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We consider few-min oscillations in a gravitationally-stratified solar
corona. These oscillations are triggered by initial pulse in the vertical ve-
locity component that is launched below the transition region. We develop
the model in the frame of two-dimensional Euler equations which are solved
numerically. Our numerical results reveal that few-min (1–7 min) oscilla-
tions are effectively excited by the velocity pulses, with their waveperiod
depending on a shape and a vertical position of the initial pulse.
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1. Introduction

Waves and oscillations are seen in the solar corona. In particular, 3- and
5-min oscillations are detected in coronal loops (e.g. De Moortel et al.
[1, 2]). Multi wavelength observations of 5-min oscillations in loops were
made by Marsh et al. [3], and 3- and 5-min oscillations associated with
moving magnetic features are observed by Lin et al. [4]. The propagating
upward slow magnetoacoustic waves with periods of about 5 min were de-
tected in the transition region and coronal emission lines by Hinode/EIS at
the footpoint of a coronal loop that was rooted at plage (Wang et al. [5]).

It is apparent that 5-min period corresponds to the main period of
p-modes, which may serve as a potential explanation of the coronal os-
cillations. However, in a case of gravitationally stratified atmosphere the
dispersion relation for vertical acoustic waves can be derived from the Klein–
Gordon equation, which results in cut-off wave period Pac smaller than 5 min
(e.g. Lamb [6] and Roberts [7]). As waves are able to propagate for their
wave periods smaller than Pac we infer that the 5-min oscillations are not
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able to penetrate into the solar corona. Bel and Leroy [8] suggested that
the cut-off frequency of magnetic field-free atmosphere is lower when waves
propagate with the angle to the vertical. McIntosh [9] found the observa-
tional justification of the modification of the cut-off frequency along inclined
magnetic field. De Pontieu et al. [10] proposed that as a result of fall-
off of acoustic cut-off frequency, p-modes may be channeled into the solar
corona along inclined magnetic field lines. The oscillations then may be
steepened into shocks, producing spicules (Murawski, Zaqarashvili [11]). De
Pontieu et al. [10] argued that the observed quasi 5-min period in spicule
appearance is associated with the periodicity of p-modes. Zaqarashvili et al.
[12] proposed that 5-min oscillations in the solar corona are originated from
granules which were modeled by a vertical propagating wavefront in the
vertical velocity component. However, Zaqarashvili et al. [12] considered
a simple one dimensional (1D) problem of 5-min oscillations. The 1D case
treats the acoustic waves only while the internal gravity waves are inher-
ently removed from the system. Therefore there is a need to consider a 2D
scenario in which both acoustic and internal gravity waves are present.

The aim of this paper is to extend the 1D model of Zaqarashvili et al.
[12] on the 2D hydrodynamical case and show that 1–7-min oscillations
can be effectively triggered by two-dimensional (2D) pulses in the vertical
component of velocity. This paper is organized as follows. The numerical
model is described in Sect. 2. The numerical results are presented and
discussed in Sect. 3. This paper is completed by conclusions in Sect. 4.

2. A numerical model

2.1. Euler equations

Our model system is taken to be composed of a gravitationally-stratified
solar atmosphere that is described by the 2D Euler equations:

∂%

∂t
+∇ · (%V ) = 0 , (1)

%
∂V

∂t
+ % (V · ∇) V = −∇p+ %g , (2)

∂p

∂t
+∇ · (pV ) = (1− γ)p∇ · V , (3)

p =
kB

m
%T . (4)

Here % is the mass density, V = [Vx, Vy, 0] is the flow velocity, p is the gas
pressure, T is the temperature, γ = 5/3 is the adiabatic index, g = (0,−g, 0)
is gravitational acceleration with its value g = 2.74 × 102 m s−2, m is the
mean particle mass and kB is Boltzmann’s constant.
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2.2. Initial configuration
2.2.1. The equilibrium

We assume that at the equilibrium the solar atmosphere is a still (V = 0)
environment with gas pressure and mass density given as

p(y) = p0 exp

− y∫
yr

dy
′

Λ(y′)

 , %(y) =
p(y)
gΛ(y)

. (5)

Here
Λ(y) =

kBT (y)
mg

(6)

is the pressure scale-height, and p0 denotes the gas pressure at the reference
level, y = yr = 10 Mm.

