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We study dynamics of two coupled periodically driven oscillators. Im-
portant example of such a system is a dynamic vibration absorber which
consists of a small mass attached to the primary vibrating system of a large
mass. Periodic solutions of the approximate effective equation derived in
our earlier work are determined within the Krylov–Bogoliubov–Mitropolsky
(KBM) approach used to compute the amplitude profiles A(Ω). Depen-
dence of the amplitude A of nonlinear resonances on the frequency Ω is
much more complicated than in the case of one Duffing oscillator and hence
new nonlinear phenomena are possible. In the present paper we study
metamorphoses of the function A(Ω) induced by changes of the control
parameters near a singular point of this function. It follows that dynamics
can be controlled in the neighbourhood of a singular point.
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1. Introduction

Coupled oscillators play important role in many scientific fields, e.g. bi-
ology, electronics, and mechanics, see [1, 2, 3, 4, 5] and references therein. In
this paper we analyse two coupled oscillators, one of which is driven by an
external periodic force. Important example of such system is a dynamic
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vibration absorber which consists of a mass m2, attached to the primary
vibrating system of mass m1 [6, 7]. Equations describing dynamics of such
system are of form

m1ẍ1 − V1 (ẋ1)−R1(x1) + V2 (ẋ2 − ẋ1) +R2(x2 − x1) = f cos(ωt)

m2ẍ2 − V2 (ẋ2 − ẋ1)−R2(x2 − x1) = 0

}
,

(1.1)

where V1, R1 and V2, R2 represent (nonlinear) force of internal friction and
(nonlinear) elastic restoring force for mass m1 and mass m2, respectively. In
the present paper we do not assume that the ratio m2/m1 is small.

In the present paper we shall consider a simplified model:

R1 (x1) = −α1x1 , V1 (ẋ1) = −ν1ẋ1 . (1.2)

Dynamics of coupled periodically driven oscillators is very complicated
[2, 3, 5]. We simplified the set of equations (1.1), (1.2) by reducing it to
the problem of motion of two independent oscillators. More precisely, we
derived the exact fourth-order nonlinear equation for internal motion as
well as approximate second-order effective equation in [8]. Moreover, apply-
ing the Krylov–Bogoliubov–Mitropolsky method to these equations we have
computed the corresponding nonlinear resonances (cf. [8] for the case of the
effective equation). Dependence of the amplitude A of nonlinear resonances
on the frequency ω is much more complicated than in the case of Duffing
oscillator and hence new nonlinear phenomena are possible. In the present
paper we study metamorphoses of the function A (ω) induced by changes of
the control parameters.

The paper is organized as follows. In the next section derivation of
the exact fourth-order equation for the internal motion and approximate
second-order effective equations in non-dimensional form are presented. In
Sec. 3 metamorphoses of amplitude profiles determined within the Krylov–
Bogoliubov–Mitropolsky approach for the approximate second-order effec-
tive equation are studied and the case of the standard Duffing equation is
presented as well. More exactly, theory of algebraic curves is used to compute
singular points on effective equation amplitude profiles — metamorphoses of
amplitude profiles occur in neighbourhoods of such points. In Sec. 4 exam-
ples of analytical and numerical computations are presented for the effective
equation. Our results are summarized and perspectives of further studies
are described in the last section.
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2. Exact equation for internal motion and its approximations

In new variables, x ≡ x1, y ≡ x2 − x1, equations (1.1), (1.2) can be
written as

mẍ+ νẋ+ αx+ Ve (ẏ) +Re(y) = f cos(ωt)

me (ẍ+ ÿ)− Ve (ẏ)−Re(y) = 0

}
, (2.1)

where m ≡ m1, me ≡ m2, ν ≡ ν1, α ≡ α1, Ve ≡ V2, Re ≡ R2.
Adding equations (2.1) we obtain important relation between variables

x and y
Mẍ+ ν1ẋ+ α1x+meÿ = f cos(ωt) , (2.2)

where M = m+me.
We can eliminate variable x in (2.1) to obtain the following exact equa-

tion for relative motion(
M

d2

dt2
+ν

d

dt
+α
)

(µÿ − Ve (ẏ)−Re(y)) + λme

(
ν
d

dt
+α
)
ÿ = F cos(ωt) ,

(2.3)
where F = meω

2f , µ = mme/M and λ = me/M is a nondimensional
parameter. Equations (2.3), (2.2) are equivalent to the initial equations
(1.1), (1.2) [8].

