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We study the implications of asymmetric Dark Matter on neutron stars.
We construct a “mixed neutron star” model composed of ordinary baryons
and of asymmetric Dark Matter baryons. We derive the general relativistic
structure equations for each specie, the equation for the mass within a
given radius, and the redshift as function of radius. We present one specific
numerical model as an illustrative example. In this example, the mass
of the dark neutron equals half that of the ordinary neutron. The main
results are: a total mass of 3.74M�, a total mass within the neutron-sphere
equaling 1.56M�, the neutrons mass is 1.34M�, the star radius is 31.9 km,
the neutron-sphere radius is 11.1 km, and the redshifts from the neutron-
sphere and from the star surface are 0.72, 0.25, respectively. We comment
briefly on possible astrophysical implications.
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1. Introduction

1.1. Background

Cold Dark Matter which is favored by most astrophysical and cosmologi-
cal observations can be realized in symmetric and (or) asymmetric scenarios.
In the first class of models, Dark Matter is made of stable X particles and
an equal amount of X̄ antiparticles of mass mX . In the early universe, these
were in thermal equilibrium and their residual abundance ΩX is fixed at the
“freeze-out” value when the rate of the Hubble expansion overcomes that of
X̄ −X annihilation rate. A prototypical example which have been most ex-
tensively studied is SUSY (super-symmetry). Unfortunately, the searches for
SUSY partners in the new large hadron collider (LHC) have failed to detect
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them. More specifically, insofar as SUSY Dark Matter models are concerned
searches for electrons, positrons or photons in clumped Dark Matter in and
around our Galaxy, and for energetic neutrinos resulting from annihilations
of Xs do not provide solid “indirect” evidence for Dark Matter. Moreover,
the ongoing direct underground searches put very strong bounds on the
scattering cross-sections of massive Xs on nuclei.

Additional constraints are related to accretion of galactic SUSY WIMPS
onto the sun. The increased density of the captured WIMPS, accelerates
the rate of particle–antiparticle annihilation. The resulting photons and
electrons are trapped in the sun but the resulting ultra high energy neutri-
nos are not. Data from the ICE-CUBE Čerenkov radiation detector near the
South Pole, severely constrain such models [1, 2]. In the case of asymmet-
ric Dark Matter, there will be no such annihilation in the sun. Moreover,
once the fraction of Dark Matter particles in the sun exceeds the ratio of
σXn/σXX , scattering on the already captured X particles in the sun domi-
nates over scattering on the baryons.

Finally, the observed number of satellite mini-halos around the Milky
Way galaxy is two orders of magnitude smaller than predicted within the
symmetric Dark Matter framework [3, 4].

Consequently there has been, in the very recent years, a renewed interest
in Asymmetric Dark Matter (ADM) which just like ordinary baryonic mat-
ter, is charge non-symmetric with say only the dark baryon (or generally
only the particle) excess remains after the annihilation of most antiparti-
cles. While there is no single clear-cut explanation for the ordinary baryonic
asymmetry, the required Dark Matter density is readily achieved if the mass
ratio of the X particles and baryons mX/mb is tuned inversely with the
corresponding ratio of asymmetries. An early example of such a model has
been proposed in [5]. For recent studies of asymmetric Dark Matter see [6,7]
and references therein.

1.2. Cosmological and astrophysical considerations

The idea of asymmetric Dark Matter should reconcile with astrophysical
and cosmological data. An obvious constraint is imposed by Big-Bang nu-
cleosynthesis, which implies that the mirror neutrinos and photons do not
contribute to the rate of the cosmic expansion at that era. Another con-
straint is that the mirror large scale structure-formation should precede the
recombination of ordinary matter, in order to serve as seeds gravitational
potential wells for the latter. In the model described in [6], the mirror neu-
trinos and the mirror photons are massive enough for these constraints to
be satisfied. We note that even if the mirror neutrinos and photons are
massless the above two constraints can be satisfied provided that the dark
cosmic-temperature is lower than the ordinary one.
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The details of large scale structure formation will depend on the specific
model for the asymmetrical Dark Matter. Generally, being self interacting
one may expect it to form mirror structures on all astrophysical scales. Also,
asymmetric Dark Matter will no longer provide collisionless dark halos as in
the symmetric cold Dark Matter case, so that the flatness of galactic rotation
curves will have to be readdressed in this new context.

2. Composite “mixed neutron star”

2.1. Motivation and scope of present work

The mirror Dark Matter can form gravitationally bound structures. In
particular they can form “dark neutron stars”. The latter can accrete ordi-
nary matter and form composite neutron stars. One may contemplate addi-
tional formation scenarios for the composite neutron stars. In this paper, we
focus on the structure of such a compact object and put aside issues related
to and constraints following from formation scenarios, and the broader ques-
tions regarding the mirror astrophysics and cosmology. This is an interim
report on a work in progress [8].

Such objects can have masses larger than those of ordinary neutron stars,
while otherwise having very similar observational signatures. The recent dis-
covery of a 2M� binary radio pulsar [9], already severely constrains nuclear
matter equations of state. A future observation of a neutron star with a
mass exceeding 3M� would be very difficult to reconcile with an ordinary
neutron star but will pose no problem for a mixed neutron star.

The energy momentum tensor is taken to be that of two ideal fluids

Tµν = (ρ1 + p1)uµ1u
ν
1 − p1g

µν + (ρ2 + p2)uµ2u
ν
2 − p2g

µν . (1)

Since any inter-specie interaction must be weaker than the intra-specie in-
teraction by a factor ≥ 1012, each energy momentum tensor is separately
conserved. In addition, the ordinary and dark baryon numbers are sepa-
rately conserved.