We adopt a realistic temperature profile T(y) for the solar atmosphere
(Vernazza et al. [13]). This profile is displayed in Fig. 1. Note that T attains
a value of about 5700 K at the top of the photosphere which corresponds to
y = 0.5 Mm. At higher altitudes T(y) falls off until it reaches its minimum
of 4350 K at the altitude y ' 0.95 Mm. Higher up T(y) grows gradually
with height up to the transition region which is located at y ' 2.7 Mm.
Here T(y) experiences a sudden growth up to the coronal value of 1.5 MK
at y = 10 Mm.
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Fig. 1. Equilibrium temperature T (in mega Kelvins) versus height y (in Mm) for
the solar atmosphere.

Having specified T(y) with a use of Eq. (5) we can obtain mass density
and gas pressure profiles as seen in Fig. 2. Both p(y) and %(y) experience a
sudden fall-off from photosphere to coronal values at the transition region.
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Fig. 2. Equilibrium profiles of gas pressure p (left) and mass density % (right).

This type of fall-off results in the cut-off frequency

Ωcut−off(y) =
cs(y)
2Λ(y)

√
1 + 2Λ′(y) . (7)

Here the squared sound speed, c2
s , is given as

c2
s (y) =

γp(y)
%(y)

. (8)

Figure 3 displays the acoustic cut-off period Pcut−off = 2π/Ωcut−off of the
model atmosphere versus height. In the low chromosphere Pcut−off ' 200 s
and then it quickly increases towards the corona. Note that Pcut−off attains
a value of about 200 s at y = 0.5 Mm. It grows to the transition region
where it reaches coronal values such as at y = 10 Mm Pcut−off = 3.5× 103 s.
It is noteworthy that Eq. (7) is obtained from the linear analysis, while the
nonlinear description changes the oscillation period of a wake (Zaqarashvili
et al. [12]).

2.2.2. Perturbations

We excite waves in the above described solar atmosphere by launching
initially, at t = 0 s, the impulse in a vertical component of velocity Vy, i.e.

Vy(x, y, t = 0) = Av exp
[
− x

2

w2
x

− (y − y0)2

w2
y

]
. (9)

Here Av is the amplitude of the initial Gaussian pulse, y0 its initial vertical
position and wx and wy its widths in the x- and y-directions. The case
of wx → ∞ corresponds to a horizontal wave-front, which was discussed
by Zaqarashvili et al. [12]. As a consequence of that we can compare our
results with the numerical findings of Zaqarashvili et al. [12].
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Fig. 3. Acoustic cutoff wave period Pcut−off (in units of 103 s) versus height y
(in Mm).

3. Numerical results

We solve equations (1)–(4) numerically, using the code FLASH (Dubey
et al. [14]) which implements a second-order unsplit Godunov solver
and Adaptive Mesh Refinement (AMR). We set the simulation box as
(−6, 6) Mm×(−0.5, 12.5) Mm. At all boundaries we fix all plasma quantities
to their equilibrium values. In our studies we use AMR grid with a minimum
(maximum) level of refinement blocks set to 3 (10). The refinement strat-
egy is based on controlling numerical errors in a gradient of temperature.
Such settings result in an excellent resolution of steep spatial profiles, which
significantly reduces numerical diffusion within the simulation region.