In the present work we assume

Re(y) = αey − γey3 , Ve (ẏ) = −νeẏ . (2.4)

We thus get (
M

d2

dt2
+ ν

d

dt
+ α

)(
µ
d2y

dt2
+ νe

dy

dt
− αey + γey

3

)
+λme

(
ν
d

dt
+ α

)
d2y

dt2
= F cos(ωt) . (2.5)

We shall write Eq. (2.5) in nondimensional form. Introducing nondimen-
sional time τ and rescaling variable y

τ = tω̄ , z = y

√
γe
αe

, (2.6)

where

ω̄ =
√
αe
µ
, (2.7)
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we get the exact equation for motion of mass me(
d2

dτ2
+H

d

dτ
+ a

)(
d2z

dτ2
+ h

dz

dτ
− z + z3

)
+κ
(
H
d

dτ
+ a

)
d2z

dτ2
= G

κ

κ+ 1
Ω2 cos(Ωτ) , (2.8)

where nondimensional constants are given by

h =
νe
µω̄

, H =
ν

Mω̄
, Ω =

ω

ω̄
,

G =
1
αe

√
γe
αe
f , κ =

me

m
, a =

αµ

αeM
. (2.9)

We shall consider hierarchy of approximate equations arising from (2.8).
For small κ, H, a we can reject the second term on the left in (2.8) to obtain
the approximate equation(

d2

dτ2
+H

d

dτ
+a
)(

d2z

dτ2
+h

dz

dτ
−z+z3

)
=γΩ2 cos(Ωτ)

(
γ≡G κ

κ+1

)
(2.10)

which can be integrated partly to yield the effective equation

d2z

dτ2
+ h

dz

dτ
− z + z3 = −γ Ω2√

(Ω2 − a)2 +H2Ω2

cos(Ωτ + δ) , (2.11)

for appropriate δ, where transient states has been omitted [8] (indeed,(
d2

dτ2 +H d
dτ + a

)
g (τ) = γΩ2 cos (Ωτ) for g (τ) = −γΩ2 cos(Ωτ+δ)√

(Ω2−a)2+H2Ω2
+

transient terms). And finally, for H = 0, a = 0 we get the Duffing equation

d2z

dτ2
+ h

dz

dτ
− z + z3 = −γ cos(Ωτ + δ) . (2.12)

3. Metamorphoses of the amplitude profiles

We applied the Krylov–Bogoliubov–Mitropolsky perturbation approach
[9, 10], working in the spirit of Ref. [4], to the effective equation (2.11) ob-
taining for the 1 : 1 resonance the following amplitude profile [8]

Aeff =
γΩ2√(

h2Ω2 +
(
1 +Ω2 − 3

4A
2
eff

)2)((Ω2 − a)2 +H2Ω2
) . (3.1)
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Now, for H = 0, a = 0 we obtain the amplitude profile for the Duffing
equation (2.12)

AD =
γ√(

h2Ω2 +
(
1 +Ω2 − 3

4A
2
D

)2) . (3.2)

It is well known that dependence of the function AD, cf. (3.2), on control
parameters γ, h is rather simple. On the other hand, dependence of the am-
plitude profile Aeff(Ω) on control parameters γ, h, a, H is more complicated
and thus Aeff(Ω) can describe new nonlinear phenomena. In the next sec-
tion we shall study possible metamorphoses of AD, Aeff induced by changes
of control parameters. The more complicated case of the fourth-order exact
equation (2.8) will be treated elsewhere.

Equations (3.2), (3.1) define the corresponding amplitude profiles im-
plicitly. Such amplitude profiles can be classified as planar algebraic curves.
Firstly, we shall collect useful theorems on implicit functions which will be
used below.

