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We discuss models that allow to ameliorate the Standard Model little
hierarchy problem by adding extra scalar degrees of freedom. We argue that
extra gauge-singlet real scalars can both soften the little hierarchy problem
and provide a realistic source of Dark Matter. For that, a setup consistent
with the present LHC bounds for the Higgs-boson mass is provided e.g. by
N=6 scalars with massesm∼1.5–3 TeV and the UV cutoff Λ∼4.5–10 TeV.
We explore the possibility that a second Higgs-boson doublet is added do
the Standard Model in such a way that quadratic divergences in corrections
to the scalar two-point Green functions are canceled. Although the cancel-
lation allows for substantial amount of CP violation in the scalar potential,
it is not consistent with Dark Matter being a component of one of the two
Higgs doublets. Therefore, either a third (inert) doublet or a singlet must
be added.
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1. Introduction

The goal of this study is to extend the Standard Model of electroweak in-
teractions such that the little hierarchy problem is ameliorated, extra sources
of CP violation emerge and candidates for Dark Matter are provided while
all the successes of the SM are preserved. We will restrict ourselves to only
those extensions that interact with the SM through renormalizable interac-
tions. Since quadratic divergences in loop corrections to the Higgs boson
mass are dominated by top-quark contributions, therefore we will introduce
extra scalar degrees of freedom, so that they can balance the top contribu-
tion. The extensions we consider, although renormalizable, shall be treated
as effective low-energy theories valid below a cutoff energy Λ. We are not
going to discuss the UV completions of such models.

2. The little hierarchy problem

The quadratically divergent 1-loop correction to the Higgs boson (h)
mass was first calculated by Veltman [1]

δ(SM)m2
h =

[
3m2

t /2−
(
6m2

W + 3m2
Z

)
/8− 3m2

h/8
]
Λ2/

(
π2v2

)
, (1)

where Λ is a UV cutoff, that we adopt as a regulator, and v ' 246 GeV
denotes the vacuum expectation value of the scalar doublet (small SM log-
arithmic corrections will be neglected).

The LHC data limit [2] the Higgs-boson mass to the range 115 GeV <
mh < 145 GeV. The correction (1) can, therefore, exceed the mass itself
even for small values of Λ, e.g. δ(SM)m2

h ' m2
h for mh = 130 GeV already

for Λ ' 600 GeV. This is considered as an indication of extensions of the
SM with a typical scale of 1 TeV. Since no effects of such low energy new
physics have been observed, that difficulty is known as the little hierarchy
problem.

Here, our pragmatic task is to construct a simple modification of the
SM within which δm2

h (the total correction to the SM Higgs boson mass
squared) is suppressed only up to Λ∼< 3–10 TeV. Since (1) is dominated
by the fermionic (top quark) terms, the most economic way of achieving
this is by introducing new scalars ϕi, 1-loop contributions of which, reduce
those from the SM. In order to preserve SM predictions, we assume that ϕi
are singlets under the SM gauge group. Then it is easy to observe that the
theoretical expectations for all existing experimental tests remain the same
if 〈ϕi〉 = 0 (which we assume hereafter).
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The most general scalar potential implied by Z(i)
2 independent symme-

tries ϕi → −ϕi (imposed in order to prevent ϕi → hh decays) reads:

V (H,ϕi) = −µ2
H |H|2 + λH |H|4 +

N∑
i=1

(
µ(i)
ϕ

)2
ϕ2
i

+
1
24

N∑
i,j=1

λ(ij)
ϕ ϕ2

iϕ
2
j + |H|2

N∑
i=1

λ(i)
x ϕ

2
i . (2)

In the following numerical computations we will assume that (2) has an
O(N) symmetry so that µ(i)

ϕ = µϕ, λ
(ij)
ϕ = λϕ and λ(i)

x = λx (small deviations
from this assumption do not change our results qualitatively). The minimum
of V is at 〈H〉 = v/

√
2 and 〈ϕi〉 = 0 when µ2

H , µ
2
ϕ > 0 and λH , λϕ > 0 which

we now assume. The masses for the SM Higgs boson and the new scalar
singlets are m2

h = 2µ2
H and m2 = 2µ2

ϕ + λxv
2 (λHv2 = µ2

H), respectively.
Positivity of the potential at large field strengths requires that λH , λϕ,

λx > 0, or if λx < 0 then λHλϕ > 6λ2
x must hold at the tree level. The high

energy unitarity implies λH ≤ 4π/3 (the SM requirement [3]) and λϕ ≤ 8π,
λx < 4π (known [4] for N = 1).

The existence of ϕi generates additional radiative corrections1 to m2
h.

Then the extra contribution to m2
h reads

δ(ϕ)m2
h = −

[
Nλx/

(
8π2
) ][

Λ2 −m2 ln
(
1 + Λ2/m2

) ]
. (3)

Adopting the parameterization |δm2
h| = |δ(SM)m2

h + δ(ϕ)m2
h| = Dtm

2
h, we

can find the value of λx necessary to suppress δm2
h to a desired level (Dt) as

a function of m, for any choice of mh and Λ; examples are plotted in Fig. 1
for N = 6.