2.2. Structure equations

We look for a spherically symmetric static solution of a 2-fluid “mixed
neutron star”. The line element squared of a spherically symmetric static
metric can be written in the Schwarzshild coordinates (t, r, θ, φ) as

ds2 = e2Φ(r)c2dt2 − e2λ(r)dr2 − r2
(
dθ2 + sin2(θ)dφ2

)
. (2)

The Einstein field equations that determine the metric, together with the
separate covariant conservation laws can be shown [8]) to lead to the follow-
ing structure equations
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e−2λ(r) =
(

1− 2
G

c2
m(r)
r

)
, (3)

where m(r) is the mass enclosed within r given by

m(r) =

r∫
0

4π
(
(ρ1(r′) + ρ2(r′)

)
r′2dr′ . (4)

For each of the species there exists a hydrostatic equilibrium equation

dp1(r)
dr

= −G (ρ1(r) + p1(r))
m(r) + 4πr3 (p1(r) + p2(r))

r (r − 2Gc−2m(r))
, (5)

dp2(r)
dr

= −G (ρ2(r) + p2(r))
m(r) + 4πr3 (p1(r) + p2(r))

r (r − 2Gc−2m(r))
(6)

and φ(r) satisfies

dΦ(r)
dr

= − (ρ1(r) + p1(r))−1 dp1(r)
dr

= − (ρ2(r) + p2(r))−1 dp2(r)
dr

. (7)

The equations imply that each fluid satisfies its own hydrostatic equi-
librium equation which is of the form of a modified TOV equation [10, 11].
The two fluids are coupled through m(r) and through the total pressure
p1(r) + p2(r).

2.3. Solution procedure

Given the two equations of state, and the two central energy densities,
the TOV equations (5), (6) are integrated up to r = R1 where p1(R1) = 0.
Specie 1 is confined within this radius. From this radius on, only TOV2
(equation (6)) is integrated until the radius R2 where p2(R2) = 0. This is
the star radius. Once the solution is obtained, equation (7) is solved with
the boundary condition Φ(R2) = 1

2 ln
(

1− 2G
c2

m
R2

)
, with m = m(R2) being

the mass of the mixed neutron star.
In this way, a two-parameters (the central densities) family of static

models is obtained, in contrast with the ordinary neutron star models that
form a one-parameter (the central density) family.
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3. An illustrative example

To illustrate the model characteristics we present here a generic example.
We employ a nuclear matter equation of state that was obtained by fitting
observational data of X-ray bursters [12]. Fig. 1 displays the pressure and
the baryon number as functions of the energy density. The maximal ordinary
neutron star mass for this equation of state is 2.44M� and the corresponding
radius is 11.7 km.
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Fig. 1. Left: pressure as function of energy density. Right: number density as
function of energy density.

For the dark baryons we use the same equation of state as for the neu-
trons with the appropriate scaling, taking into account baryons masses ratio.
This choice seems to be the minimal and simplest one.

The ordinary neutrons star masses satisfy m ' m3
Plm

−2
b [8] with mPl

denoting the Planck mass. Therefore, in order to obtain a mixed neutron star
with mass larger than ordinary neutron stars, it is required that mD < mb

where mD is the dark baryon mass. In this example we chose mD = 0.5mb,
so that the dark equation of state is

p2(ρ2) = 1
16p1(16ρ2) . (8)

The mass of a pure dark neutron star will be ∼ 8M� and the correspond-
ing radius is ∼ 50 km. It is expected that the mixed neutron star solution
would yield a mass, and radius intermediate between those of a neutron star
and a pure dark neutron star.

The values of the central energy densities in this example are

ρ1(0) = 600 MeV fm−3 , ρ2(0) =
1300
16

MeV fm−3 . (9)
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4. Computation results

The computation results are summarized in Table I. The first row con-
tains the star total mass, the dark mass, the neutrons mass, and the total
mass within the neutron-sphere. The second row specifies the star radius,
the neutron-sphere radius, the redshifts for these two radii, and the neutrons
binding energy. The detailed r-dependence of the energy densities, the en-
closed mass m(r), and Φ(r) are displayed in figures 2 and 3, respectively.

TABLE I

Model results.

m mdark mneutrons m(R1)
3.74M� 2.4M� 1.34M� 1.56M�

R2 R1 Redshifts Neutrons BE
31.9 km 11.1 km z(R1) = 0.72, z(R2) = 0.25 22%

Neutrons

Dark Neutrons

0.1 0.5 1.0 5.0 10.0
10

20

50

100

200

500

r @km D

Ρ
@
M

e
V

fm
-

3
D

0 5 10 15 20 25 30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r @km D

m
H

r
L@

S
o

la
r

M
a

s
s
D

Fig. 2. Energy densities (left) and enclosed mass (right) as function of radius.
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5. Discussion

We have demonstrated that a mixed neutron star can, as expected, have
a mass higher than ordinary neutron stars. At the same time the physical
radius, as probed by ordinary massless and massive particles, is the neutron-
sphere radius which is similar to the radius of ordinary neutron stars.

An important question, not addressed here, is that of stability. Since
the models form a two-parameters family (the central densities) the question
of stability is more complex than in the one parameter family of ordinary
neutron star models. There are a number of quite interesting astrophysi-
cal implications with regard to phenomenology of compact X-ray sources.
Can some of the stellar mass binary black holes be actually mixed neutron
stars? The neutron-sphere redshift is about 50% higher than in the ordinary
neutron star case, which may have interesting results for the temperature,
radius and luminosity measured by a distant observer. The larger neutrons
binding energy would lead to a smaller value of the maximal neutrons mass,
compared to an ordinary neutron star.
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