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The accelerating expansion of the Universe is a great challenge for both
physics and cosmology. From the observational point of view, it is crucial
to have various methods to assess cosmic expansion history, which can be
alternative to standard candles (SNIa in cosmological context). Strongly
gravitationally lensed systems create such a new opportunity by combin-
ing stellar kinematics with lensing geometry. Using strong gravitational
lenses as probes of cosmic expansion is becoming attractive in light of on-
going surveys like SLACS based on different protocols than older searches
focused on potential sources. In this approach, pursued recently by the
authors, strongly lensed systems with known central velocity dispersions
act as “standard rulers” — Einstein radius being standardized by stellar
kinematics.
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1. Introduction

The accelerating expansion of the Universe is one of the most important
issues in modern science, and indeed a great challenge to both physics and
cosmology. It appeared at the end of the XX century as a result of the ad-
vances in accuracy of extragalactic distance measurements. Discovery of this
phenomenon on the Hubble diagrams obtained from the SNIa surveys [1] in
combination with independent estimates of the amount of baryons and cold
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dark matter [2] led us to believe that most of the energy in the Universe exists
in the form of mysterious dark energy. Whether dark energy is attributable
to a real material component still remains to be established. The new physics
of dark energy may lie in the nature of gravity itself, the quantum vacuum,
or extra dimensions. Whatever the true solution of accelerating expansion
is, surely any observational method providing alternative way of measuring
cosmic distances will be important. The potential of constraining dark en-
ergy models with SNIa data alone, even though ever increasing, would not
be sufficient if taken alone in separation form the other approaches. There-
fore, every alternative method of probing the cosmic expansion history is
desired. In particular, along with standard candles (like SNIa), one should
consider standard rulers as well.

In this paper, we point out that strong gravitationally lensed systems
can serve as a new class of standard rulers for cosmology.

2. Distance measures

The main paradigm of modern cosmology is that geometry of the Uni-
verse can be described as one of three possible Friedman–Robertson–Walker
(FRW) solutions to the Einstein equations representing homogeneous and
isotropic spacetime. Currently there exists strong evidence, coming form
independent and precise experiments, that the Universe is spatially flat.
For example, a combined analysis of cosmic microwave background, baryon
acoustic oscillations (BAO) and supernova data [3] givesΩtot =1.0050+0.0060

−0.0061.
The only gravitational degree of freedom, in the FRW cosmology, is the
scale factor a(t) depending on cosmic time t and responsible for tempo-
ral changes of spatial length-scales (known as cosmic expansion). Unfortu-
nately it is not directly observable. However, there is a unique correspon-
dence between a(t) and redshift z which is an observable quantity. Namely,
a(z) = (1 + z)−1. The Einstein equations in FRW model allows for a very
convenient parametrization of the expansion rate H(t) = H2

0h(t)2

H(t)2 = H2
0

[
Ωma(t)−3 +Ωra(t)−4 +ΩXa(t)−3(1+wX) +Ωka(t)−2

]
, (1)

where Ωi, i ∈ {m, r,X, k} denote present energy density1 of respective com-
ponents (matter, radiation, other non-standard barotropic component X e.g.
for cosmological constant we have wΛ = −1 and ΩΛ is just a constant term).
The last term is the so-called curvature term and is zero for the flat model.
The present value of cosmic expansion rate is known as the Hubble constant
H0. Thus we see that the expansion rate H = ȧ

a is determined by some set
of parameters like H0, Ωm, Ωr or ΩX (if other components X are considered)

1 As a fraction of critical density.
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and the equation of state parameter wX . We will use a shorthand notation
of p for such parameters. Technically speaking, testing cosmological mod-
els means to determine parameters p from observable quantities measured
on samples of extragalactic objects lying far enough to feel the large-scale
geometry of space-time. This specific goal of cosmology is currently called
cosmography.

