbeck processes were analyzed for instance
in [5, 10,39] as a models describing real financial data.



2052 A. Wyłomańska

In this paper we propose an extension of the mentioned Ornstein–Uhlen-
beck processes and substitute the Lévy process with α-stable (or Gaussian)
distribution extended to the set (−∞, 0) by the Lévy process with tem-
pered stable increments. In this case the Ornstein–Uhlenbeck process can
be represented by the following stochastic integral

Y (t) =

t∫
−∞

e−a(t−u)dT (u) , (4)

where {T (u)} is a Lévy process with tempered stable increments extended
to the set (−∞, 0).

An infinitely divisible distribution is called a tempered stable with pa-
rameters 1 < α < 2, λ > 0 and C > 0 if it has no Gaussian component and
its Lévy measure is given by [40]

v(dx) =
Ce−λx

x1+α
1x>0dx . (5)

In this case the Fourier transform φT of the tempered stable random variable
T is given by the following formula [40]

φT (u) = E exp (iuT ) = exp
(
C
(
(λ− iu)α − λα + iuαλα−1

))
. (6)

When λ = 0, then the random variable T with the Fourier transform given
in (6) has an α-stable distribution with the following values of the parameters

α, β = 1 , σ = (−C cos(π ∗ α/2))1/α , µ = 0 .

By using the connection between the tempered stable and corresponding
α-stable distribution it is easy to find the relation between the probability
density functions (p.d.f.). Let pT(x) and pS(x) be p.d.f. of tempered sta-
ble with parameters α, λ,C and α-stable random variable with appropriate
values of the parameters, respectively, then for α 6= 1 we have

pT(x) = e−λx+(α−1)CλαpS

(
x− Cαλα−1

)
.

In Fig. 1 we present such two p.d.f. functions with the the following param-
eters of the tempered stable distribution α = 1.2, λ = 1.3 and C = 1.

The main properties as well as the procedures of simulation of the consid-
ered tempered stable distribution one can find for instance in [12] and [40].
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Fig. 1. The probability density functions for tempered stable and corresponding
α-stable distributions. The parameters of tempered stable distribution are as fol-
lows: α = 1.2, λ = 1.3 and C = 1.

3. Motivation

In order to present the motivation for using the Ornstein–Uhlenbeck
process with tempered stable distribution, we analyze the real financial data
that describe the closing price of Switzerland government bonds (CH644842)
quoted daily in Swiss franc (CHF) between 02.01.1995 and 07.06.2010 (3288
observations). In Fig. 2 we present the analyzed data set. In order to re-
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Fig. 2. The real data time series — the closing price of Switzerland government
bonds quoted daily (in CHF) between 02.01.1995 and 07.06.2010.

move the deterministic trend before the further, analysis we differentiate the
analyzed data. The five statistical tests based on the empirical distribution
function, precisely described in [41], reject the hypothesis that the data can
be described by Gaussian and strictly α-stable distribution. Therefore, as an
alternative we propose to use the tempered stable distribution described in
previous section. The autocorrelation function (ACF) and partial autocorre-
lation function (PACF) indicate the data can be described by autoregressive
model of the order of 1 (AR(1)), that is a discrete version of the Ornstein–
Uhlenbeck process. In this case (under the simplistic assumption µ = 0
and σ = 1) the discretization of tempered stable Ornstein–Uhlenbeck model
given in (4) has the following form
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Y (t) = (1− a)Y (t− 1) + ξ(t) , t = 1, 2, . . . , (7)

where {ξ(t)} is a sequence of independent identically distributed (i.i.d.) ran-
dom variables with tempered stable distribution with parameters α, λ and C.

To estimate the parameters a, α, λ, C we apply the following scheme:

• For given data by using the Yule Walker method [42] we estimate the
parameter a in model (7).

• By using the obtained in point 1 estimator of a, namely â, we calculate
the sequence of innovations {ξ(t)} (that represent the increments of
the process {T (t)}) from the following equation

ξ(t) = Y (t)− (1− â)Y (t− 1) , t = 1, 2, . . . .

• Under the assumption the sequence {ξ(t)} constitutes independent
identically distributed random variables with tempered stable distri-
bution we estimate the parameters α, λ and C by using the method
of moments [43].

As a result we obtain

â = 1.3037 , α̂ = 1.8731 , λ̂ = 0.0358 , Ĉ = 0.1519 .