Let us write equations (3.1), (3.2) as Le (Ye, X) = 0 and LD (YD, X) = 0,
respectively, where X ≡ Ω2, Y ≡ A2(

h2X +
(
1 +X − 3

4Ye
)2)((X − a)2 +H2X

)
Ye − γ2X2 = 0 , (3.3)(

h2X +
(
1 +X − 3

4YD

)2)
YD − γ2 = 0 . (3.4)

It follows from general theory of implicit functions [11,12] that conditions
for critical points of Y (X) read

L (Y,X) = 0 ,
∂L (Y,X)

∂X
= 0

(
∂L (Y,X)

∂Y
6= 0
)
. (3.5)

Moreover, critical points of the inverse function X (Y ) are given by

L (Y,X) = 0 ,
∂L (Y,X)

∂Y
= 0

(
∂L (Y,X)

∂X
6= 0
)
. (3.6)

It may happen that in some points (X0, Y0) we have

L (Y,X) = 0 ,
∂L (Y,X)

∂X
= 0 ,

∂L (Y,X)
∂Y

= 0 . (3.7)

Such points are referred to as singular points of algebraic curve
L(Y,X) = 0 because they are in some sense exceptional.
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3.1. The case of the Duffing equation

Singular points of the algebraic curve defined by (3.4) are given by

∂LD

∂X
= 0 , (3.8)

∂LD

∂Y
= 0 . (3.9)

The set of equations (3.4), (3.8), (3.9) can be written as

h2XY + Y
(
1 +X − 3

4Y
)2 − γ2 = 0 , (3.10)

h2Y + 2Y + 2Y X − 3
2Y

2 = 0 , (3.11)

h2X + 1 + 2X − 3Y +X2 − 3Y X + 27
16Y

2 = 0 , (3.12)

where X,Y are positive.
General solution reads

X = −1
2h

2 − 1 + 3
4Y (Y 6= 0)

Y = 1
6h

2 + 2
3 (h 6= 0)

γ2 = − 1
48h

6 − 1
6h

4 − 1
3h

2

. (3.13)

It follows that Y > 0, X < 0 and γ2 ≤ 0 and thus the system of equations
(3.10), (3.11), (3.12) has no acceptable solutions since we assume that h, γ
are real and X, Y are non-negative.

3.2. The case of the effective equation

Singular points of the algebraic curve defined by (3.3) are given by equa-
tions

∂Le
∂X

= 0 , (3.14)

∂Le
∂Y

= 0 . (3.15)

It follows from (3.3) and (3.15) that either of equations must hold

16X2 + 16h2X + 32X + 16− 48Y X − 48Y + 27Y 2 = 0 , (3.16)

(X − a)2 +H2X = 0 , (3.17)

where X,Y are positive.
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Let us start with Eq. (3.17). In this case we obtain from (3.3 ), (3.14)
and (3.17) the following rather special solution

X = a , H = 0 , γ = 0 , (3.18)

where Y, h, a are arbitrary.
Let us now consider more general Eq. (3.16). We can treatX as arbitrary.

Then we obtain two solutions for Y

Y = 8
9 + 8

9X −
4
9

√
1 + 2X +X2 − 3h2X , (3.19)

Y = 8
9 + 8

9X + 4
9

√
1 + 2X +X2 − 3h2X , (3.20)

where the inequality

1 + 2X +X2 − 3h2X ≥ 0 (3.21)

must hold. This means that for a chosen value of X the parameter h must
obey

h2 ≤ (X + 1)2

3X
. (3.22)

Solving equations (3.3), (3.14), and (3.19) or (3.20) we get

Y = 8
9 + 8

9X ±
4
9U(X) , (3.23)

a = Z1
X

(h2X +X2 + 2X + 1)3/2 h
, (3.24)

H = Z2
1

(h2X +X2 + 2X + 1)3/2 h
, (3.25)

where U and Z1, Z2 are given by

U(X) =
√

1 + 2X +X2 − 3h2X , (3.26)

Z1 =
√
w1(X)± w2(X)U(X) , (3.27)