It is quite obvious that one very direct approach could be to test the
distance — redshift relation D(z) (called the Hubble diagram when plotted)
whenever there is a possibility to determine distances and redshifts indepen-
dently. However, as a consequence of non-Euclidean geometry assumed, one
distinguishes three types of distances in cosmology: the comoving distance,
luminosity distance and angular diameter distance. We are not able to mea-
sure the comoving distance directly. However, the last two distances are
based on clear observational concepts, but in order to use them we should
have standard candles and standard rulers, respectively. Standard candles
are objects with known luminosity L; we measure the flux F so one can
assess the luminosity distance from the well known relation: L = 4πD2

LF .
In fact, this relation is the definition of the luminosity distance DL. Simi-
larly, when we have standard rulers, i.e. the objects whose size R is a priori
known, one can assess how distant they are from measuring their angular
sizes θ. Then, of course, R = DAθ. This relation is known from ancient
times and serves as a definition of the angular diameter distance DA.

Supernovae Ia are the most important standard candles in cosmology [1].
The reason for this is that they are bright enough to be detected in distant
galaxies and those occurring in nearby galaxies can be calibrated by reliable
independent distance measurements based on Cepheids or other local dis-
tance tracers. Using SNIa we can probe the cosmic expansion up to redshift
z = 1.7. A new promising class of standard candles detectable up to the
redshift of z = 6 is offered by gamma ray bursts [4]. Final stages of evolution
of NS–NS binary systems, and more specifically the signal which is supposed
to be observed in next generation of gravitational wave detectors, theoreti-
cally can serve as a new class of standard candles [5]. Now, the point is that
standard candles are not exactly “standard” but rather “standardizable”. For
example, SNIa do not have exactly the same luminosity — some amount of
scatter in peak luminosity occurs. It is, however, correlated with the dura-
tion of the SN event — intrinsically brighter SNe last longer. Therefore, one
can use the so-called stretch factor to produce a standardized lightcurve for
each individual event.

Standard rulers are becoming increasingly popular in cosmology. They
fall into two classes. First, statistical standard rulers i.e. acoustic peaks in
the CMBR anisotropy power spectrum and baryon acoustic oscillations seen
in galaxy distribution (see [6] for a review). Second class comprises individ-
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ual standard rulers such as: ultra compact radio sources [7], double-sided
radio sources [8] and galaxy clusters for which X-ray data can be combined
with Sunyayev–Zel’dovich effect [9]. They also are not quite standard but
rather standardizable. What we want to point out here is that strong grav-
itational lenses offer another class of standardizable rulers.

3. Gravitational lenses

Gravitational lensing of quasars and extragalactic radio sources at high
redshifts by foreground galaxies is now well established and has developed
into a mature branch of astrophysics in both theoretical and observational
dimensions [10, 11]. Modern advances in gravitational lensing as a tool for
cosmology are reviewed in [12] upon which general remarks outlined below
in this chapter are based.

Imagine the source, observer and some other massive object (the lens)
located exactly along a line. From the point of view of traditional optics
the source would be obscured by the intervening object. General relativistic
phenomenon of light deflection near massive bodies changes this picture:
out of all light rays emitted radially some get now focused at the observer.
The intervening massive body acts as a lens and a source behind reveals
its existence as a luminous ring — the so-called Einstein ring. Even the
smallest misalignment of the source, the lens and observer results typically
in multiple images whose angular positions and magnification ratios allow
reconstructing lensing mass distribution.

The most useful notion in gravitational lensing theory is the Einstein ra-
dius θE. In circular lenses it is the radius of the circle inside which the average
projected mass density is equal to critical density Σcr = c2Ds/(4πGDlDls),
where Ds, Dl and Dls denote respectively the angular diameter distance to
the source (at redshift zs), the lens (at redshift zl) and between the lens and
the source. Thus the Einstein radius defines the deflection scale of a given
lens.

The lensing is called strong if source position happens to lie within the
circle of a radius θE. In this case multiple images appear. In the opposite case
(i.e. the light-rays from the source passing by the lens outside its Einstein
radius) there are no multiple images. Even in this case, however, the light-
ray bundles experience a systematic distortion which changes the shape of
the lensed source. This phenomenon is called weak lensing, has its own place
in cosmology [11] and is beyond the scope of this paper.

A surprisingly realistic model of the lens potential is that of a singular
isothermal sphere (SIS) in which the 3-dimensional mass density has the
following profile

ρ =
σ2

SIS

2πGr2
. (2)
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The Einstein ring radius for the SIS model is

θE = 4π
Dls

Ds

σ2
SIS

c2
, (3)

where σSIS denotes one-dimensional velocity dispersion of stars in lensing
galaxy.