Figure 4 illustrates spatial profiles of the total velocity |V | and velocity
vectors at t = 180 s, t = 250 s, t = 350 s and t = 700 s for the initial pulse
amplitude Av = 2 km s−1, pulse width wx = wy = 0.1 Mm and its vertical
position y0 = 0.5 Mm. Left panels show, the whole simulation region and the
right ones the zoomed region around localized perturbation. The initial pulse
splits in a usual way into counter-propagating waves. The waves propagating
upwards grow in their amplitudes as a result of the rapid decrease of mass
density in the chromosphere (Zaqarashvili et al. [12]). As a consequence
there appears a shock. Photospheric and chromospheric plasma is lifted up
by gas pressure which settles in below the shock. The pressure gradient
force overwhelms gravity and it pushes the photospheric and chromospheric
material towards the solar corona (Murawski and Zaqarashvili [11]). At a
later time the plasma becomes attracted by gravity and as a result it falls off
towards the low layers. It is noteworthy here that Kelvin–Helmholtz (KH)
instabilities seed in, similarly as it was observed by Gruszecki et al. [15].
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Fig. 4. Total velocity |V (x, y)| (colour maps) and velocity vectors (arrows) at (from
top to bottom) t = 180 s, t = 250 s, t = 350 s and t = 700 s, for y0 = 0.5 Mm,
wx = wy = 0.1 Mm and Av = 2 km s−1. Right panels display the zoomed region.
Velocity is expressed in units of 1 Mm s−1. Velocity vectors are drawn in units of
50 km s−1 (left panels) and 10 km s−1 (right panels).
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As a result of these instabilities vortices emerge which at t = 350 s are
clearly visible at (x = ±4, y = 3) Mm and (x = 0, y = 0.5) Mm. The
secondary shock which results from the original pulse works against the fall-
off of plasma as it lifts up the photospheric and chromospheric region. This
is clearly seen at about t = 350 s when a complex bi-directional flow arises.
The whole scenario beares some features of small jets which were recently
studied by Murawski and Zaqarashvili [11] and we refer the interested reader
to this paper for more detailed description of the plasma evolution in the
context of a simpler equilibrium temperature albeit magnetically permeated
plasma model.

Figure 5 displays time-signatures of the vertical component of velocity,
Vy, for the case of Fig. 4. This velocity is collected along the line x = 0 Mm
(top panel) and at the detection point (x = 0, y = 12) Mm (bottom panel).
The arrival of the leading shock front to the detection point occurs at t '
217 s. The second, third, and fourth shocks fronts reach the detection point
at t ' 389 s, t ' 473 s, and t ' 634 s, respectively. This secondary shock
results from the nonlinear wake which lags behind.

Figure 6 displays time span ∆t between first two shock arrival times to
the detection point versus vertical position of the initial pulse y0. For the
case of localized pulse (dots) which is launched from y0 = 0 Mm, ∆t = 200 s.
This value is close to Pcut−off(y = 0) of Fig. 3. For larger values of y0, ∆t
grows slightly until it reaches its maximum of ∆t = 210 s at y0 ' 0.2 Mm.
At higher altitudes ∆t declines slowly to about 60 s for y0 = 2 Mm. Note
that in the case of the wave-front (crosses), that corresponds to the 1D
case discussed by Zaqarashvili et al. [12], ∆t ' 440 s for y0 = 0 Mm. At
y0 = 0.2 Mm ∆t attains its minimum of ∆t = 400 s. Higher up it grows
with y0 until at y0 = 0.5 Mm ∆t attains its maximum of ∆t ' 470 s,
and subsequently it subsides with height y0, falling off to ∆t ' 140 s for
y0 = 1.5 Mm.

4. Conclusions

There are few conclusions which can be drawn from our simulations:

(a) A small amplitude initial pulse launched below the transition region
exhibits a tendency to generate shocks e.g., Zaqarashvili et al. [12].
These shocks result from finite-amplitude waves which originate from
the initial pulse. Amplitude of these waves grow with height as the
result of the mass density fall-off;

(b) When initially pushed up, cold plasma begins to fall-off gravitation-
ally and Kelvin–Helmholtz instabilities may seed in, that results in a
development of vortices, similarly as reported by Gruszecki et al. [15];
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Fig. 5. Time-signatures of Vy (in units of km s−1) collected along x = 0 Mm (top
panel) and at (x = 0, y = 12) Mm (bottom panel) for the case of Fig. (4).
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(c) The waveperiod of oscillations, which are detected in the solar corona,
depends on a shape and vertical location of the initial pulse. A local-
ized pulse results in wave-periods within the range of 1–4 min, while
a horizontal wave-front is able to excite larger wave-period (2–7 min)
oscillations. It is noteworthy here that as the case of a horizontal wave-
front corresponds to the 1D case we were able to confirm the results
of Zaqarashvili et al. [12]. Shorter wave period oscillations are trig-
gered by impulses which are initially launched higher up in the solar
atmosphere.

The authors express their cordial thanks to Dr. Teimuraz Zaqarashvili
and Prof. Leon Ofman for stimulating discussions.
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