Z2 =
√
w3(X)± w4(X)U(X) , (3.28)

w1 (X) = a6X
6 + a5X

5 + a4X
4 + a3X

3 + a2X
2 + a1X + a0 , (3.29)

a6 = 16h2 ,

a5 = 48h4 + 96h2 ,

a4 = 48h6 + 192h4 + 240h2 + 6γ2 ,

a3 = 16h8 + 96h6 + 288h4 +
(
320 + 102γ2

)
h2 + 24γ2 ,

a2 = 48h6 + 192h4 +
(
162γ2 + 240

)
h2 + 36γ2 ,

a1 =
(
54γ2 + 48

)
h4 +

(
18γ2 + 96

)
h2 + 24γ2 ,

a0 =
(
16− 42γ2

)
h2 + 6γ2 ,

(3.30)
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w2 (X) = b3X
3 + b2X

2 + b1X + b0 , (3.31)
b3 = 6γ2 ,

b2 = −51γ2h2 + 18γ2 ,

b1 = −9γ2h4 − 12γ2h2 + 18γ2 ,

b0 = 39γ2h2 + 6γ2 ,

(3.32)

w3 (X) = c7X
7 + c6X

6 + c5X
5 + c4X

4 + c3X
3 + c2X

2 + c1X + c0 , (3.33)

c7 = −32h2 ,

c6 = −96h4 − 192h2 ,

c5 = −96h6 − 384h4 − 480h2 + 32Z1h ,

c4 = −32h8 − 192h6 − 576h4 + 64Z1h
3

+
(
−640− 42γ2

)
h2 + 128Z1h+ 6γ2 ,

c3 = −96h6 + 32Z1h
5 +

(
−384 + 54γ2

)
h4

+128Z1h
3 +

(
−480 + 18γ2

)
h2 + 192Z1h+ 24γ2 ,

c2 = 162γ2h2 + 64Z1h
3 + 128Z1h− 192h2 + 36γ2 − 96h4 ,

c1 =
(
102γ2 − 32

)
h2 + 32Z1h+ 24γ2 ,

c0 = 6γ2 ,

(3.34)

w4 (X) = b0X
3 + b1X

2 + b2X + b3 . (3.35)

4. Analytical and numerical computations

Bifurcation diagram for the effective equation (2.11) is shown in Fig. 1
(colours mark different initial conditions) for the following values of control
parameters H = 0.04, h = 0.4, a = 0.8, γ = 2.5.

Position of the 1 : 1 resonance agrees well with the amplitude profile,
computed for the same parameters, cf. Fig. 2 and discussion in [8].

It follows from solutions obtained in the preceding section that we can
control position of a singular point. More exactly, we choose a value of
X and then h fulfilling inequality (3.22) can be chosen as well. Next we
specify γ and then Y , a, H are computed from Eqs. (3.23), (3.24), (3.25).
In this process the position of the singular point (X, Y ) and values of control
parameters H, h, γ, a are determined (provided that the solutions are real).

We shall now compute coordinates of a singular point using Eqs. (3.23),
(3.24), (3.25). At first, we choose the value of X as X = 9 (Ω= 3). Then,
we can select any value of h obeying inequality (3.22). We thus put h = 0.8
to get from Eq. (3.19) Y = 4.8466 (A = 2.2015). Next, we choose γ = 1.5
to compute from (3.24), (3.25) a = 9.0720, H = 0.2995. In Fig. 3 we show
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amplitude profiles computed from Eq. (3.1) for critical parameter values
(H, h, a γ) = (0.2995, 0.8 9.0720, 1.5), and for two more values of H,
H > Hcr and H < Hcr.

Fig. 1. Bifurcation diagram for Eq. (2.11), h = 0.4, γ = 2.5, a = 0.8, H = 0.04.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
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3

4

Omega

A

Fig. 2. Amplitude profile A(Ω), h = 0.4, γ = 2.5, a = 0.8, H = 0.04.
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Fig. 3. A(Ω) in the singular point and in its neighbourhood, h = 0.8, γ = 1.5,
a = 9.0720, and H = 0.27 (black/green), H = 0.2995 (grey/red), H = 0.33
(dashed/blue).