It should be noted that (in contrast to SUSY) the logarithmic terms in
(3) can be relevant in canceling large contributions to δm2

h. It is important
to note that the required value of λx decreases as the number of singlets N
grows. When m � Λ, the λx needed for the amelioration of the hierarchy
problem is insensitive to m, Dt or Λ as illustrated in Fig. 1; analytically we
find up to terms O

(
m4/Λ

)
λx ' N−1

{
4.8−3 (mh/v)

2+2Dt [2π/(Λ/ TeV)]2
}[

1−m2/Λ2 ln
(
m2/Λ2

) ]
.

(4)

1 The Λ corrections to m2 can also be tamed within the full model with additional
fine tuning, but we will not consider them here, see [5].
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Fig. 1. Plot of λx corresponding to δm2
h > 0 as a function of m for Dt = 0 and

mh = 115 GeV (left panel), and mh = 145 GeV (right panel). The various curves
correspond to Λ = 5, 6, 7, 8, 9, 10 TeV (starting with the uppermost curve).

Since we consider λx ∼ O(1), effects of higher order corrections [6] to (1)
should be considered as well (see also [7]). In general, the fine tuning con-
dition reads (mh was chosen as a renormalization scale)∣∣∣δ(SM)m2

h + δ(ϕ)m2
h + Λ2

∑
n=1

fn(λx, . . .) [ln(Λ/mh)]
n
∣∣∣ = Dtm

2
h , (5)

where the coefficients fn(λx, . . .) can be determined recursively [6], with
the leading contributions being generated by loops containing powers of λx:
fn(λx, . . .) ∼ [λx/(16π2)]n+1. To estimate these effects we can consider the
case where δ(SM)m2

h + δ(ϕ)m2
h = 0 at one loop then, keeping only terms

∝ λ2
x, we find (using [6]), at 2 loops, Dt ' (Λ/(4π2mh))2 ln(Λ/mh) (note

that Nλx ' 4). Requiring Dt∼< 1 implies Λ∼< TeV for mh ' 130 GeV.
It must be emphasized that in the model proposed here the hierarchy

problem is softened (by lifting the cutoff) only if λx, Λ and m are appro-
priately fine-tuned; this fine tuning, however, is significantly less dramatic
than in the SM.

3. Dark Matter

The singlets ϕi also provide a natural source for Dark Matter (DM) (for
N = 1 see [8]). Using standard techniques for cold DM [9] we estimate its
present abundance ΩDM, assuming for simplicity that all the ϕi are equally
abundant (e.g. as in the O(N) limit). ΩDM is determined by the thermally
averaged cross-section for ϕ annihilation into SM final states ϕiϕi → SM SM,
which in the non-relativistic approximation, and for m� mh, reads

〈σiv〉 ' λ2
x/
(
8πm2

)
+ λ2

xv
2Γh(2m)/

(
8m5

)
' [1.73/(8π)] λ2

x/m
2 . (6)
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The first contribution in (6) originates from the hh final state (keeping
only the s-channel Higgs exchange; the t and u channels can be neglected
since m � mh) while the second one comes from all other final states;
Γh(2m) ' 0.48 TeV(2m/1 TeV)3 is the Higgs boson width calculated for its
mass equal 2m.

From this the freeze-out temperature xf = m/Tf is given by

xf = ln
[
0.038 mPl m 〈σiv〉 /(g?xf)1/2

]
, (7)

where g? is the number of relativistic degrees of freedom at annihilation and
mPl denotes the Planck mass. In the range of parameters relevant for our
purposes, xf ∼ 12–50 and m ∼ 1–2 TeV, so that this is indeed a case of cold
DM. Then the present density of ϕi is given by

Ω(i)
ϕ h2 = 1.06× 109xf/

(
g
1/2
? mPl〈σiv〉 GeV

)
. (8)

The condition that the ϕis account for the observed DM abundance,
ΩDMh

2 =
∑N

i=1Ω
(i)
ϕ h2 = 0.110± 0.018 [10], can be used to fix 〈σiv〉, which

implies a relation λx = λx(m) through (6). Using this in the condition
|δm2

h| = Dtm
2
h, we find a relation between m and Λ (for a given Dt), which

is plotted in Fig. 2 for N = 6. It should be emphasized that it is possible to
find Λ, λx and m such that both the hierarchy is ameliorated to the desired
level and such that Ωϕh2 agrees with the DM requirement (we use a 3σ
interval). It also is instructive to mention that the singlet mass (as required
by the DM) scales with their multiplicity as N−3/2, therefore growing N im-
plies smaller scalar mass, e.g. changing N from 1 to 6 leads to the reduction
of mass by a factor ∼ 15.