4. Strong lensing systems as standard rulers

The main idea is that the formula for the Einstein radius in a SIS lens (3)
depends on the cosmological model through the ratio of (angular-diameter)
distances between lens and source and between observer and lens [13]. The
angular diameter distance in flat Friedmann–Robertson–Walker cosmology
is given by

DA(z; p) =
c

H0

1
1 + z

z∫
0

dz′

h(z′; p)
. (4)

Provided one has reliable knowledge about the lensing system: i.e. the
Einstein radius θE (from image astrometry) and stellar velocity dispersion
σSIS (form central velocity dispersion σ0 obtained from spectroscopy) one
can use it to test the background cosmology. This method is independent of
the Hubble constant value (which gets canceled in the distance ratio) and is
not affected by dust absorption or source evolutionary effects. It depends,
however, on the reliability of lens modeling (e.g. SIS assumption) and mea-
surements of σ0. Hopefully, starting with the Lens Structure and Dynamics
(LSD) survey and the more recent SLACS survey spectroscopic data for cen-
tral parts of lens galaxies became available allowing to assess their central
velocity dispersions. There is a growing evidence for homologous structure
of early type galaxies [14, 15] supporting reliability of SIS assumption. In
particular, it was shown there that inside one effective radius massive ellipti-
cal galaxies are kinematically indistinguishable from an isothermal ellipsoid
(SIE) — a straightforward generalization of the isothermal sphere (SIS).

In the method outlined above, cosmological model enters not through a
distance measure directly, but rather through a distance ratio

Dth(zl, zs; p) =
Ds(p)
Dls(p)

=

zs∫
0

dz′

h(z′;p)

zs∫
zl

dz′

h(z′;p)

(5)

and respective observable counterpart reads

Dobs =
4πσ2

0

c2θE
.
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This has certain consequences both advantageous and disadvantageous. The
positive side is that the Hubble constant H0 gets canceled, hence it does not
introduce any uncertainty to the results. On the other hand, we have a
disadvantage that the power of estimating Ωm is poor. Putting aside the
issue that the observable quantity here is a distance ratio, one can see that
strong lenses constitute a class of standard rulers. They could be better
called “standardizable” rulers because each lens has intrinsically different
Einstein radius, but stellar kinematics, i.e. velocity dispersion allows for
disentangling the effect of mass from that of distances.

The above method extensively investigated by [16] on simulated data was
first used in practice to constrain various cosmological models in [17] where
ΛCDM, quintessence and CPL model were constrained. Later it was used
(together with SNIa, CMB and BAO data) as a part of joint analysis in [18].
The results obtained were generally in agreement with those obtained by
other authors with different methods. In particular, at the 2σ level they
agree with the supernovae Ia results. Although the sample of suitable lenses
(i.e. with good measurements of Einstein radii, source and lens redshifts
and central velocity dispersions) has been rather small (n = 20 lenses) the
ongoing SLACS survey is providing new strong lensing systems which is very
encouraging for further applications of the method. The strategy adopted
in SLACS survey is particularly important. The earlier searches were fo-
cused on source population (quasars) seeking for close pairs or multiples
and checking if they are multiple images of a single source lensed by an
intervening galaxy. Therefore a high lensing probability was an important
selection factor there. Since lensing probability is proportional to the area of
the Einstein ring, it means that two factors are crucial in this context. First,
is the mass of the lens. This is the main reason why in vast majority of cases
the lens is E/SO type galaxy. This could be understood since ellipticals be-
ing a latecomers in hierarchical structure formation are created in mergers
of low-mass spiral galaxies. Hence they are more massive than spirals and
the probability of their acting as lenses is higher. Second factor is the dis-
tance ratio Dls/Ds. In details, this of course depends on the cosmological
model, but it is maximal when the lens is located roughly half way between
the source and the observer. The SLACS sample has an average Dls/Ds