In order to confirm that the estimated tempered stable distribution is a
proper distribution of the residual series {ξ(t)}, in Fig. 3 we present the
empirical p.d.f. of the residuals based on the kernel estimation method and
theoretical p.d.f. calculated on the basis of the estimated parameters.
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Fig. 3. The empirical p.d.f. of the residuals and theoretical p.d.f. calculated on the
basis of the estimated parameters.
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4. Measures of dependence for infinitely divisible processes

One of the important tool providing to construction of an appropriate
mathematical model for the real-life data is correlation. However, for the
large class of infinitely divisible processes, namely the strictly α-stable, the
correlation is not defined. Therefore, Eliazar and Klafter in [30] introduced a
new measure of dependence that is defined for infinitely divisible stochastic
processes {Y (t), t ∈ R} with the following integral representation

Y (t) =
∫
X

K(t, x)M(dx) ,

where M is an independently scattered infinitely divisible random measure
on some measurable space S with control measure m, see also [31].

The new measure was introduced as a concept of correlation cascades,
which is a promising tool for exploiting the properties of the Poissonian part
of Y (t) and the dependence structure of this stochastic process. The Lévy
correlation cascade is defined as follows [30,31]

Cl(t1, t2, . . . , tn) =
∫
X

Λ

(
l

min{K(t1, x), . . . ,K(tn, x)}

)
m(dx) , (8)

where the tail function Λ is given by

Λ(l) =
∫
|x|>l

v(dx) (9)

and v is a Lévy measure of the the process {Y (t)}.
Many significant properties and results connected with the Lévy corre-

lation cascade for infinitely divisible processes are presented in [30] and [31].
We only mention here that the function Cl(t1, t2, . . . , tn) tells us, how depen-
dent the coordinates of the vector (Y (t1), Y (t2), . . . , Y (tn)) are. Therefore,
Cl(t1, t2, . . . , tn) can be considered as an appropriate measure of dependence
for the Poissonian part of the infinitely divisible process [31]. In particular,
the function Cl(t1, t2) can serve as an analogue of the covariance, and the
function

rl(t1, t2) =
Cl(t1, t2)√
Cl(t1)Cl(t2)

(10)

can play the role of the correlation function. The ergodic property, such
as ergodicity, weak mixing and mixing, of a stationary infinitely divisible
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processes can be described in the language of the Lévy correlation cascade,
therefore, this measure is a promising tool for studying the dependence struc-
ture for this large class of processes. Moreover, the Lévy correlation cascade
is useful for detecting the long memory behavior, especially for the pro-
cesses with infinite second moment for which the correlation is not defined.
Namely a stationary process is said to have a long memory in terms of the
Lévy correlation cascade if the following condition holds

∞∑
n=0

rl(n, 0) =∞ ,

where rl(n, 0) is given in (10), [31].
When the considered process is a moving-average with respect to the

Lévy process {Z(t)}, i.e. it takes the following form

Y (t) =

t∫
−∞

f(t− u)Z(du) ,

then the Lévy correlation cascade is defined as follows

Cl(0, t) =

∞∫
t

Λ

(
l

f(y)

)
dy .

The another measure, that is often considered as a tool of the dependence
structure description, is the codifference (see for instance [32, 33, 34]). For
the stationary infinitely divisible process {Y (t)} codifference is defined as
follows

CD(t, 0) = CD(Y (t), Y (0))
= logE exp (i(Y (t)− Y (0)))− logE exp (iY (t))− logE exp (−iY (0)) .(11)

Codifference carries enough information to detect ergodic properties of the
process {Y (t)}. It is also closely related to another measure — dynamical
functional used in [44, 45] to investigate the chaotic behavior of the consid-
ered process. It is also used to examine the long-range dependence in the
case when the correlation function is not defined [32, 46]. The stationary
process is said to have a long memory in terms of the codifference function
if the following condition holds

∞∑
n=0

CD(n, 0) =∞ ,
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where CD(n, 0) is defined in (11). According to the results of the next
section, the rates of decay of Cl(t, 0) and CD(t, 0) computed for the same
stationary process can be different. Therefore, it is hard to compare two
definitions of long memory based on the Lévy correlation cascade and the
codifference [31].

More properties of the codifference one can find in [32]. Let us mention
here that there is a relationship between the asymptotic behavior of Lévy
correlation cascade and codifference, namely for the stationary infinitely
divisible process {Y (t)} with the Lévy measure v0 of Y (0) without atoms in
2πZ, the following two conditions are equivalent (see Theorem 2 in [31])

lim
t→0

Cl(t, 0) = 0 for every l > 0 ,

lim
t→0

CD(t, 0) = 0 .

In the next section, we examine the Ornstein–Uhlenbeck process with
tempered stable distribution in the context of the mentioned measures of de-
pendence. As a main result we show the asymptotic behavior of this process
in the language of Lévy correlation cascade and compare it with the α-stable
case. Moreover, we show that the codifference of the Ornstein–Uhlenbeck
process with α-stable and tempered stable distribution has the same asymp-
totic properties. The obtained results indicate that the Ornstein–Uhlenbeck
process with tempered stable increments does not demonstrate the long-
range dependence in the sense of considered measures.