4. Natural 2HDM

In this section, we are going to discuss a model that not only ameliorates
the hierarchy problem, but also allows for extra sources of CP violation.
A simple illustration is provided by the 2-Higgs Doublet Model (2HDM)
with softly broken Z2 symmetry. The scalar potential then reads

V (φ1, φ2) = −1
2

{
m2

11φ
†
1φ1 +m2

22φ
†
2φ2 +

[
m2

12φ
†
1φ2 + h.c.

]}
+1

2λ1

(
φ†1φ1

)2
+ 1

2λ2

(
φ†2φ2

)2
+ λ3

(
φ†1φ1

)(
φ†2φ2

)
+λ4

(
φ†1φ2

)(
φ†2φ1

)
+ 1

2

[
λ5

(
φ†1φ2

)2
+ h.c.

]
. (9)
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Fig. 2. Allowed regions (gray) in the (m,Λ) plane for mh = 115 GeV and mh =
115 GeV for Dt = 0, N = 6 and

∑N
i=1Ω

(i)
ϕ h2 = 0.110± 0.018 at the 3σ level.

Both doublets develop vacuum expectation values: 〈φ0
1〉 = v1/

√
2 and 〈φ0

2〉 =
v2/
√

2. We assume here that φ1 and φ2 couple to down- and up-type quarks,
respectively (the so-called 2HDM II). Then the cancellation of quadratic
divergences implies that the following relations must hold [11]

3
2m

2
W + 3

4m
2
Z + v2

2

(
3
2λ1 + λ3 + 1

2λ4

)
= 3

m2
b

c2β
, (10)

3
2m

2
W + 3

4m
2
Z + v2

2

(
3
2λ1 + λ3 + 1

2λ4

)
= 3

m2
t

s2β
, (11)

where v2 ≡ v2
1 + v2

2, tanβ ≡ v2/v1 and we adopt the notation: sθ ≡ sin θ
and cθ ≡ cos θ. We note that when tanβ is large, the two right-hand sides
can be comparable, implying λ1 ' λ2.

The cancellation relations (10)–(11) severely restricts the parameter
space (see [12] and also [13]), however it turns out that substantial amount
of CP violation survives all the constraints imposed. In order to parametrize
the magnitude of CP violation, we adopt the U(2) invariants introduced by
Lavoura and Silva [14] (see also [15]). We shall here adopt the basis-invariant
formulation of these invariants J1, J2 and J3 proposed by Gunion and Haber
[16]. As is proven there (theorem no. 4) the Higgs sector is CP-conserving if
and only if all Ji are real. On the basis adopted here the invariants read [17]
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ImJ1 = −v
2
1v

2
2

v4
(λ1 − λ2)Imλ5 , (12)

ImJ2 = −v
2
1v

2
2

v8

[(
(λ1 − λ3 − λ4)

2 − |λ5|2
)
v4
1 + 2(λ1 − λ2)Reλ5v

2
1v

2
2

−
(
(λ2 − λ3 − λ4)

2 − |λ5|2
)
v4
2

]
Imλ5 , (13)

ImJ3 =
v2
1v

2
2

v4
(λ1 − λ2)(λ1 + λ2 + 2λ4)Imλ5 . (14)

It is seen that there is no CP violation when Imλ5 = 0, see [17] for more
details. For a quantitative illustration we plot in Fig. 3 maximal values of
the invariants in the tanβ–MH± plane with all the necessary constraints
imposed (see [12] for details), looking for regions which allow for substantial
CP violation in spite of the cancellation conditions imposed. As it is seen
from the figure for large tanβ, tanβ ∼ 20–40 such regions exist.

Fig. 3. Absolute values of imaginary parts of the U(2) invariants |Im Ji|, for Λ =
4.5 TeV and µ = 500 GeV. The color (grey-scale) coding in units 10−2 is given
along the right vertical axis.

Unfortunately, introducing CP violation in the scalar potential we have
eliminated the chance for DM candidate within just two Higgs doublet2,
a possible remedy is an extra singlet as discussed in [12].

5. Conclusions

It has been shown that the addition of real scalar singlets ϕi to the SM
may soften the little hierarchy problem (by lifting the cutoff Λ to the multi
TeV range). At the same time, the scalars serve as realistic candidates for
Dark Matter, in that case a consistent setup within present LHC bounds

2 For a CP-conserving 2HDM with DM candidate being a doublet component see [18].
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for the Higgs-boson mass is provided e.g. by N = 6 scalars with masses
m ∼ 1.5–3 TeV and the UV cutoff Λ ∼ 4.5–10 TeV. In order to accom-
modate also extra sources of CP violation, a 2 Higgs Doublet Model with
cancellation of quadratic divergences has been discussed. It has been shown
that experimental and theoretical constraints implemented by the cancel-
lation conditions are consistent with a substantial amount of CP violation
originating from the scalar potential. However, in order to provide a can-
didate for Dark Matter, the model must be supplemented by at least one
extra scalar singlet.

We thank the Organizers of the XXXV International Conference of The-
oretical Physics for their warm hospitality during the meeting. This work is
supported in part by the Ministry of Science and Higher Education (Poland)
as research project N N202 006334 (2008–11).
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