ratio equal to 0.58 with an rms scatter 0.15 [14]. While for their purpose
(investigating galactic dynamics with strong lenses) it was advantageous, in
our context it weakens the performance of the method. Therefore, having a
sub-sample of lenses with the distance ratio D deviating from the mean more
than rms in either direction would be beneficial and this criterion underlaid
the sub-sample of n = 7 lenses in [17]. In this respect SLACS survey is en-
couraging. Namely, the SLACS survey is focused on possible lens population
(massive ellipticals) with good spectroscopic data. Using SDSS templates,
spectra are carefully checked for residual emission (at least three distinct
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common atomic transitions) coming from higher redshifts. Such candidates
undergo image processing by subtracting parametrized brightness distribu-
tion typical for early type galaxies in order to reveal multiple images of the
quasar [14]. Therefore, besides the obvious bonus of having central velocity
dispersion measured, such strategy is better suited for discovering systems
with larger Dls/Ds ratios which in turn can be used for testing cosmological
models.

Not only the galaxies can act as lenses, their clusters — first virialized
structures in the Universe — do the same. The cores of galaxy clusters have
surface densities which are typically much larger than the critical surface
density Σcr for multiple image production. Therefore, they are able to pro-
duce strongly lensed images of galaxies and quasars lying behind them. Such
images manifest themselves as luminous arcs around clusters. The possibil-
ity of constraining cosmology with cluster strong lensing systems has been
explored in the past e.g. [19, 20] and still remains a fruitful, fast developing
field of research.

Analogously to the method outlined above for the galaxy lenses, the lo-
cations of images in cluster lensing systems also contain useful cosmological
information. Namely, the image positions depend not only on the mass dis-
tribution, but also on the angular diameter distances between the observer,
lens, and source. If more than one set of images is observed, the geometrical
dependence may be exploited to probe the cosmological parameters even
with a single cluster lens. One of the best studied cluster lensing system is
Abell 1689. The mean redshift of this cluster is zl = 0.184 and it is one of
the richest clusters in terms of the number density of galaxies in its core.
In a recent paper by [21] this cluster was used to derive constraints on the
cosmological parameters Ωm and w. Based on images from the Advanced
Camera for Surveys (ACS) this cluster is known to produce 114 multiple
images from 34 unique background galaxies. This allowed [21] to use many
observables like (5) from a single cluster. To be more specific instead using
Dth like in (5), they used quotients formed pairwise for background sources

Dth
cl =

Dth(zl, zs1; p)
Dth(zl, zs2; p)

, (6)

where: zl is the cluster’s redshift, zs1 and zs2 are redshifts of respective pair
of sources.

Applying the following criteria: demand of good spectroscopic data for
images and excluding regions where mass reconstruction gets poorer, from
the initial 114 images, [21] selected finally 28 images which they further used
to constrain cosmological parameters to Ωm = 0.25±0.05 w = −0.97±0.07.
Even more promising is the idea of using a larger sample of cluster lensing
systems. Such an approach has the advantage that results obtained from
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different lines of sight are statistically independent. As discussed by [22]
competitive constraints can be obtained by combining at least 10 lenses
with 5 or more image systems. One may, therefore, conclude that cluster
strong lensing is becoming a very useful complementary tool for probing
cosmic expansion history.

5. Conclusions

Strong gravitational lensing as an effect rooted deeply in General Rel-
ativity has great potential in constraining many aspects of gravitational
physics. First of all, it is useful in studies of dark matter. It stems from the
fact that gravitational lensing is sensitive to mass distribution regardless of
its nature (whether they are baryonic or not). This is already a rich field
being currently explored both theoretically and observationally.

In all known strong lensing systems producing multiple images, the pop-
ulation of sources is of cosmological nature (quasars or distant bright galax-
ies). In light of recent progress in modeling lensing galaxies, and considerable
enrichment of observational data with reliable spectroscopic measurements
allowing for determination of redshifts and central velocity dispersions, the
new possibility opens up to use well studied strong lensing system for con-
straining cosmological model parameters. Although in the past there was
certain scepticism about this technique, it is currently proving its effec-
tiveness and in the future — having in mind development of ongoing and
planned lens surveys — it will eventually evolve into a competitive tech-
nique for cosmography. This is very important, because of the dark energy
problem (i.e. the puzzle of presently accelerating Universe). Currently, the
only empirical way to address this issue is by refining the cosmography.
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