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FLUCTUATIONS OF COSMIC PARAMETERS
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We present the fluctuations of the cosmic parameters on different scales.
For large scales we use standard perturbation theory, for small scales the
relativistic Zel’dovich approximation. We find that 1% curvature fluctua-
tions reach out to scales of 600 h−1 Mpc and that backreaction contributes
up to 15% to the cosmic energy budget on scales of 50 Mpc.
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1. Introduction

Over the last decade, ever increasing galaxy surveys as the 2dF and SDSS
survey, have shown that the Universe is inhomogeneous up to scales of at
least 100 h−1 Mpc. This raised the question, whether these inhomogeneities
influenced the expansion history of the Universe as a whole, or only the local
evolution. This is the cosmic backreaction problem recalled in Sect. 2.

In [1] we derived a condition on the initial backreaction under which it
leads to important effects today. Analysing N -body data we found, that it
is only satisfied on small scales. As today’s simulations are Newtonian, this
was expected, because in a Newtonian set-up backreaction vanishes on the
scale of homogeneity. Thus, also a Newtonian perturbative study [2] found
that only the small scale evolution is modified by the effective sources.

In general relativity (GR) this is not necessarily true. This motivated the
extension of the analysis of [2] to GR in [3]. There we found that also in GR
the expected deviation of a domain from the background behaviour is small.
The fluctuations between different domains in the Universe, however, may
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be quite large, which confirms results of [4, 5]. They also showed, that even
if backreaction itself contributes significantly only below the homogeneity
scale, curvature still has sizeable fluctuations above that scale.

This shows that one has to take averaging effects into account in the in-
terpretation of the observations. As we make all our observations in a special
region of the Universe, i.e. around the earth, we have to know how typical
this region is. Only CMB observations allow to make statements about the
(observable) Universe as a whole. All the others are more or less local and so
subject to inevitable uncertainties by the Universe’s inhomogeneity. Due to
their potential importance to the interpretation of observations, we quanti-
fied them in [6]. Here we summarize these results on large scale fluctuations
together with results of [3] on the evolution of typical inhomogeneous regions
on small scales.

2. Cosmic parameters as local averages

To quantify the fluctuations of cosmic parameters, we first have to define
them for limited domains. For inhomogeneous domains the approach of [7,8]
allows this. It defines averages of scalar quantities by the Riemannian av-
erage over a domain D on a spatial hypersurface 〈f〉D :=

∫
D f (t,x) dµg/VD

with dµg :=
(
(3)g (t,x)

)1/2
d3x. It can then be shown that the domain’s

volume scale factor aD evolves through Friedmann like equations

3
äD
aD

= −4πG 〈%〉D + Λ+QD , (1)

3H2
D = 8πG 〈%〉D −

1
2 〈R〉D + Λ− 1

2QD , (2)

that contain the new, effective kinematical backreaction term QD

QD := 2
3

(〈
θ2
〉
D − 〈θ〉

2
D

)
− 2

〈
σ2
〉
D , ∂t

(
a6
DQD

)
= −a4

D∂t
(
a2
D〈R〉D

)
.

(3)
If the expansion fluctuations

〈
θ2
〉
D − 〈θ〉

2
D on D outweigh the shear fluctu-

ations
〈
σ2
〉
D, by (1) QD drives acceleration. It also modifies the curvature

evolution of D by its coupling to the average three Ricci scalar in Eq. (3).
Therefore, the local cosmic parameters on D, evolve differently from the

global ones. The former are defined in analogy to the latter by

ΩDm :=
8πG
3H2
D
〈%〉D , ΩDΛ :=

Λ

3H2
D
, ΩDR := −〈R〉D

6H2
D
, ΩDQ := − QD

6H2
D
. (4)
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It is the typical variations of these parameters between different places in the
Universe, that we are interested in. Formally, one may characterize these
fluctuations by the variance of an ensemble average OD, i.e. σ2 (OD) :=
O2
D − OD

2, where σ (OD) measures the variation in the average, over a
domain D of a specific size and shape, of an observable O, compared to its
value averaged over the same kind of domain at a different location.

3. Calculation of the intrinsic fluctuations of cosmic parameters

To quantify the fluctuations of the cosmic parameters (4) we use different
techniques adapted to the scale under consideration. On large scales, stan-
dard perturbation theory is sufficient. On small scales we use the relativistic
generalization of the Zel’dovich approximation. As we found that on large
scales QD is negligible (see Fig. 1, l.h.s.), we will only include it in the plots
of the small scale results.
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Fig. 1. Left: Fluctuations in the kinematical backreaction parameter between dif-
ferent domains D. Above the homogeneity scale of the order of 100 Mpc, QD
gives typically only sub percent corrections to the evolution of the volume scale
factor aD. Right: The top three lines show the r.m.s. fluctuation of the curvature
parameter, δΩDR, for geometries resembling the 2dFGRS, the SDSS and a full sky
survey. The x-axis measures the radial extension of the domain D.