5. Structure of dependence of Ornstein–Uhlenbeck process
with α- and tempered stable distribution

5.1. α-stable case

Let us consider the Ornstein–Uhlenbeck process given in (3) with
α-stable distribution given in (3). In this case the Lévy measure of the
α-stable Lévy process {Lα(u)} in equation (3) is given by (see [32])

v(dx) =
1x>0

x1+α
dx .

Therefore, the Lévy correlation cascade and an analogue of the correlation
given in (10) of the α-stable Ornstein–Uhlenbeck process {Y (t)} have the
following form [31]

Cl(0, t) =
1

aα2lα
e−aαt , rl(0, t) = e−aαt .
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According to the fact that the Fourier transform of the α-stable random
variable S with µ = 0 and σ = 1 is given by

φs(u) = EeiuS = exp
(
−|u|α

(
1− isign(u) tan

πα

2

))
.

The codifference CD(t, 0) of the Ornstein–Uhlenbeck process with α-stable
Lévy motion can be expressed as [47]

CD(t, 0) =
1− tan πα

2

aα

(
1 + e−aαt −

∣∣∣1− e−at∣∣∣α) ,
that for large t gives

CD(t, 0) ∼ const. e−at .

The exact description as well as the main properties and comparison between
the Ornstein–Uhlenbeck process with α-stable Lévy motion and discrete au-
toregressive model in the language of the codifference function are presented
in [47].

5.2. Tempered stable case

In the considered tempered stable case the tail function Λ given in (9)
takes the following form

Λ(l) = CλαΓ (−α, λl) ,

where Γ (s, t) is an incomplete gamma function defined as follows

Γ (s, t) =

∞∫
t

xs−1e−xdx . (12)

Using the form of the Λ function we obtain the following form of the Lévy
correlation cascade for the tempered stable Ornstein–Uhlenbeck process de-
fined in (4)

Cl(t, 0) =

∞∫
t

CλαΓ (−α, λleau)du .

Let us consider the asymptotic behavior of such function for t→∞. Because
the incomplete gamma function has the following property

Γ (s, x)
xs−1e−x

→ 1 for x→∞
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then for large t we obtain

Cl(t, 0) ∼ Cλα
∞∫
t

(λleau)−α−1 exp{−λleau} du =
Cλα

a

∞∫
λleat

w−α−2e−wdw

=
Cλα

a
Γ
(
−α− 1, leat

)
∼ Cλα

a

(
λleat

)−α−2 exp
{
−λleat

}
(13)

that gives
rl(t) = rl(0, t) ∼ e−at(α+2) exp

{
−λleat

}
.

This result indicates that the Ornstein–Uhlenbeck process with tempered
stable distribution does not have long memory dependence in terms of Lévy
correlation cascade. Because we have proved the financial time series exam-
ined in Section 3 can be modeled by using the considered process, therefore
we can conclude the analyzed real data cannot be considered as process with
the long memory behavior in the sense of Lévy correlation cascade.

For the tempered stable Ornstein–Uhlenbeck process the codifference
defined in (11) is given by

CD(t, 0) = C

0∫
−∞

(
λ+ ieas

(
1− e−at

))α

−
(
λ− ie−a(t−s)

)α
ds− C

0∫
−∞

(λ+ ieas)α − λαds .

By using the following formula

(a+ b)α =
∞∑
k=0

Γ (α+ 1)
Γ (k + 1)Γ (α− k + 1)

aα−kbk

we can obtain

CD(t, 0) = C

0∫
−∞

∞∑
k=1

ieask
Γ (α+ 1)

Γ (k + 1)Γ (α− k + 1)ak

×
((

λ− ie−a(t−s)
)α−k

− λα−k
)
ds .

When k > 0, then the function(
λ− ie−a(t−s)

)α−k
− λα−k ,
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for large t, behaves like i(α− k)e−a(t−s). Therefore, finally we obtain

CD(t, 0) ∼ const. e−at .

The result indicates the codifference of the Ornstein–Uhlenbeck process with
tempered stable distribution have the same asymptotic behavior as in the
α-stable case. This result also indicates that the real time series exam-
ined in Section 3 (and modeled by using the considered process) cannot be
considered as a process with the long-range dependence in a sense of the
codifference measure.

6. Conclusion

In this paper we have examined the structure of dependence of Ornstein–
Uhlenbeck process with tempered stable distribution in the language of Lévy
correlation cascade and codifference. As a main result, we have showed that
rate of decay of the Lévy correlation cascade in the tempered stable case is
different than in stable models while the codifference has the same asymp-
totic behavior. The obtained asymptotic results indicate that the Ornstein–
Uhlenbeck process with tempered stable increments does not demonstrate
long-range dependence in the sense of considered measures. As the mo-
tivation of our study we have presented the analysis of the real financial
data that can be described by using the Ornstein–Uhlenbeck process with
tempered stable distribution.
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