The critical (grey/red) curve intersects itself in singular point (X, Y ) =
(4.8466, 9) or (A, Ω) = (2. 2015, 3). Black (green) curve corresponds to
H = 0.27 while dashed (blue) curve has been computed for H = 0.33 (other
parameter values unchanged). The initial amplitude from Fig. 2 was also
shown (black curve). The first bifurcation diagram, cf. Fig. 4, was computed
for H = 0.27 and corresponds to the black (green) curve in Fig. 3. We note
that the small branch of the 1 : 1 resonance is discontinuous in agreement
with the amplitude profile shown in Fig. 3 (black/green curve).
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Fig. 4. Bifurcation diagram, h = 0.8, γ = 1.5, a = 9.0720, H = 0.27.
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The next bifurcation diagram, Fig. 5, has been computed for critical
value H = 0.3019 determined numerically from Eq. (2.11) (this differs
slightly from the critical value H = 0.2995 determined from the KBM solu-
tion as described above).

2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

-2

-1

0

1

2

Omega

z

Fig. 5. Critical diagram, h = 0.8, γ = 1.5, a = 9.0720, H = 0.3019.

And finally, the last bifurcation diagram was computed for H = 0.33,
and again the small branch of the 1 : 1 resonance is continuous, see Fig. 6.

2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

-1

0

1

2

Omega

z

Fig. 6. Bifurcation diagram, h = 0.8, γ = 1.5, a = 9.0720, H = 0.33.

It follows from results presented in Sec. 3.2 that for X = 9, h = 0.8, γ =
1.5 there is another singular point. Indeed, we can compute Y from another
equation (3.23) to get from Eqs. (3.24), (3.25) Y = 12.9311 (A = 3.5960),
a = 9.1213, H = 0.5158.
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In Fig. 7 amplitude profiles computed from Eq. (3.1) for critical param-
eter values (H, h, a, γ) = (0.5158, 0.8, 9.1213, 1.5) and for two other values
of H, H < Hcr and H > Hcr have been shown. Bifurcation diagrams for
H = 0.49 and H = 0.54 are shown below.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
0

1

2

3

4

5

Omega

A

Fig. 7. A(Ω) in the singular point and in its neighbourhood, h = 0.8, γ = 1.5,
a = 9.1213, and H = 0.49 (black/green), H = 0.5158 (grey/red, critical), H = 0.54
(dashed/blue).
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Fig. 8. Bifurcation diagram, h = 0.8, γ = 1.5, a = 9.1213, H = 0.49.
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Fig. 9. Bifurcation diagram, h = 0.8, γ = 1.5, a = 9.0720, H = 0.54.

5. Summary and discussion

In this work we have studied metamorphoses of amplitude profiles for
the effective equation, describing approximately dynamics of two coupled
periodically driven oscillators. Our analysis has been analytical although
based on the approximate KBM method.

Theory of algebraic curves has been used to compute singular points
on effective equation amplitude profiles. It follows from general theory
that metamorphoses of amplitude profiles occur in neighbourhoods of such
points. In Section 3 we have computed analytically positions of singu-
lar points for the amplitude profiles A(Ω) determined within the Krylov–
Bogoliubov–Mitropolsky approach for the approximate second-order effec-
tive equation (2.11). In the first case the singular point corresponds to
self-intersection of A(Ω), see Fig. 3, while in the second case it is a isolated
point, cf. Fig. 7.

It is interesting that the solution described in Sec. 3 permits control of
position of singular point: we choose arbitrary value of variableX (X2 = Ω),
then value of the parameter h obeying inequality (3.21) is selected. Finally,
the value of the control parameter γ is chosen and Y , a, H are computed
from Eqs. (3.23), (3.24), (3.25); it should be stressed that we have not come
across any difficulties to obtain real solutions. We hope to carry full analysis
of conditions guaranteeing existence of real solutions in our future papers.
As a by-product we have demonstrated that there are no singular points for
A(Ω) computed for the Duffing equation in agreement with well established
numerical experience.
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We have also computed numerically bifurcation diagrams in the neigh-
bourhoods of singular points and indeed dynamics of the effective equation
(2.11) changes according to metamorphoses of the corresponding amplitude
profiles. It thus follows that control of position of the singular point permits
control of dynamics.

In our future work we are going to study singular points of the amplitude
profiles computed for the exact equation (2.8).
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