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An extension of the Standard Model by extra scalar singlets was consid-
ered. Theoretical (unitarity, vacuum stability, triviality) and cosmological
(dark matter relic abundance, direct detection experiments, constraints on
dark matter self-interaction) constraints were discussed.
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1. Introduction

The Standard Model (SM) of electro-weak interactions does not provide
a viable candidate for Dark Matter (DM) [1]. To unravel the DM mystery we
need to consider its extensions. Among many existing proposals there is the
simplest DM model, constructed by adding a real singlet scalar field to the
SM particles. We would like to propose a variation of the singlet scalar ex-
tension consisting of an addition of the N extra scalar singlets transforming
according to the fundamental representation of O(N) symmetry group.

In this paper, we confront our model with theoretical bounds (unitarity,
stability, triviality) and cosmological data (the amount of DM in the Uni-
verse [1] and direct detection XENON 100 experiment [2]). We also note,
that conventional collisionless Cold Dark Matter has problems explaining the
observed structure of galaxies and significant self-interaction rate provides
possible cure (see Sec. 3.4 and [3]).
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2. Model and theoretical constraints

We shall consider the SM extended by addition of N scalars ϕi which
are singlets under the SM gauge group SU(3) × SU(2) × U(1). We assume
that the N -component vector ~ϕ transforms according to the fundamental
representation of O(N) — an exact symmetry of the model. All SM fields
are singlets under O(N). For the purpose of providing a DM candidate we
impose an additional Z2 symmetry, under which ~ϕ is odd: ~ϕ → −~ϕ. The
most general, symmetric and renormalizable potential is

V (H, ~ϕ ) = −µ2
HH

†H + λH

(
H†H

)2
+ 1/2µ2

ϕ~ϕ
2

+1/4!λϕ
(
~ϕ 2
)2 + λxH

†H~ϕ 2 . (1)

The Higgs field is a SM doublet with a vacuum expectation value (VEV),
〈H〉 = v/

√
2 for v = 246 GeV. After the symmetry breaking the Higgs-boson

mass is m2
h = −µ2

H + 3λHv2 = 2µ2
H , as in the SM. The singlet’s masses also

get a VEV contribution, m2
ϕ = µ2

ϕ + λxv
2.

Singlets do not develop a VEV — we would like them to be stable, so
the Z2 must be unbroken with µ2

ϕ ≥ 0. That implies

m2
ϕ ≥ λxv2 (2)

which is a significant constraint — light scalars (mϕ � v) must couple
very weakly to the SM. Quartic couplings are constrained by the unitarity
arguments for longitudinal W boson- and scalar-scattering [4, 5]

m2
H < (8π)/3v2 , λϕ < 8π , |λx| < 4π . (3)

Tree level vacuum stability of the scalar potential (1) implies that either
all the quartic couplings are positive: λH , λϕ, λx > 0 or λx is negative and
λ2
x < λϕλH/6 = λϕm

2
h/(12v2) [5].

2.1. Triviality

We require that the during the renormalization group equation (RGE)
running, the quartic couplings λH , λx, λϕ remain finite up to the cut-off scale
Λ. That implies limits on the model parameters, in particular an upper limit
on mh (so-called ‘triviality bound’).

The RGE for running couplings in our model can be found in [6].
We solve those equations with initial conditions: λH(µ = mW ) = λH 0,
λx(µ = mW ) = λx 0 and λϕ(µ = mW ) = λϕ 0.

We assume that for a given Λ there is no pole in the evolution of the
scalar quartic couplings at energies below Λ. That gives us constraints in
the (mh, Λ) plane depending on initial parameters λx 0, λϕ 0 and N — see
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the left panel of Fig. 1. Note that the allowed region shrinks as λx0 grows
and the upper bound on mh is getting lower. There is also an asymmetry
between the negative and positive branch of λx0 initial conditions, see the
right panel of Fig. 1.
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Fig. 1. Left: Triviality upper bound for the Higgs boson as a function of the cut-off
Λ for different λx0, N = 1 and λϕ0 = 0.1. Regions above each curve are forbidden.
Right: Regions (between curves of the same type) allowed for λx0 by triviality for
Λ = 104 GeV, λϕ0 = 0.5.

3. Experimental constraints

3.1. DM relic abundance — Cold Dark Matter (CDM)

Stability of the singlets ~ϕ makes them good DM candidates. To calculate
DM relic abundance in the case of compound DM we need in general a set
of Boltzmann equations for all component. Because of the O(N) symmetry
it actually simplifies to one equation [8]

df

dT
=
〈σv〉
K

(
f2 − f2

EQ

)
, K(T ) =

√
4π3g?(T )
45m2

Pl

, (4)

where f ≡ n/T 3, n is the number density of DM, fEQ is the equilibrium
distribution, g?(T ) — number of relativistic degrees of freedom, mPl —
Planck mass, 〈σv〉— the thermally averaged cross-section for DM + DM→
SM + SM processes [9, 10]. Total abundance of DM, ΩDM, reads

ΩN
DM =

∑
i

Ωi
DM = NΩ1

DM , (5)

where Ωi
DM is the dark matter relic density from i-th scalar field ϕi.
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We solve (4) in the standard CDM case [8] using MicrOMEGAs [11].
From the WMAP data [1] we know that Ω(exp)

DM h2 = 0.110± 0.018 (allowing
for 3σ uncertainty) and for a given choice of N , mh and mϕ we seek λx
such that this constraint is satisfied, see Fig. 2. Note that in the vicinity of
resonance, the annihilation cross-section is enhanced (mh ∼ 2mϕ), therefore
λx is suppressed to reach the desired DM abundance.
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Fig. 2. |λx| as a function of mϕ for CDM, mh = 130GeV, λx > 0 (left panel)
and λx < 0 (right panel). The dark gray, gray and light gray points correspond to
N = 1, 6 and 12, respectively. The gray (blue) areas in the left and right panels
show regions allowed by the consistency condition (2) and the vacuum stability for
λϕ = 8π, respectively. The thick black lines show the unitarity limit (3) |λx| = 4π.