3.1. Large scale calculation

For evaluating the large scale fluctuations we use standard cosmological
perturbation theory in comoving synchronous gauge. Starting from the per-
turbed metric one can derive the dependence of the local quantities on the
background and the perturbation. One then takes the D-average of Sect. 2
and calculates the ensemble variance of the resulting domain dependent cos-
mic parameter ΩDX . The fluctuations obtained may be summarized by
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δHD = 1
3HD (aD) f (aD) σD = 0.17H0σD ,

δΩDm = ΩDm (aD)
(
1 + 2

3 f (aD)
)
σD = 0.40σD ,

δΩDR = ΩDm (aD)
(
1 + 2

3
f(aD)

ΩDm(aD)

)
σD = 0.64σD ,

δΩDΛ = 2
3Ω
D
Λ (aD) f (aD) σD = 0.24σD ,

δΩDQ = O
(
σ2
D
)
, (5)

where the last column indicates the values for a ΛCDM Universe, today. As
by the Einstein equations, the inhomogeneities in the matter distribution
induced the ones in the average Hubble rate HD and the average curvature
〈R〉D, all fluctuations depend on the underlying matter fluctuations on D

σ2
D :=

∫
R3

d3k Pi(k)W̃D (k) W̃D (−k) , (6)

σD is characterized by their power spectrum Pi (k) and the window function
of the domain D, WD (r).

The evolution of the fluctuations depends on the cosmology under con-
sideration. The modified growth rate

f (aD) := 3
2Ω
D
m (aD)

(
5

3D0

aD
aD0
− 1
)
≈
{

0.5 ΛCDM
1.0 EdS (7)

is bigger for a pure Einstein–de-Sitter model (the approximate values are cal-
culated for “today”). In the general case, the growth function D depends on
the matter content of the background one chooses. Also the evolution of the

average domain D, ΩDm =
(
1 + c (aD/aD0)

3
)−1

, depends on the background
via the ratio c = ΩΛ/Ωm.

3.2. Small scale calculation

For domains smaller than the homogeneity scale, Fig. 1 shows that back-
reaction has to be taken into account. Therefore, we need more refined
methods than the simple first order calculation of the previous section. One
such method is the general relativistic Zel’dovich approximation discussed
in [9].

Decomposing the metric into coframes gij = Gabη
a
iη
b
j allows to perturb

it analogously to the Newtonian Zel’dovich approximation (see [2])

RZAηai(t,X
k) := a(t)

(
δai + ξ(t)Ṗa

i

(
ti,X

k
))

. (8)
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This analogy then carries over to the backreaction term, that may be written
in the same form as in the Newtonian case

RZAQD =
ξ̇2
(
γ1 + ξγ2 + ξ2γ3

)
(1 + ξ〈Ii〉CD + ξ2〈IIi〉CD + ξ3〈IIIi〉CD)2

, (9)

but with coefficients γi and Ii that are now functions of the initial coframe
perturbation Ṗa

i and no longer only of the scalar gravitational potential as
in the Newtonian case. For flat initial conditions the numerical difference
between the two sets of coefficients, however, is expected to be small. There-
fore, the evolution of QD is basically Newtonian. Nevertheless, in GR QD
triggers non-trivial curvature and leads in this way to different results than
in the Newtonian framework.

4. Explicit evaluation of the fluctuations

4.1. Large scale results

To show the importance of the variations in the cosmic parameters be-
tween different domains in the Universe, we calculate their fluctuations on a
given region “today” using Eqs. (5). We choose domains close to those used
by observers, i.e. either cone- or slice-like. The calculation used a decom-
position of these windows into spherical harmonics, to separate the model
independent angular part from the model dependent radial coefficients.

The results for geometries corresponding to the currently biggest low z
galaxy surveys, are shown in Fig. 1. It shows that even for the large volumes
realised by the SDSS and 2dF survey, the uncertainties in the cosmic param-
eters are still important. For the main sample of the SDSS, being volume
limited up to a redshift of about 0.1, this means, that the uncertainty in
the curvature is still around 5%. Even for a (hypothetical) full sky survey
this value does not drop below 1%. Converted into Mpc this means that
spheres of 270 h−1 Mpc in radius still suffer from curvature fluctuations of
1%. Therefore, the typical scale of 1% fluctuations in the curvature param-
eter is of the order of 600 h−1 Mpc. This is actually not that small as the
last scattering surface at z ≈ 1100 is only 9600 h−1 Mpc away. One of these
regions therefore fills more than 5% of the way to that surface.

The formulae of Eqs. (5) are also useful to determine the fluctuations in
other cosmologically interesting parameters. One is the dark energy (DE)
equation of state w. In an inhomogeneous Universe, the measured value of
w is influenced by curvature and backreaction. Even if they vanish globally,
ΩDR and ΩDQ may be different from zero on a finite domain D. The equation
of state one measures for the component that is not made of matter, is then
a combination of equations of state of the components ΩDR, Ω

D
Q and ΩDΛ .
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Fig. 2 shows that in the regions of interest for the measurement of the
equation of state, i.e. for redshifts z > 0.3 the effect is completely negligible.
Only if one was to use a method to determine it “today”, the error due to the
modified dynamics of the local volume would be important, but drops below
1% above z ≈ 0.1. However, in a different way the error in the curvature
parameter may induce one on w. As shown above, even large volumes may
possess an untypical amount of curvature. If one used these local volumes
to determine the curvature, one may find a value different from the true
background value. If one then used this local value as the basis for the
determination of the equation of state of DE at higher redshifts, the error
might be huge even for per mille errors on the measured curvature. This
has been shown in [10]. Therefore, one could mistakenly measure dynamical
DE even if in reality it was a cosmological constant. So it is crucial to know
how big the curvature fluctuation still is on the observational domains used.
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Fig. 2. Left: Uncertainty in the value of the dark energy equation of state w due
to inhomogeneities, in terms of the radius of the averaging sphere D given in units
of redshift. Right: Evolution of the domain dependent cosmic parameters of Eq. 4
with cosmic time. The background is the EdS model with Ωm = 1 (h = 0.5,
σ8 = 1). The plot shows values for a spherical domain of 50 Mpc radius with one-σ
fluctuations of the initial invariants of the perturbation one form.

4.2. Small scale results

Already from Fig. 1 we see, that, on small scales, deviations from the
background are quite large. To quantify them using the relativistic Zel’dovich
approximation of Section 3.2, we choose an EdS and a ΛCDM background.
In Fig. 2 we look at the temporal evolution of a typical overdense 50 Mpc
sphere, one-σ away from the EdS background. On these scales the density
contrast is already so big that the ΩDm parameter is 100% off the global value.
This is compensated by a large positive curvature. The backreaction is of the
order of 15%, significantly influencing the evolution. In the ΛCDM case the
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deviations from the background are less important, as structure stops grow-
ing relatively early. This hinders the emergence of a sizeable backreaction
component. Also the curvature does not grow as big.

4.3. Global results

As we have seen in the section above and from Fig. 1, the backreaction
term is small on scales larger than the homogeneity scale. From its definition
in Eq. (3) this means that either the expansion fluctuation and the shear
fluctuation are both zero, or they cancel each other. To disentangle these
two possibilities one may calculate their expected values for a given domain
D, using the formalism of Section 3.2. The surprising result is (see [3]), that
this expectation value is independent of the size of the domain. For the
expansion fluctuation one finds a value that would correspond to ΩDQ ≈ 0.73
today, if the shear was zero and QD only consisted of expansion fluctuations.
This shows that there is indeed a cancellation like in the Newtonian case.

5. Conclusion

We have discussed how to address the problem of quantifying the influ-
ence of inhomogeneities on the cosmic evolution in the averaging framework
of [7,8]. This is advantageous because it allows to define local Ω-parameters
obeying the extended Friedmann equation (2) for arbitrary inhomogeneities.
The effective terms figuring in these equations (e.g. backreaction), give a
modification of the small scale evolution, as was shown in Sect. 4.2. How-
ever, the direct influence of inhomogeneities encoded in ΩDQ , dies out at
the homogeneity scale (but persist on a low level see [11]), as can be seen
from Fig. 1. Sect. 4.1 showed, that for the other cosmic parameters this
behaviour is less drastic and leads to sizeable fluctuations on scales above
the 100 Mpc threshold. For cosmic curvature, even scales of the order of
600 h−1 Mpc show 1% fluctuations. The results presented are useful for the
correct interpretation of cosmological observations. They may be used for
a determination of the modified growth rate Eq. (7) and therefore, for a
measurement of the background cosmology. To extend them to the higher
redshifts of future galaxy surveys one may use the new averaging techniques
developed by [12], or directly the calculation of the fluctuations in the lu-
minosity distance by [13]. However, this is only necessary if one wants to
extend the averaging domain to the entire survey volume. For small enough
subsamples the formulae presented here are completely sufficient.
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