3.2. DM relic abundance — Feebly Interacting Dark Matter (FIDM)

In the CDM model we achieve equilibrium between certain particles and
the SM species just to lose it (‘freeze-out’) while the Universe cools. What
happens if the DM particles interact with SM so feebly (λx < 10−9), that
equilibrium with the SM species is never achieved [12]?

In the following, we will assume the number density f was negligible at
the Big Bang: limT→∞ f(T ) = 0. Having f determined by the Boltzmann
equation (4) (see Fig. 3, left panel) one can get the DM relic abundance

ΩDMh
2 = mϕnϕ/ρcrit = mϕT

3
γ fϕ/ρcrit , (6)

where Tγ is the present photon temperature, ρcrit is the critical density. For
solutions satisfying (6) see Fig. 3, right panel.
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Fig. 3. Left: Solutions to the Boltzman equation (4) in the case of FIDM for a
single scalar of mass mϕ = 100 MeV, λx = 10−13 (bottom curve), . . . , 10−9 (top
curve) for mh = 130 GeV. Dashed (green) curve is the equilibrium distribution
fEQ. Right: FIDM solutions satisfying the relic abundance condition for mh = 130
GeV, N = 1 (darker points), N = 12 (lighter).

3.3. DM direct detection

The direct detection rate of ~ϕ is determined by the cross-section of ~ϕ
scattering off nuclei (see the Feynman diagram in Fig. 4), which can be
found e.g. in [9] for N = 1 and in [7] for compound DM case. In Fig. 4 we
show allowed regions in the (mh,mϕ) plane that remain after imposing limits
on the elastic scattering of DM particles off nucleons from XENON100 (the
strongest limits on σDMN→DMN in the mass range of our interest, [2]). The
white band corresponds to the resonance region seen in Fig. 2 for mh ∼ 2mϕ

in which the annihilation is amplified and the coupling λx is suppressed.
Since the XENON100 data start at mϕ = 5 GeV, therefore, the vertical
strip of masses below 5 GeV is also allowed.

Fig. 4. Left: XENON100 constraint on (mh,mϕ) combined with DM abundance in
the case of CDM (black (blue) region forbidden for N = 1, black (blue) and gray
(yellow) for N = 6, black (blue), gray (yellow) and dark gray (red) for N = 12).
Right: Elastic scattering of ~ϕ off a nucleon.
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3.4. Self-interacting DM

The standard ΛCDM model is facing some difficulties if compared with
observations. High-resolution N -body simulations have shown that the
model generates cusps of the DM density distribution in central regions
of galaxies [13] and the number of subhalos predicted by the model turns
out to be larger than the observed [14] number. Self-interacting DM (SIDM)
was proposed by Spergel and Steinhardt [3] to cure those problems.

The key feature of SIDM is that the mean free path of DM particles
should be between 1 kpc and 1 Mpc in regions where the dark matter density
is about 0.4 GeV/cm3. In terms of the unit mass cross-section the Steinhardt
and Spergel hypothesis requires that

2.05× 103 GeV−3 ≤ σDM+DM→DM+DM/mDM ≤ 2.57× 104 GeV−3 . (7)

For different N this condition implies a relation between λx, λϕ and mϕ

illustrated in Fig. 5 as an allowed region in the (λϕ,mϕ) space. In the
plots λϕ varies form 0 up to its maximal value allowed by unitarity, i.e. 8π.
Similar results were obtained in other versions of scalar DM models [15,16].
As observed from Fig. 2, mϕ consistent with the Spergel and Steinhardt
condition is so small that it is not compatible with the CDM case. The only
viable option is the FIDM, therefore λx ∼ 0 (only the first panel in Fig. 5
is consistent with the DM abundance). In this case, from Fig. 3 one can see
that mϕ ∼ 0.01–0.15 GeV corresponds to λx ∼ 10−10–10−12 for N = 1–12.
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Fig. 5. Regions in (λϕ,mϕ) space allowed by the Steinhardt and Spergel constraint
for N = 1 (darker region) and N = 12 (lighter region) for λx = 0 (left), 1 (right).
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4. Summary and conclusions

We have considered an extension of the Standard Model by an addition
of N real scalar singlets ϕ with O(N) symmetry that are candidates for
Dark Matter. We have discussed theoretical and experimental (cosmological)
constraints on the model parameters. The XENON100 direct DM detection
experiment gives no constraints on the model in the FIDM case (too small
coupling of DM to the SM), but constrain strongly the CDM solution (see
Fig. 4). We have shown that Steinhardt and Spergel solution of the DM
density distribution problem within the singlet scalar SM extension requires
feebly interacting DM.
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